An updated Review of Tuna Growth performance in Ranching and Farming Operations

Brian Jeffriess
ASBTIA
Executive Summary

Background

Since 2008, the Commission for the Conservation of Southern Bluefin Tuna (CCSBT) Extended Scientific Committee (ESC) has reviewed papers that propose there is unaccounted catch mortality in the Australian southern bluefin tuna (SBT) ranching process (i.e. the Australian surface fishery (ASF)). While these note that Australia is declaring the correct number of SBT caught, they propose that the method of the government taking the actual weight and length (of ~3,000 fish @ 100 fish ≥ 10kg sample/tow) is potentially under-stating the weight into the pontoons.

This is based on the hypothesis that “It seems highly unlikely that farmed SBT can obtain such high growth rates.” This is based on the reasoning that there can’t be such a significant difference in growth rates between wild and farmed SBT.

The issue has been discussed in detail during official visits by the CCSBT member Governments, industry and scientists (invited) and by the CCSBT Quality Assurance Review (QAR) consultants in 2014 to report on the weight sampling process and all other parts of the supply chain.

Issues

Until ESC/1409/11 in 2014, these hypotheses have never been tested against the very large public database on tuna ranching and farming. As one base literature source on the issue notes – “Models for wild SBT are unlikely to be applicable to farmed fish.” (Gunn et al. 2002).

Growth rates are much faster in intensive farms than in the wild. This is not surprising – because accelerating the growth is one of the main purposes of aquaculture, particularly where it can take advantage of high seasonal growth.

Purpose

This Paper updates the Australian Papers submitted to the 2014, 2015 and 2016 ESC meetings. The aims of these reviews are to:

(1) Outline some of the large literature base on growth in tuna farming and ranching, including the relevance of wild growth models to intensive, and often seasonal livestock production.

(2) Test the plausibility of the “ASF unaccounted catch mortality” hypothesis conclusions against Feed Conversion Ratio (FCR), Condition Indices (CIs), the realities of fishing for farming in the Great Australian Bight (GAB), and other global Bluefin farming benchmarks.

(3) Note other issues with the methodology used to generate the “ASF unaccounted catch mortality” hypothesis (e.g. using wild tagged fish data).
Outcomes

Information derived from scientific literature suggests farm growth performance of Southern Bluefin Tuna (SBT) is comparable with the growth performance of Atlantic Bluefin Tuna and Pacific Bluefin Tuna (PBT) raised in farms in their respective areas. This is equally supported through an economic analysis and growth comparisons which do not support hypotheses of unaccounted catch mortality.

Recommendations

To measure fish size into farms, there is a need to review use of data from catch and release studies for the determination of length / age coefficients due to the stress as a direct result of handling and tagging. The resulting impacts could create incorrect length/age coefficients.

Many of the issues/assumptions raised have been sufficiently addressed in this review using research information from all tuna ranching growing regions.

The ESC recommends, as in 2016, that Australia and interested members continue inter-sessional information exchanges on the issue.

That the ESC recommends that the Compliance Committee again considers the issue.
A REVIEW OF TUNA GROWTH PERFORMANCE IN RANCHING AND FARMING OPERATIONS ... 1
EXECUTIVE SUMMARY ... 3
BACKGROUND .. 6
GROWTH PERFORMANCE IN TUNA RANCHING AND FARMING ... 7
MEDITERRANEAN ATLANTIC BLUEFIN TUNA (ABT) ... 7
JAPAN PACIFIC BLUEFIN TUNA (PBT) .. 8
MEXICAN PACIFIC BLUEFIN TUNA (MPBT) AND OTHER TUNA .. 9
AUSTRALIAN SOUTHERN BLUEFIN TUNA (SBT) .. 9
GROWTH PERFORMANCE IN WILD TUNA ... 10
APPLYING WILD TUNA STOCK MODELS DERIVED FROM CATCH AND RELEASE CONVENTIONAL TAGS 10
ASSUMPTIONS TO INFORM ANALYSIS OF UNACCOUNTED CATCH MORTALITY OF AUSTRALIAN RANCHED SOUTHERN BLEUFIN TUNA ... 11
BACKGROUND TO THE RAW DATA USED IN THEIR CALCULATIONS ... 11
APPLICATION OF 141 TAGGED WILD FISH CAUGHT AND TRANSFERRED INTO FARMS ... 12
IMPACT OF ENVIRONMENTAL CONDITIONS ON GROWTH PERFORMANCE .. 13
BIAS IN AVERAGE WEIGHT SAMPLE TO DETERMINE VOLUME OF CATCH ... 14
THE ECONOMIC AND FEED CONVERSION RATIO (FCR) IMPLICATIONS BENCHMARKED INTERNATIONALLY ... 14
POINTS RAISED BY JAPAN AT THE 2015 ESC ... 16
DISCUSSION POINTS FOR PARTICIPANTS OF THE CCSBT EXTENDED SCIENTIFIC COMMITTEE ... 16
REFERENCES ... 17
Background

There are 3 types of Bluefin tuna growout systems:

1. **Ranching of larger fish (input weight 8 – 200kg)**
 This process was developed in Australia in 1991 through a joint project between the Japanese Government and the Australian Southern Bluefin Tuna Industry Association (ASBTIA), and the technology transferred to the Mediterranean and Mexico in the early 2000s.
 Wild Bluefin are captured live by purse seine, transferred underwater into specially designed tow pontoons, and towed to ranching areas. In general, the tuna are maintained for 5-8 months except in specialist multi-year grow-out areas including Croatia and Mexico.
 The average size of wild capture fish has been approximately 15-20kg in Australia, 15-25kg in Mexico and 8-200kg in the Mediterranean. We also understand that there are some similar operations in Japan, growing out captured PBT of around 15kg.

2. **Ranching in Japan (input weight 400g – 1kg)**
 The traditional method used in Japan of capturing small Bluefin with an average weight of 500g and then on-growing for a period of 3-4 years depending on geographical location.

3. **Farming (hatchery raised)**
 Hatchery raised PBT have been commercially available in Japan since 2010 and now comprises over one-third of total seed stock into all farms in Japan. This is farming in the true sense as stock is raised from the egg rather than the ranching approach in (1) and (2) above. It normally takes about 3 months for a hatchery fingerling to reach 500g.

 The ranching growout strategy varies considerably between regions. In Australia, the fish feed immediately at a high level – up to ~10% of body weight/day at peak feeding times (Ellis 2013).
 In other regions, the literature suggests a delay before higher feeding levels begin, and then not to the same level as Australia. This is because of the length of tow, the multiyear holding of the fish in other countries, and high feed cost in some ranching operations.
Growth performance in tuna ranching and farming

Mediterranean Atlantic Bluefin Tuna (ABT)
The following table depicts growth performance in Atlantic bluefin tuna (*Thunnus thynnus*).

Table 1. Summary of growth performance studies of Mediterranean Atlantic bluefin tuna (*Thunnus thynnus*)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kataviæ et al. (2001)</td>
<td>In a trial conducted in the Adriatic Sea trial over 17 months (June 1999-December 2000) the results showed a much faster growth in length and weight in farms than in the wild. For example, in the 85-120cm category (10-25kg) the monthly growth was 2.16cm and 2.42kg. This was despite an initial tagging mortality of 50%, plus 5% during the trial, indicating stress on all tagged fish.</td>
</tr>
<tr>
<td>Cort (2003)</td>
<td>Summer growth in wild ABT aged 1-3 years is 5-6 times more intensive than their winter growth.</td>
</tr>
<tr>
<td>Ticina et al. (2007)</td>
<td>ABT of 12kg reached a whole weight of 45kg after 18 months. In the same period tunas with an initial weight of 5kg increased their weight up to 25-30kg – normally achieved over 3 years in the wild.</td>
</tr>
<tr>
<td>Ticina et al. (2007)</td>
<td>Tuna reared from 4-8 months had higher specific growth rate (SGR) values than those reared for 17-20 months. In the shorter grow-out, the SGR values are mostly related to summer growth.</td>
</tr>
<tr>
<td>ICCAT (2009) SCRS report</td>
<td>Cage trials in Croatia (SCRS/2009/190) have confirmed the gain estimates applicable to small fish, with 10kg fish reaching 45kg after 18 months and a further doubling to 90kg after another 12 months.</td>
</tr>
<tr>
<td>Deguara et al. (2010)</td>
<td>A 4 months trial in Malta (February to June 2009) on 5-6 year old Atlantic Bluefin Tuna achieved a 43.5% increase in weight and an increase in length from 142.5 cm to 157.9 cm. In the wild, such ABT age groups take over one year to gain that length.</td>
</tr>
<tr>
<td>ICCAT (2009) SCRS Report</td>
<td>Apparent growth gain in both length and weight of individual fish held in farms is much higher than observed for wild fish over a wide range of sizes.</td>
</tr>
<tr>
<td>Tzoumas et al. (2010)</td>
<td>“the length of fish (ABT) in cultured conditions can grow faster than in the wild and have a big impact on the overall weight gain.”</td>
</tr>
<tr>
<td>Galaz (2011)</td>
<td>In cages with just young tunas, growth is more important as the direct competition for food has been removed. Data suggests juveniles under 20kg originating from the Balearic Islands show significant weight increase reaching a SGR of 88.8% in November (121 days).</td>
</tr>
</tbody>
</table>
Japan Pacific Bluefin Tuna (PBT)

The following table depicts growth performance in Japanese Pacific bluefin tuna (*Thunnus orientalis*)

Table 2. Summary of growth performance studies of Japanese Pacific bluefin tuna (*Thunnus orientalis*)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ikeda (2003)</td>
<td>PBT at the Wakayama (Kinki University) research station stocked at 150-500g could achieve a weight of 50kg in 3 years.</td>
</tr>
<tr>
<td></td>
<td>PBT at Okinawa of same input size could achieve 100kg in 4 years. Wild PBT are 30kg at 3 years, and 40kg at 4 years.</td>
</tr>
<tr>
<td>Masuma et al. (2008)</td>
<td>Concluded farmed PBT exceeded growth of wild PBT</td>
</tr>
<tr>
<td>Goto (2014)</td>
<td>The most recent data we have seen is where two trials with a trial manufactured feed and a baitfish control showed similar length and weight growth for both feeds. The manufactured feed results were:</td>
</tr>
<tr>
<td></td>
<td>Trial One</td>
</tr>
<tr>
<td>Place</td>
<td>Nagasaki</td>
</tr>
<tr>
<td>Period</td>
<td>16/6/13 to 16/12/13</td>
</tr>
<tr>
<td>Water temp</td>
<td>16-29°C</td>
</tr>
<tr>
<td>Feeding</td>
<td>Once/day for 6 days/week</td>
</tr>
<tr>
<td>Feed rate</td>
<td>1.5-2.0%BW/day</td>
</tr>
<tr>
<td>FCR</td>
<td>3.8</td>
</tr>
<tr>
<td>Weight growth</td>
<td>Start 16kg – end 33.5kg</td>
</tr>
<tr>
<td>Length growth</td>
<td>Start 89cm – end 113cm</td>
</tr>
<tr>
<td></td>
<td>Trial Two</td>
</tr>
<tr>
<td>Place</td>
<td>Kagoshima</td>
</tr>
<tr>
<td>Period</td>
<td>7/11/13 to 26/5/14</td>
</tr>
<tr>
<td>Water temp</td>
<td>19-24°C</td>
</tr>
<tr>
<td>Feeding</td>
<td>Once/day for 6 days/week</td>
</tr>
<tr>
<td>Feed rate</td>
<td>1.5-2.5%BW/day</td>
</tr>
<tr>
<td>FCR</td>
<td>3.7</td>
</tr>
<tr>
<td>Weight growth</td>
<td>Start 9kg – end 18.5kg</td>
</tr>
<tr>
<td>Length growth</td>
<td>Start 77cm – end 98.5cm</td>
</tr>
</tbody>
</table>
Mexican Pacific Bluefin Tuna (MPBT) and other tuna

The following table depicts growth performance in Mexican bluefin tuna (*Thunnus orientalis*).

Table 3. Summary of growth performance studies of Mexican Pacific bluefin tuna (*Thunnus orientalis*)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sylvia et al. (2002)</td>
<td>Growth performance of tunas over a 2.5 months period in water temperature 18-22°C</td>
</tr>
<tr>
<td></td>
<td>Species</td>
</tr>
<tr>
<td></td>
<td>Species</td>
</tr>
<tr>
<td>PBT</td>
<td>45</td>
</tr>
<tr>
<td>Bigeye (Thunnus obesus)</td>
<td>25-30</td>
</tr>
<tr>
<td>Yellowfin (Thunnus albacares)</td>
<td>20-25</td>
</tr>
</tbody>
</table>

Australian Southern Bluefin Tuna (SBT)

The following table depicts growth performance in southern bluefin tuna *Thunnus maccocyii*.

Table 4. Summary of growth performance studies of Australian Southern bluefin tuna, *Thunnus maccocyii*

<table>
<thead>
<tr>
<th>Reference</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gordon et al. (2006)</td>
<td>Examples from confidential feed research in 2002 showed the following growth performance</td>
</tr>
<tr>
<td></td>
<td>Days in</td>
</tr>
<tr>
<td></td>
<td>culture</td>
</tr>
<tr>
<td>173</td>
<td>16</td>
</tr>
<tr>
<td>170</td>
<td>14.5</td>
</tr>
<tr>
<td>174</td>
<td>26</td>
</tr>
</tbody>
</table>

The growth achieved was despite high mortality levels as a result of tagging and an 18-day weaning period for manufactured feeds.

| Ellis (2013) | Specific Growth Rates in feed trials in 2005 were around 60% better than Atlantic Bluefin of the same size and age, and held for a similar period, as reported in Ticina et al. (2007). This is despite noting a period of suppressed feeding in the SBT trials – apparently due to blood fluke infections (*Cardicola forsteri*). |

Australia had an intensive research program on development of alternative feeds (to wet feeds) in the 1990’s and first half of the 2000’s when the focus shifted to fish health. As a result there was no specific research on growth rates – but data on wet feed controls and on manufactured trials are available.
Growth performance in wild tuna

The Commonwealth Scientific Industrial Research Organisation (CSIRO) has completed various studies in wild SBT fishery growth and dynamics since the 1960s (Polacheck et al. 2004). A significant portion of this research has been based on tag and release data obtained by inserting conventional dart tags at the base of the second dorsal fin locking in the pterygiophores and recovered through fishing mortality. This information has been used to define age growth coefficients despite a rising amount of information suggesting tagging impacts on growth performance of southern bluefin tuna (Glencross et al. 2002; Gunn et al. 2002; Ellis 2013), other tunas (Ticina et al. 2007) and other species of fish (Loftus et al. 1988; Keiffer et al. 1995; Phillip et al. 1997; Crozier and Kennedy 2002; McLeay et al. 2002).

On a positive note, Hearn (1990) noted SBT grew from 3kg to 15kg in 10 months (tagged January/February) in the Great Australian Bight. According to Hearn, a high growth rate was most conspicuous in fish tagged in Jan/Feb and recovered 2-6 months later. This was supported by Glencross et al. (2002) who noted a one-year tag recapture growth performance of 3kg to 16.6kg.

Applying wild tuna stock models derived from catch and release conventional tags

Major assumptions exist when applying growth information derived from catch and release data obtained from wild or free roaming southern Bluefin tuna.

The first assumption is the impact of tagging on obtaining robust information to determine growth. There can be a significant weight loss of 7-12% for tagged fish in the first month after release (Hampton 1986; Hearn 1990). In another study PBT did not feed normally for approximately the first 30 days after release so that data for the first 60 days after tagging was excluded from an analysis of PBT feeding frequency and temperature preferences (Itoh et al. 2003). However, tagged fish have recovered weight loss after a year at liberty and tagged wild fish in farm pens indicated no retardation in length growth after 150 days (Hearn and Polacheck 2003). Quantifying age / growth coefficients is challenging for wild or free roaming fish as defining length at age is a direct relationship of tagging.

Whilst some authors have speculated fish in captivity will rebound or undertake a period of compensatory growth following tagging (Ticina et al. 2007; Ellis 2013), the handling and tagging impact can be very significant. In two related but different studies SBT were observed to have no growth 5 weeks after tagging (Glencross et al. 2002) and mortality in one trial pontoon reached 37% and low food intakes as a direct result. This handling stress potentially had long lasting impacts on fish physiology whilst compromising growth performance (Gunn et al. 2002). The stress through handling and tagging resulting in high mortalities of tagged SBT was reported in another trial (Gordon et al. 2006). In one study Atlantic Bluefin tuna reported negative Specific Growth Rate (SGR) 44-53 days post tagging and no significant increase in condition factor compared with untagged fish (Ticina et al. 2007). These authors went on to state

“Consequently growth rates calculated on the basis of tag-recapture data probably underestimates overall growth performance of small BFT farmed in given conditions.”

To manage these tagging influences in growth and nutrition trials Ellis (2013) advises comparisons should be made more accurately between the differences in treatments as opposed to absolute SBT growth performance.

Gunn et al. (2002) summarises further issues including

“Models for wild SBT are unlikely to be applicable to farmed fish for two major reasons. Firstly, the stocking and harvesting cycle involved in SBT aquaculture means that growth in the farming environment is generally measured on an intra-annual basis. Data used for standard growth curves, either gathered by direct ageing methods or from tagging experiments are generally collected over inter-annual time scales. This means that the
magnitude of error acceptable from growth models based on inter-annual data may be too great for useful predictions of short-term growth. Secondly, the growth of wild fish is probably related to intra-annual variation in food availability, and migration costs dependent on different environmental conditions. Farm conditions are very different to those in the wild and may alter growth rates considerably via different consumption rates, possibly restricted activity levels and altered thermal conditions.”

Gunn et al. (2002) found that that the von Bertalanffy model did not perform well with the variance in the data being too great to obtain plausible parameter estimates. The relatively short time span of farm growth data restricts the usefulness of the von Bertalanffy in this situation as the variance in the data is too large relative to the growth being modelled. Furthermore, “the parameter estimates of the von Bertalanffy growth function (VBGF) (used) were not plausible and the model predicted growth badly.”

The bioenergetics models indicate the large degree to which tunas utilise energy for movement rather than growth, and why Food Conversion Ratios (FCR) are relatively high in tuna ranching compared with other fish. Gunn et al. (2002) notes:

“Tunas have generally been found to turn over energy at a high rate through continuous swimming for ram ventilation and through the need to cover large distances in order to find food in an uncertain and patchy pelagic environment.”

“it is possible that taking away the need for active foraging and the restriction of the cage significantly alters the activity pattern from those (compared with) those in the wild. This will undoubtedly alter the energy budget and growth of the fish.”

A bioenergetic model approach is now widely used in Australian tuna ranching operations to optimise growth and performance (Gunn et al. 2002; Ellis 2013).

Assumptions to inform analysis of Unaccounted catch mortality of Australian ranched southern bluefin tuna

Background to the raw data used in Japanese calculations

The raw data used in papers by Japan (such as ESC/1208/30) (suggest that the papers are cited) is a smaller issue than the on-farm literature base on growth, but there is a simple solution to allow the data to be provided.

Itoh et al. (2012) outlined the data used in its calculations as follows:

“The Ministry of Agriculture, Forestry and Fisheries of Japan requested importers to submit data on the length and weight at harvest of farmed SBT which is imported to Japan after May 2007. The size data of harvested SBT imported to Japan, reaching a total of 420 thousands individuals from 2007 to 2010, were used for the analysis. After removing several anomalous records, data used were 174,980 individuals in 2007, 94,352 in 2008, 61,843 in 2009 and 89,004 in 2010.”

Data for which both length and weight information was available was (N=76,080 in 2007, N=57,233 in 2008, N=58,964 in 2009 and N=49,948 in 2010).

To understand the background to the data, it may be helpful to understand the supply chain for fresh and frozen Australian ranched SBT:

1. The Catch Documentation Scheme (CDS) was not implemented until 2010 so therefore reporting of length was not required in the 2007-2009 period.

2. Japan indicated in its early analyses that the data they were using was “Packing lists information from Japanese buyers.” (see CCSBT-EC/0610/35). The packing lists for fresh fish
normally show only a total weight shipment. For frozen fish, a packing list consists of number of fish in weight categories.

3. For fresh shipments, the fish are actually owned by the Australian exporter so that any documentation was owned by the Australian company. What is referred to in documents such as CCSBT-EC/0610/35 as “Japanese buyers” are actually agents of the Australian company, not a buyer. These agents simply take a commission (normally 3.5%) on the sale.

4. Fresh SBT shipments are not randomly selected and are specifically chosen for the Japanese market and larger and higher conditioned fish are selected.

5. In discussions with fresh product agents, all have rejected that any documents they may have held have been supplied to anyone else. In addition, length/weight data could not come from auctioneers who have no reason to know the length of individual fish or record this information.

6. The number of samples used by Japan in 2007 and 2008 is more than the number of fresh ranched SBT shipped to Japan in those years.

7. For frozen SBT, there are two channels:
 a. Japanese freezer/reefer vessels handle the large majority of frozen fish. The fish are slung onto these boats in groups of 5-15 fish.
 b. Some SBT are shipped via freezer container, particularly to smaller buyers who do not have the volume for a freezer boat.

8. The freezer boat process is that the SBT are harvested at the pontoons, gilled and gutted, and then taken to the freezer boat, then slung as above. Because the fish are then graded depending on size, quality and condition, a representative of the Australian company is always on the freezer boat. After finishing the final processing on the freezer boat, the SBT are then frozen.

9. To our knowledge, until 2014, there has never been any indication that fish were measured and they were seldom individually weighed by the frozen buyer.

Japan’s reason for not supplying the raw data is that they may be breaching confidence with those agents in Japan, which handle Australia’s fresh SBT. However, because these Japanese companies are only agents, the data actually belongs to the Australian tuna ranching company. Therefore, as the owners of the data, the Australian industry is pleased to provide the permission to agents to provide it back to us for cross-checking. This will provide some cross-checking of the accuracy of the data base.

Application of 141 tagged wild fish caught and transferred into farms

These fish were caught within 30 days of tagging with the average period between tag and catch being 15.4 days (Sakai et al., 2009).

Most of the literature on growth performance in intensive tuna production is based on tagged fish. The following estimated mean growth ratios have been produced (Sakai et al., 2009).

- Age 2 – 1.818
- Age 3 – 1.544
- Age 4 – 1.448

The assumption in Itoh et al. (2014) is that tagged fish retain the same or greater weight from the
point of tagging in the wild to entry into the farms.
This appears to be the opposite and in contrast to information presented in this review in respect to
growth achieved by bluefin tunas worldwide and the impact of tagging and handling in controlled
research experiments focused on growth.

Impact of environmental conditions on growth performance

Itoh et al. (2014) note the following von Bertalanffy growth coefficient K (VBKs) for various wild
tuna species

<table>
<thead>
<tr>
<th>Species</th>
<th>VBK</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBT (ages 2-6)</td>
<td>0.219</td>
</tr>
<tr>
<td>Pacific BT</td>
<td>0.173</td>
</tr>
<tr>
<td>Atlantic BT</td>
<td>0.089</td>
</tr>
<tr>
<td>Bigeye</td>
<td>0.180</td>
</tr>
<tr>
<td>Yellowfin</td>
<td>0.557</td>
</tr>
<tr>
<td>Albacore</td>
<td>0.134</td>
</tr>
</tbody>
</table>

As reported in the Mediterranean, Mexican and Japan growth performance sections of this paper,
growth in farms is dimensionally greater than these wild VBK’s. Part of the reason is that the above
VBK’s are not seasonally based (Gunn et al. 2002), and cover a range of age groups with different
growth patterns.

Itoh et al. (2014) note that different captive Pacific Bluefin growth rates in different farms in Japan
could be related to higher water temperatures and compare the temperatures in Japan with the
lower ones in Port Lincoln. However, this is in contrast to very high growth rates achieved in both
weight and length in water temperatures averaging 16.9°C (Deguara et al. 2010).

The bioenergetics model of Gunn et al. (2002) found that food consumption is the key indicator of
growth – a linear relationship between consumption and growth and predicted higher temperatures
should result in more efficient assimilation rates. However, thermoregulation may “buffer” SBT
metabolism to temperature effects to a degree that is not found in other ectothermic fish. They
found temperature much less important in the case of SBT and that it is relatively unimportant in
determining growth.

These researchers concluded that it is plausible there is an optimum temperature range for growth
performance in SBT, with a peak occurring around 18°C. This may be related to activity levels
due to water temperature or changes in metabolic demands due to water temperature. This is
consistent with the findings of Ellis (2013) that SBT feel greater heat stress at water temperatures
above 20°C. This is perhaps also consistent with Itoh et al. (2003) who found PBT preferred a
temperature range of 14-20°C.

In Japan, Masuma et al. (2008) found water temperature important in growth performance
PBT at age zero reach the following weights after 3 years in culture

- 30-50kg in Shizuoka (north of Kinki)
- 50kg in central Japan (Kusimoto)
- 60kg at Kagoshima (south of Kinki)
- 75kg at Amami further south, and
- 100kg at Yaeyama (the southernmost island of Japan) after 4 years.

Possible reasons for the difference in growth could be related to

- Feed delivery and frequency
- Nutritional content of feed
• Development of the thermoregulatory capacity of small juvenile tuna. It is likely the southern warmer waters allow tuna to develop this capacity quicker thereby facilitating increased growth in the early stages
• It is likely small juvenile PBT do not have cold adapted enzymes to assist with digestion thereby holding back their digestive capability in cooler waters
• Site-specific conditions relating to blood fluke infections of Cardicola orientalis and C. opisthorchis. These trematode parasites cause significant impacts to the cardiovascular system and result in depressed feeding, stress and mortality. For example, the SBT ranching mortalities were 10.5% and 13.5% in 2009 and 2010 respectively, before falling to ~ 1% in 2015 when a solution was found.
• SBT have very short towing periods allowing ranching companies to increase growth rapidly through optimised feeding strategies using Formu-bait © (van Barneveld and Ellis, 2007)

From a health point of view SBT are very robust having survived high mortality in the wild (Nowak et al. 2003).

Bias in average weight sample to determine volume of catch

The papers presented to support the “ASF unaccounted catch mortality” hypothesis (e.g. Itoh et al. (2014)) assume there is a feeding hierarchy in the tow pontoon biasing the sample weight downward and/or that the sampler has a technique to target smaller fish.

In commenting on feeding hierarchies, Dr Peter Miyake, a leading Japanese researcher, and a major author on tuna science in Japan, noted:

“As is well-known, if fish of different sizes are kept in the same cage, small fish cannot compete with big fish and therefore these small fish show very slow or no growth.” (Source: Dr Peter Miyake, OPRT Newsletter, December 2013).

There is no other evidence to suggest smaller or larger fish are more aggressive feeders resulting in a sampling bias. Indeed, Galaz (2011) suggests feeding aggression of the bigger tuna is a key factor for tuna growth in fattening cages. Other studies suggest small tunas (100-160 cm) grow less than large tunas (Aguado and García-García 2005; Tzoumas et al. 2010). This result, among other reasons, is a reflection of the population structure within the different tuna cages. In those cages where large tunas are dominant (in terms of biomass), small tunas are almost totally suppressed from feeding and stay near the bottom of the net for nearly the entire feeding process. Only when (after a while) larger specimens significantly reduce their feeding activity, then smaller specimens begin to feed (Galaz 2010).

There are strict rules to follow when catching fish to determine the average weight sample to eliminate catching bias in the Australian SBT ranching industry and these rules are defined in the SBT management plan (see www.afma.gov.au/SBT/Pre-season Brief 2016-17).

In brief, the sampling process involves spreading feed over a large area of the pontoon and a single hook thrown into the middle of the spread feed at the same time. An invitation was extended to member scientists, government officials and industry to visit Port Lincoln in 2014 to observe this process first-hand. The QAR group also saw the weight sample in March 2014.

From a commercial farm husbandry and feed management perspective a range of techniques is used to eliminate feeding hierarchy including surface spreading and sub-surface feed delivery, feed timing and frequency, and satiation feeding. These techniques are not allowed at the weight sample.

The economic and Feed Conversion Ratio (FCR) implications, benchmarked internationally

Australian SBT quota owners have the choice each year to use the quota for harvesting from the wild or catching for growout. Growout, even for a short period, is a major risk because:
(1) There is no forward market for SBT. Therefore, when the SBT are caught for ranching, the operator takes the risk of not knowing the Yen price and exchange rate until the harvest up to 7-8 months later.

(2) The risk of substantial mortalities

(3) The capital assets of the quota owner can be used for either ranching or catching directly for the market.

If Itoh et al. (2014) methodology was correct then no one would be ranching SBT. The reason is that the largest cost is feed and the foundation of ranching profitability is the Feed Conversion Ratio (FCR). Based on Itoh et al. (2014) methodology, the following would apply in 2014.

Table 5. Assessing the economic viability based on an assumption of a 40% estimate of over catch

<table>
<thead>
<tr>
<th>Item line</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industry Average Weight (kg) – In/out whole wt</td>
<td>18.73/38.98</td>
</tr>
<tr>
<td>Imputed average weight gain (kg) in farm (whole kg) (Based on a hypothetical 40% estimate of overcatch (i.e. actual in-weight 22.67kg))</td>
<td>12.76</td>
</tr>
<tr>
<td>Total industry whole weight increase (tonnes) – 255,486 fish x 10.62</td>
<td>3,311t</td>
</tr>
<tr>
<td>Imputed Feed Conversion Ratio (FCR) – whole weight (57,373t/3,311 feed)</td>
<td>17.33</td>
</tr>
<tr>
<td>Imputed Feed Conversion Ratio (FCR) – processed weight</td>
<td>20.1</td>
</tr>
<tr>
<td>Imputed Feed cost ($) for adding 1kg of processed weight (Bait is $0.88/kg)</td>
<td>17.69</td>
</tr>
<tr>
<td>Feed cost is 41% of ex-farm cost so total cost/kg added</td>
<td>43.2</td>
</tr>
<tr>
<td>Price ranched product ex-pontoon $/kg</td>
<td>14.53</td>
</tr>
<tr>
<td>Price Australian longline SBT $/kg – for comparison</td>
<td>17.25</td>
</tr>
</tbody>
</table>

Notes to the table -
(1) Data on average weights in/out of farm – Source: AFMA (supplied to CCSBT and Japan).
(2) Local sardines – 33,500t (Source: PIRSA); imported (Source: Australian Bureau of Statistics)
(3) Ex-farm price (Source: Australian Bureau of Statistics)

Therefore based on Itoh et al. (2014) calculations it would be cost prohibitive to ranch tuna in Australia.

Another way of assessing the implications is comparisons with the FCR of tagged tunas in SBT and other tuna ranching/farming operations.

Table 6. Food conversion ratio based on growth and baitfish consumed by tagged tuna in research trials

<table>
<thead>
<tr>
<th>Citation</th>
<th>Species</th>
<th>Food Conversion Ratio (whole wt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sylvia et al. (2002)</td>
<td>Mexican PBT Thunnus orientalis</td>
<td>7.0</td>
</tr>
<tr>
<td>Gunn et al. (2002)</td>
<td>Australian SBT* Thunnus maccoyii</td>
<td>10.0</td>
</tr>
<tr>
<td>Gordon et al. (2006)</td>
<td>Australian SBT* Thunnus maccoyii</td>
<td>8.3</td>
</tr>
</tbody>
</table>

Notes to the table -
(1) These tuna were tagged with conventional dart tags with associated impacts on physiology and growth performance

It is implausible that the FCR of untagged SBT in commercial operations could be about double.
that of tagged SBT required to meet the hypothesis of a 40% overcatch estimate into farms.

Note: The above analysis for 2014 Australian ranching produces a very similar answer to the analysis for 2013 (see CCSBT-ESC/1409/11). The preliminary analysis of the 2015 data also produces a similar outcome.

The importance of the Condition Index (CI) of a tuna

The fatness of a tuna is the major reason for a higher price. The target of tuna farming is to produce faster growth and a higher level and consistency of fatness than a wild fish.

The widely used method to calculate fatness is the length and whole weight in a simple formula. In Australia the formula most used is:

\[
CI = \frac{W}{(L/100)^3}
\]

The normal CI of a 2-3 year old wild SBT is 19-20.

Testing the hypothesis of Itoh et al (2014) for 2013 – with the agreed average out-weight of 33.3kg ww.

Itoh et al. (2014) hypothesis is that the majority of the fish into farms are 4 year old, with an average weight into farms of 26.9kg (about 110 cm).

Japan’s hypothesis produces a CI of around 20 – far below the Australian farmed fish average of 25-26.

The realities of catching SBT for farming in the Great Australian Bight (GAB)

Itoh et al. (2014) hypothesis is that the majority of the SBT caught for farming are four year olds. This is significantly inconsistent with the realities of catching SBT in the GAB for the following reasons:

1. The number of four olds in the 2-4 year old stock is about 11% of total 2-4 year old fish in the stock.
2. Fish of four years or older are rare in both the transect and SAPUE aerial surveys.
3. Even assuming all four year old fish return to the GAB each year, The “ASF unaccounted catch mortality” hypothesis assumes that Port Lincoln industry is able to target four year olds to a high degree. That is totally unrealistic in the GAB.
4. Such a high degree of targeting is unrealistic in a normal purse seining situation – in farming it would be even more unrealistic. The reason is that filling a single tow pontoon normally requires 5-10 shots over a number of days in different areas. Once the tow pontoon takes the first shot, it can only be towed at average one knot to accept the rest of the shots.

Aside from these fishing and other logistical realities, why would a farmer catch the slowest growing age groups (4-5 years) in the 2-5 year group?
Discussion points for participants of the CCSBT Extended Scientific Committee

We propose participants of the CCSBT Extended Scientific Committee review this information in response to the hypotheses of ASF unaccounted catch mortality. The extensive literature shown in the analysis, and the realities of Australian and global tuna farming, do not support the hypotheses of unaccounted catch mortality in the ASF. However, the Extended ESC is encouraged to recommend that:

- That Australia and interested members continue inter-sessional information exchanges on the issue.
- That the Compliance Committee again considers the issue.
References

An updated Review of Tuna Growth performance in Ranching and Farming

OMMP/1406/09 (Rev). July 2014

