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Abstract 
Generalized additive models were used to compare approaches for fitting aggregated CPUE data for 

southern bluefin tuna. Data aggregation caused some problems with model fit by introducing an 

inverse correlation between expected catch rate and residual variance. Delta lognormal models 

were selected as the preferred approach. The extreme value diagnostic was improved to account for 

the sizes of the extreme values. Models with different components were compared using maximum 

likelihood (ML) and final smoothers fitted using restricted ML (REML). Final models used ti() terms to 

specify each model component, and gamma of 2 to reduce the effective sample size. The final 

models fitted the data well and generated plausible values in strata without observations. Indices 

were adjusted to account for differences in the ocean areas of spatial strata.   
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Introduction 
The CPUE standardization methods used for SBT need to be updated because of problems with 

recent estimates, particularly an anomalously high value in 2018 (CCSBT 2020). The main reason for 

the unreliability of the estimates has been identified as increasing aggregation of fishing effort, 

which has caused parameter estimation problems for the models used to date. Analyses in 2020 

(Hoyle 2020) developed an alternative approach using generalized additive models (GAMs) 

implemented with the R package mgcv (Wood 2011). Data were fitted with multi-dimensional 

smoothers which share information among adjacent values of continuous variables. This work was 

considered preliminary (CCSBT 2020), and additional work needs were identified in several areas.  

The preliminary analyses followed previous work (Nishida and Tsuji 1998; Itoh and Takahashi 2019) 

in assuming that the uncertainty distribution was lognormal after adding a constant to the CPUE 

values. This constant was defined as 10% of the mean CPUE across the whole dataset (Campbell et 

al. 1996; Campbell 2004). This historically common ‘lognormal constant’ approach has been 

superseded (Maunder and Punt 2004; Bellego and Pape 2019) by methods that either permit zero 

observations, or use a hurdle process to separately model the probability of nonzero catch and catch 

rates in nonzero catches (Lo et al. 1992). Work was therefore required to consider alternative 

uncertainty distributions, including both models that permit zero observations and hurdle methods.  

Preliminary models were fitted using the GCV criterion and fitting procedure. However, the 

generalized cross-validation criterion GCV has a tendency to under-smooth (Wood 2011). In 

contrast, REML and ML smoothness selection more strongly penalizes overfit than GCV, which gives 

them more clearly defined optima and greatly reduces the risk of undersmoothing. However, their 

use can considerably increase the computation time, is unstable for some basis functions, and 

comparison of fixed effect models using REML is not valid. Model fitting using both ML and REML 

was explored.  

The mgcv package determines the appropriate smoothness of model components. Increasing the 

gamma parameter from the default value of 1 produces smoother models by multiplying the 

model’s effective degrees of freedom, equivalent to reducing the effective sample size. Kim,Gu 

(2004) recommend setting gamma to 1.4 to reduce the chance of overfitting when using GCV, given 

its tendency to slightly overfit, but this problem is worse with CPUE data which are generally over-

dispersed which leads to overfitting. Overfitting is a particular problem with operational set by set 

data because sets are not independent, but also occurs in aggregated data. An important cause is 

parameters that affect CPUE but are not available for inclusion in the model, such as environmental 

factors and information sharing among vessels. To avoid overfitting, the gamma parameter was set 

to 2, but there was a need to explore the effects of alternative values of the gamma parameter.  

Smooth terms in GAMs are specified in a formula using one or more s, te, ti, and/or t2 terms (Wood 

2011). Each term identifies one (s) or more (te, ti, t2) variables, along with the dimension and class 

of the basis function used to represent the smooth term. The preliminary modeling considered 

alternative combinations of interactions among variables but did not explore different approaches 

for specifying the interactions, or alternative basis functions. Further exploration of these issues was 

recommended. Wood states that “gam allows nesting (or ‘overlap’) of te and s smooths, and 

automatically generates side conditions to make such models identifiable, but the resulting models 

are much less stable and interpretable than those constructed using ti terms.” 

Problems with recent estimates were associated with extreme values being estimated in strata with 

no observations. Lack of observations meant that there was no constraint on predictions in these 

areas. A diagnostic developed (Hoyle 2020) to identify extreme values among these predictions 



 

 

counted the number of strata in which the predicted value was greater than the largest observed 

stratum value for the year. This approach did not account for how much the predicted CPUE was 

larger than the highest observed value, and further work was requested to explore improvements to 

the diagnostic.  

Statistical area weighting has been recommended for CPUE analyses, based on work done for 

eastern Pacific tunas and southern bluefin tuna (Punsly 1987; Campbell 2004). This approach is 

designed for situations in which time-area interactions are not accounted for in the model, so is 

probably unnecessary for models that do take spatiotemporal trends into account. The effect of 

using this approach was explored.  

The preliminary models developed indices using the mean annual CPUE across all strata, which 

assumed that the density implied by CPUE was directly related to relative abundance. However, 

abundance is the product of density and area, and different spatial cells include different areas of 

ocean. Some spatial cells include land as well as ocean, and cell areas diminish further from the 

equator. The presence of time-area interactions in the models indicated the potential for ocean area 

to affect abundance trends. There was therefore a need to change the analysis approach so that 

indices were based on trends in abundance rather than cell density.  

Estimating trends through time requires predictions of CPUE for the same cells in each year. To avoid 

inclusion of spatial cells with too much uncertainty due to insufficient sampling effort, the 

preliminary approach included only spatial cells with at least 15 observations in the aggregated 

dataset (at the year-month-cell level). The criterion of 15 observations was chosen without 

considering alternatives, and there was a need to explore the effects of other values.  

 

Methods 

Input data 
These analyses were based on a slightly different dataset from that used for the primary analyses 

(Itoh & Takahashi 2019), which is only available to Japanese scientists. The available dataset was 

sufficiently similar to the primary dataset to provide useful insights. The main differences between 

the two datasets are listed below.  

- The primary dataset uses a set of core vessels that have high SBT catches for at least 3 years, 

whereas the available dataset includes data from all vessels.  

- The primary dataset includes catches of bigeye and yellowfin tuna, but the available dataset 

does not.  

- The primary dataset is available as operational (set by set) data (but is aggregated for the 

main analysis) whereas the available dataset is aggregated.  

The data file ‘CPUEInputs_2021_June.txt’, available from the private area of the CCSBT website, was 

used for the analysis. These data are aggregated by year, month, and 5° latitude and longitude, with 

catches reported by age class based on spatially and temporally stratified size sampling.   

The following processes were then applied to the dataset: 

- Filter to include effort from 1986 to 2018, with DATA_CODE ‘COMBINED’, in statistical areas 

4 to 9, and months 4 to 9. Include strata with more than 10 000 hooks. Include latitudes 

north of 50° S.  

- Create numeric catch variable, the sum of catches of all SBT 4+ and older.  



 

 

- Create categorical llf variable, indicating 5° square that combines latitude and longitude.  

- Create categorical areaf variable, which merges statistical area 4 with 5 and statistical area 6 

with 7.  

- Create categorical variables yf, latf, and mf, for year, latitude, and month.  

- Adjust numeric longitude variable (lon) by adding 360 to all longitudes between -180 and -

100, to provide continuity across the spatial domain of the fishery. Longitudes are recorded 

as -180 to 180 and so the range of the adjusted longitude variable was from -95 to 260.  

- Create numeric cpue variable = catch per 1000 hooks.  

- Remove a single outlier with cpue > 120. 

Error distribution assumption 
Using the variables and interactions previously selected (Hoyle 2020), a series of models were run 

with alternative assumptions about the uncertainty distribution.  

Previous models used the lognormal constant approach, i.e. a normal distribution with response 

variable log(cpue + k), where k is 10% of the mean of all cpue values. Alternative distribution 

functions included the following: binomial distribution with two link function options, lognormal and 

gamma models for nonzero catch rates, and Tweedie and negative binomial for discrete 

distributions.  

All models started with the same sets of variables on the right-hand side of the equation (RHS). The 

mgcv package uses the offered terms and initial basis dimension (k) as a starting point for a search. 

The k parameter sets the upper limit on the degrees of freedom associated with a smooth s, while 

for a te or ti tensor product smooth the upper limit is the product of the k values for each marginal 

smooth. The basic form of the model was selected by AIC after fitting with maximum likelihood or 

GCV, and the optimal smooths were obtained by fitting with REML.  

RHS = yf + te(lon2, LAT, k = c(40,4)) + te(MONTH, LAT, k = c(6,4)) + te(lon2, MONTH, k = c(10, 5)) + 

te(YEAR, LAT, k = c(20, 4)) + te(YEAR, MONTH, k = c(20, 5)) + te(LAT, lon2, MONTH,  k = c(4,15, 6)) + 

te(LAT, lon2, YEAR, k = c(4,10, 9)) 

The lognormal model used log(cpue) as the response, with identity link and gaussian error 

distribution, while the Gamma model used cpue as the response, with log link function and Gamma 

error distribution (Table 1).  

Binomial models added effort to the RHS formula above, to account for the effect of effort on the 

probability of non-zero catch in a stratum. Effort was included as a spline rather than a straight line 

or offset, to allow for potential nonlinearity in the relationship.  

catch > 0 ~ RHS + s(log(N_HOOKS)) 

Models with discrete response terms (Tweedie, negative binomial) used catch as the response 

variable and included effort on the right-hand side of the equation.  

catch ~ RHS + s(log(N_HOOKS)) 

The Tweedie parameter p and the negative binomial scale parameter theta were difficult to estimate 

with full models, which were unstable when estimating these parameters. Instead, these parameters 

were estimated with a simpler gam (see below) and provided to the model for more complex 

analyses. For Tweedie distributions p was estimated using the tw() family and models with fixed p 

fitted using the Tweedie() family. For the negative binomial, theta was estimated using the nb() 

family and full models fitted with the negbin() family.  



 

 

sbt ~ yf + te(lon2, LAT, k = c(20,3)) + te(MONTH, LAT, k = c(6,4)) + te(lon2, MONTH, k = c(9, 4)) + 

te(YEAR, MONTH, k = c(10, 4)) + s(log(N_HOOKS)) 

 

Table 1: Settings used in mgcv to compare models with different distributions.  

Distribution Family Dataset response Link function Likelihood 

lognormal + constant Gaussian all log(cpue+c) identity ML 

Binomial (DLN) Binomial all cpue > 0 logit REML 

Lognormal (DLN) Gaussian nonzero  log(cpue) identity ML 

Binomial (delta Poisson) Binomial all cpue > 0 cloglog REML 

Gamma (delta Poisson) Gamma nonzero cpue log ML 

Tweedie Tweedie all sbt log, p = 1.5 REML 

Negative binomial negbin all sbt log, theta=0.9 REML 

 

delta11 <- gam(cpue > 0 ~ formula, data = a, gamma = 2, method = 'REML', family = binomial) 

delpo11 <- gam(cpue > 0 ~ formula, data = a, gamma = 2, method = 'REML', family = 

binomial(link=cloglog)) 

pos11 <- bam(log(cpue) ~formula, data = apos, gamma = 2)  

gamma11 <- gam(cpue ~ formula, data = apos, gamma = 2, family = Gamma(link = "log")) 

modtw11 <- gam(sbt ~ formula, data = a, gamma = 2, method = 'REML', family = Tweedie(p=1.5)) 

modnb11 <- gam(sbt ~ formula, data = a, gamma = 2, method = 'REML', family = negbin(0.9)) 

 

Model diagnostics 
To explore how data aggregation may affect residuals and consistency with model assumptions, 

patterns in the residuals from the lognormal constant model were explored by fitting generalized 

additive models. First, the absolute value of residuals was modelled as a function of effort: abs(resid) 

~ s(n_HOOKS), and the relationship was plotted. Next, CPUE predicted from the fitted model in 

strata with effort was modelled as a function of effort after adjusting for year: pred_CPUE ~ 

s(N_HOOKS) + yf. Finally, residual variance was modelled as a function of predicted CPUE after 

adjusting for year: abs(residuals) ~ s(predicted CPUE) + yf.  

Models fits were initially explored using the standard R diagnostic plots as implemented in the 

mgcViz package (Fasiolo et al. 2020). These include a Q-Q plot with theoretical quantiles based on 

simulated residuals, a histogram of residuals, a scatter plot of predicted values versus residuals, and 

a scatter plot of predicted versus observed values.  

Further diagnostic analyses were carried out using the DHARMa package (Hartig 2020). These 

diagnostics involve simulating residuals from the fitted model and comparing the distributions of 

simulated and observed residuals, with a number of plots and statistical tests available.  

Q-Q plots were generated suing simulated residuals, and each Q-Q plot also ran a uniformity test 

(Kolmogorov-Smirnov test for overall uniformity of the residuals) and a dispersion test (a simulation-

based test for over/under-dispersion). For further details see Fasiolo et al. (2020).  



 

 

Boxplots of residuals were plotted for each categorical variable, to compare the relationship 

between the quantile distribution and the predicted response. For each boxplot tests were run to 

check whether residuals within each group were distributed according to model assumptions 

(multiple Kolmogorov-Smirnov tests, with adjustment of p-values for multiple testing), and whether 

the variance between groups was heterogeneous (using a Levene test). Residuals were also plotted 

against the smoothed year effect and model predictions, and tests carried out to detect whether 

quantiles deviated from the expected values. For further details of these tests see Fasiolo et al. 

(2020). Finally, the median residuals were plotted against rank-transformed model predictions.  

Extreme value diagnostic 

The previous version of extreme value diagnostic was based on counting the number of predictions 

per year that exceed the maximum value observed in that year.  

The diagnostic was updated by adding two components  

1. Differences by stratum between the predicted stratum value and the maximum observed 

value in a year across all strata, for those predictions that exceeded the maximum observed 

value. Only strata without observations were included in the diagnostic since strata with 

observations are constrained by their contribution to the likelihood.  

2. The above value squared.  

These components were provided summed by year and summed across all years.  

Changes to modeling approach 

Statistical area weighting 

The recommended approach for fitting CPUE models that do not include time-area interactions 

(Punsly 1987; Campbell 2004) gives the same statistical weight to each unit of area, by counting the 

number of rows of data n(a, year) associated with each area and applying statistical weight of 

1/n(a,yr). The effect of this approach was explored through simulation and by applying statistical 

reweighting to the indices.  

Alternative gamma adjustments to effective sample size 

Both the delta and lognormal positive models were rerun with different levels of gamma: 1, 2, 4, 10.  

Alternative smoothers 

It is recommended (Wood 2011) that models with multiple levels of interactions should, rather than 

using te() smoothers for all terms, specify main effects using either s() or ti() and interaction terms 

with ti(). Trials in 2020 with the lognormal constant model found excess extreme values when using 

the ti() approach, but these models included a mixture of thin plate regression splines (s() terms) and 

cubic splines (ti() terms), so were different from the te() models which used cubic splines only. These 

trials were revisited for the delta lognormal approach, by comparing models using te() with models 

using ti() for all terms.  

Model 11 RHS = yf + ti(lon2, k=40) + ti(LAT, k=4) + ti(MONTH, k = 6) + ti(lon2, LAT, k = c(40,4)) + 

ti(MONTH, LAT, k = c(6,4)) + ti(lon2, MONTH, k = c(10, 5)) + ti(YEAR, LAT, k = c(20, 4)) + ti(YEAR, 

MONTH, k = c(20, 5)) + ti(lon2, YEAR, k =c(10, 9)) + ti(LAT, lon2, MONTH,  k = c(4,15, 6)) + ti(LAT, lon2, 

YEAR, k = c(4,10, 9))  

Alternative optimisation criteria 

Models were fitted using either the generalized cross-validation (GCV), maximum likelihood (ML), or 

restricted maximum likelihood (REML). Delta models were fitted using ML to compare models with 

different number of terms, and REML in final models to estimate the smooth terms. Positive models 



 

 

were fitted using GCV to compare models with different number of terms, and REML in final models 

to estimate the smooth terms. Positive models were unstable when fitted with ML.  

Alternative basis functions 

Mgcv provides a variety of basis functions. The default basis function for the s() function is ‘tp’, the 

thin plate regression spline, while the default for tensor products te() and ti() is ‘cr’, the cubic 

regression spline. Wood (2019) states that thin plate regression splines tend to give the best MSE 

performance within s() terms, but are slower to set up than the other bases, and within tensor 

products seem to offer no advantage over cubic splines. Nevertheless, to complement the default 

approach with the ti() model above of using ‘cr’ for ti() terms, models were set up applying ‘tp’ basis 

functions to all terms.  

RHS = yf + ti(lon2, k=40, bs = 'tp') + ti(LAT, k=4, bs = 'tp') + ti(MONTH, k = 6, bs = 'tp') + ti(lon2, LAT, k 

= c(40,4), bs = 'tp') + ti(MONTH, LAT, k = c(6,4), bs = 'tp') + ti(lon2, MONTH, k = c(10, 5), bs = 'tp') + 

ti(YEAR, LAT, k = c(20, 4), bs = 'tp') + ti(YEAR, MONTH, k = c(20, 5), bs = 'tp') + ti(lon2, YEAR, k =c(10, 

20), bs = 'tp') + ti(LAT, lon2, MONTH,  k = c(4,15, 6), bs = 'tp') + ti(LAT, lon2, YEAR, k = c(4,10, 9), bs = 

'tp') 

However, models set up in this way were unstable and caused R to crash, so this approach was not 

taken further.  

As a final step the ti model was specified using a ‘shrinkage’ version of the cubic spline smooth (bs = 

“cs”), which can penalise a curve to zero and effectively eliminate it from the model.  

Changes to preparation of indices 

Abundance adjustment for ocean area  

Ocean areas of all cells were calculated (Hoyle and Langley 2020) and used to adjust CPUE estimates  

before calculating indices.  

Criteria for including spatial strata 

The effects were explored of using alternative minimum numbers of observations as the criterion for 

including spatial cells in the dataset (which is aggregated at the year-month-cell level). Alternatives 

trialled were 1, 5, 10, 15, 20, and 25 observations.  

Effect of extreme values on indices 

Extreme values in strata without observations are problematic if they are sufficiently large to affect 

the index. To explore the potential effects of extreme values on the index, indices were recalculated 

after reducing all extreme values in each year to be equal to the largest observed value in that year.  

Model selection 
A series of binomial models with logit link and lognormal positive models was run with a range of 

smoother configurations with a wider range using the te() approach (Table 3), followed by focused 

analyses using the ti() approach (Table 4). Models were compared using AIC after ML fitting, and 

extreme value prediction performance for versions of the models fitted using REML.  

The ti() approach involved separately fitting all main effects and interaction terms, and specifying all 

terms involved in higher order terms in the model. This differed from the te() approach, in which all 

one-way and some two-way terms were implicitly specified more than once, by being included in 

two or more higher order terms.  



 

 

R code 
All R code is available at the github repository https://github.com/hoyles/R_ccsbt_cpue. Please 

email simon.hoyle@gmail.com to request permission to access the repository.  

Results 

Data aggregation 
Residuals showed a strong pattern of declining variance with increasing effort (Figure 1, top left), as 

expected since higher effort means a stratum CPUE is the average of more sets with the consequent 

reduced variability. More interesting but also unsurprising was that higher effort was associated 

with higher CPUE (Figure 1, top right). The SBT fleet wants to catch more SBT, so tends to focus on 

areas with higher catch rates. The consequence of these two effects is a negative relationship 

between expected CPUE and residual variance (Figure 1, lower left), which differs from the 

assumptions of the available error models.  

Distributions 
Diagnostics run for all distributions included standard arrays of four diagnostic residual plots (Figures 

2 - 5), Q-Q plots with tests of uniformity (Kolmogorov-Smirnov) and dispersion (Figure 6), plots of 

residual distributions by group with tests of within-group uniformity and Levene tests of 

homogeneity of variance (Figures 7 - 13), and scaled residual plots (Figure 14).  

Most of the models showed some lack of fit, as expected given the use of aggregated data. With 

aggregated data the residual variance is related to the effort associated with each row of data. Effort 

varies spatially and temporally and tends to be greater in areas with higher catch rates, so the mean 

and variance are likely to be negatively correlated. This violates the model assumption that variance 

is homoscedastic.  

All error distributions except the two delta models showed a pattern of residuals that were more 

peaked than expected in the middle, indicated by residual histograms and the S-shape of the Q-Q 

plots (Figures 2 - 5). The lognormal constant, lognormal positive and Gamma models (Figures 2, 3 

and 4) also showed overdispersion with excess variability of outliers at both ends, while the Tweedie 

(Figure 2) and negative binomial (Figure 5) models fitted better at the lower end but with excess 

outliers at the upper end.   

All models failed the dispersion tests, and all but the delta models failed the tests of uniformity 

(Figure 6).   

More detailed explorations of residuals by input variable showed substantial variation in residual 

variation for the lognormal constant model by latitude and to a lesser extent by month (Figure 7). 

There was no apparent pattern by year in median quantile deviation by year, but there was strong 

dependency of residuals on model predictions.  

Both delta models fitted the data well, with the logit link (Figure 8) fitting slightly better than the 

complementary log-log (cloglog) link (Figure 9). The cloglog link function is asymmetric and preferred 

for extreme events where the probability is close to either 0 or 1, whereas in this dataset the 

average proportion of nonzero catches is more moderate at 84.8%, varying between 63% and 93% 

(Figure 15).  

Neither the lognormal positive (Figure 10) nor the Gamma positive model (Figure 11) fitted the data 

well. Residuals were heteroscedastic with much larger residuals at lower latitudes. Quantile tests 

showed significant lack of fit. Fits appeared slightly worse and potentially more biased for the 

https://github.com/hoyles/R_ccsbt_cpue
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gamma distribution compared to the lognormal, with more bias in the residuals particularly at lower 

predicted values (Figure 14).  

The Tweedie model also had substantial heteroscedasticity, and some potentially concerning bias in 

median residuals by year (Figure 12). However, it fitted considerably better than the negative 

binomial model (Figure 13), which showed large deviations from the expected distribution.  

Changes to modeling approach 

Statistical area weighting 

Giving consistent statistical weights to each spatial stratum noticeably changed the trend of the 

model. However, simulations showed that this adjustment is unnecessary for models that include 

time-area interactions, and that the adjustment of statistical weighting increases uncertainty and 

can cause bias.  

Alternative gamma adjustments to effective sample size 

Changing the gamma assumption about effective sample size changed the trend in the model since 

2013 but had relatively little effect on the index before this (Figure 16).  

Alternative smoothers 

Changing the smoother from te() to ti() slightly changed the trend after 2013 but had little effect on 

the index before this (Figure 17).  

Changes to preparation of indices 

Abundance adjustment for ocean area  

Including the ocean area had negligible impact on the index (Figure 18).  

Criteria for including spatial strata 

Changing the criterion for the minimum number of strata per area slightly reduced the number of 

strata available to estimate trends (Table 2). Changes had only a small effect on the indices (Figure 

19), suggesting that strata with few samples do not have a large effect on the model results.  

 

Table 2: Alternative minimum strata criteria for including spatial cells, and the resulting number of strata in the models. 

Minimum 
strata per area 

Total number 
of strata 

Prediction 
strata per year 

1 4344 672 

5 4307 552 

10 4183 450 

15 4089 396 

20 3921 336 

25 3793 300 

 

ML/GCV versus REML 

The optimization criterion used in the model had relatively little impact on the resulting index 

(Figure 2), since the indices fitted using different methods largely overlaid one another.  

Model selection 
Model selection was explored for the different arrangements of smoothers (Table 3 and 4). The 

more flexible smoothed models fitted the data considerably better than the categorical variable 



 

 

models in both the binomial (Table 5) and lognormal (Table 6) components, and also in most cases 

had many fewer parameters. The three best fitting delta models according to AIC fitted using the te() 

approach were models 14, 7, and 11. The three best-fitting lognormal positive models according to 

AIC were models 11, 12, and 14.  

The AIC values from the ti() approach were slightly but not substantially higher than those from the 

te() approach with similar models (Tables 7 and 8). The delta shrinkage model 15s effectively 

removed the terms ti(mon, lat) and ti(lat, lon, mon), so an additional non-shrinkage model 16 was 

run that omitted those terms. The best fitting ti() models were 16, 15s and 15 for the delta 

component, with models 11 and 14 also fitting relatively well. For the positive component models 

15s fitted best, followed by models 15, 11 and 14.  

Delta and positive models were combined by multiplication at the stratum level to generate 

predicted catch rates. AIC values were added to provide an overall score for each index (Tables 9 and 

10).  

Predictions were also assessed using the extreme value prediction diagnostic. Almost all extreme 

value predictions were in the last 7 years, with the largest effect in 2018. Data are increasingly 

sparse towards the end of the series (Figure 21). Most smoothed models had relatively few extreme 

values that were small compared to the sum of the predicted values. Each year has 396 (Table 2) 

predicted values (Figure 22), with annual averages between 0.78 and 4.88. For example, the sum of 

all predicted values from the delta14pos11 model for 2018 was 3718, which an excess prediction of 

12 in that year would change by 0.3%. When extreme values were removed by limiting the 

maximum predicted values of all strata by year to the maximum observed CPUE in the year, indices 

for the model delta14pos11 were largely unchanged (Figure 23).  

Tables of parameter estimates and statistical significance for the factors and statistical significance 

for the smooth terms are provided for the best-fitting delta (Tables 11 and 12) and positive (Tables 

13 and 14) models. 

Indices were plotted for the 6 combined delta lognormal models with the lowest total AIC values 

(Figure 24). All models were largely unaffected by extreme values.   

 

Discussion 
Comparison of model distribution diagnostics suggests that the delta lognormal model should be 

preferred to other distributions. The apparently poor fit of the lognormal positive component is 

largely due to the aggregation of the data, which affects all models of the positive component. This 

is difficult to avoid when working with aggregated data. Models of the positive component assume 

either homoscedasticity, i.e. constant variance (lognormal model) or residual variance positively 

correlated with the mean (negative binomial, Gamma and Tweedie), whereas in this dataset residual 

variance is negatively correlated with mean CPUE.  

The models that use the ti() approach have been preferred to those using te(), which duplicate some 

terms and tended to be less stable than the ti() models. The ti() approach is recommended by the 

author of the mgcv package. Nevertheless, the te() models generally had slightly lower AIC values 

than the corresponding ti() models. It may be rewarding to explore why this occurs.  

The best fitting index used model 16 for the delta component and model 15s for the positive 

component. Almost all the difference in trend comes from the positive component, so this index 

completely overlaid the next best model which used model 15s for both components. Indices from 



 

 

models 15 (both components) and delta 16 pos 15 were also very similar to the best fitting index. 

Small differences in the indices were observed for models 14 and 11, which fitted slightly worse with 

delta AIC of 66.4 and 69.2 respectively.   

Model selection is challenging and unreliable with aggregated CPUE data, given the violation of 

distribution assumptions, the limited variables available, and spatial and temporal autocorrelation. 

AIC is used as an indicator but is not a particularly reliable as a criterion for weighting models of 

aggregated CPUE data. A reasonable approach may be to select a group of models that fit the data 

comparably well and to give them similar weights as alternative outcomes.  

Most of the variability among model results occurs at the end of the time series, when data are 

sparse, and predictions depend on assumptions about what happens in locations with little 

information. As such, this variability among models seems to represent real uncertainty. The 

variability between model structures may better represent true uncertainty than parameter 

uncertainty.  

Most of the approaches used in this analysis can be applied to analyses of operational data. The use 

of ti() terms is recommended, as are the use of the extreme value diagnostic to check index 

predictions, and DHARMa residuals to check model fits. The delta lognormal model is likely to be 

effective for operational data, but it would be also useful to explore other distributions such as the 

Tweedie, Gamma, and negative binomial.  
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Tables 
Table 3: Specifications for models run using mgcv. The factors column reports all variables included as categorical variables. Smooth terms include two-way, three-way, and four-way (‘All’) 
interactions.  

Label Factors Smooth terms 4-way 

Base           

Base plus .+mf:latf          

Base_noYrAr .-yf:areaf          

glmmYrAr           

gam 2 yf+mf lon,lat         

gam 3 yf+mf       mn,lon,lat   

gam 4 yf         All 

gam 5 yf+llf         All 

gam 6 yf+llf  mn,lat       All 

gam 7 yf lon,lat mn,lat       All 

gam 8 yf lon,lat mn,lat lon,mn      All 

gam 9 yf lon,lat mn,lat lon,mn yr,lat   mn,lon,lat lat,lon,yr  

gam 10 yf lon,lat mn,lat lon,mn yr,lat yr,lon yr,mn    

gam 11 yf lon,lat mn,lat lon,mn yr,lat  yr,mn lat,lon,mn lat,lon,yr  

gam 12 yf lon,lat mn,lat lon,mn yr,lat yr,lon yr,mn lat,lon,mn lat,lon,yr  

gam 13 yf+mf lon,lat mn,lat lon,mn yr,lat yr,lon     

gam 14 yf lon,lat mn,lat lon,mn yr,lat yr,lon,mn yr,mn lat,lon,mn lat,lon,yr  

 



 

 

 
Table 4: Specifications for models fitted with smooth terms specified using ti(). The factors column reports all variables included as categorical variables. Smooth terms include one-way terms 
and two-way and three-way interactions. All models include categorical variables for year (yf) and one-way smooth terms for longitude (lon), month (mn), and latitude (lat). Within interactions 
year is specified as a smooth term (yr). Terms marked 0 were included but effectively removed via shrinkage.  

Model Factors lon, lat mn, lat lon, mn yr, lat yr, lon yr, mn yr, lon, mn lat, lon, mn lat, lon, yr lat, mn, yr 

9 yf x x x x x   x x  

10 yf x x x x x x     

11 yf x x x x x x  x x  

13 yf+mf x x x x x      

14 yf x x x x x x x x x  

15 yf x x x x x x x x x x 

15s yf x 0 x x x x x 0 x x 

16 yf x  x x x x x  x x 



 

 

Table 5: Comparison of delta models fitted using te() after optimisation using maximum likelihood, to compare main 
effects. The degrees of freedom for smoother models is the estimated degrees of freedom (edf). The delta AIC (ΔAIC) is the 
difference between the individual model’s AIC and that of the best fitting model.  

Delta edf AIC ΔAIC 

Base 259 1882.8 440.1 

BasePlus 274 1897.7 455.0 

Base_noYrArea 160 1840.4 397.7 

glmm_YrArea 151.0 1822.5 379.8 

1 277.8 1687.2 244.5 

2 63.6 1569.2 126.5 

3 84.8 1569.2 126.4 

4 105.5 1534.2 91.5 

5 173.5 1579.5 136.7 

6 104.1 1512.0 69.3 

7 94.5 1446.0 3.3 

8 98.3 1473.6 30.9 

9 89.3 1491.4 48.6 

10 94.8 1479.6 36.9 

11 95.1 1457.1 14.4 

12 92.6 1469.7 27.0 

13 81.8 1488.2 45.4 

14 91.1 1442.7 0.0 
 

Table 6: Comparison of lognormal positive models after optimisation using generalized cross-validation (GCV), to compare 
main effects. The degrees of freedom for smoother models is the estimated degrees of freedom (edf). The delta AIC (ΔAIC) is 
the difference between the individual model’s AIC and that of the best fitting model. 

Pos edf AIC ΔAIC 

Base 255 10483.5 1486.3 

BasePlus 270 10425.3 1428.1 

Base_noYrArea 157 10531.9 1534.6 

glmm_YrArea 166.5 10507.5 1510.3 

1 311.5 9344.9 347.7 

2 96.9 10240.5 1243.3 

3 149.7 9491.6 494.4 

4 225.3 9419.4 422.1 

5 250.7 9180.9 183.6 

6 244.1 9125.4 128.2 

7 191.1 9125.1 127.9 

8 200.5 9108.3 111.1 

9 197.3 9090.0 92.8 

10 171.9 9200.8 203.6 

11 217.8 8997.2 0.0 

12 217.9 9018.2 21.0 

13 167.3 9197.0 199.8 

14 230.0 9078.1 80.9 
 



 

 

Table 7: Comparison of delta models fitted using ti, optimized with maximum likelihood (ML) or restricted maximum 
likelihood (REML). The degrees of freedom for smoother models is the estimated degrees of freedom (edf). The delta AIC 
(ΔAIC) is the difference between the individual model’s AIC and that of the best fitting model.  

Model  ML REML 

Delta Shrinkage edf AIC ΔAIC edf AIC ΔAIC 

9 N 80.8 1505.2 59.5 94.5 1478.9 58.9 

10 N 86.6 1485.5 39.8 97.7 1463.6 43.5 

11 N 89.4 1468.5 22.8 97.8 1441.5 21.4 

14 N 89.5 1465.8 20.2 98.4 1444.9 24.8 

15 N 93.2 1447.5 1.9 102.8 1420.1 0.0 

15s Y 108.4 1447.4 1.7 122.0 1429.7 9.6 

16 N 91.2 1445.7 0 99.6 1431.9 11.9 
  



 

 

Table 8: Comparison of lognormal positive models, optimised using optimized with generalized cross-validation (GCV) or 
restricted maximum likelihood (REML). The degrees of freedom for smoother models is the estimated degrees of freedom 
(edf). The delta AIC (ΔAIC) is the difference between the individual model’s AIC and that of the best fitting model. 

  GCV REML 

Pos shrinkage edf AIC ΔAIC edf AIC ΔAIC 

9 N 202.0 9292.3 65.8 210.8 9309.3 56.9 

10 N 178.9 9468.5 242.0 185.9 9482.1 229.7 

11 N 225.7 9272.9 46.4 214.2 9302.3 49.9 

14 N 215.9 9272.7 46.3 227.8 9296.5 44.0 

15 N 224.5 9269.4 43.0 238.4 9286.6 34.2 

15s Y 224.8 9226.5 0 226.8 9252.4 0.0 
 

Table 9: Sums of delta and lognormal AIC values, and extreme value diagnostic results for the te() smoothed models, 
optimized using maximum likelihood (delta) and generalized cross-validation (positive). The delta AIC (ΔAIC) is the 
difference between the individual model’s AIC and that of the best fitting model. Models with an asterisk have ΔAIC less 
than 100.  

Delta Pos Total AIC ΔAIC max diff diff2 

1 1 11032.1 592.2 16 35.9 168.0 

2 2 11809.7 1369.8 57 53.2 91.8 

3 3 11060.8 620.9 0 0.0 0.0 

4 4 10953.6 513.7 38 420.2 11338.8 

5 5 10760.4 320.5 6 8.9 22.0 

6 6 10637.4 197.5 20 59.1 266.9 

7 7 10571.1 131.2 32 76.2 350.4 

8 8 10581.9 142.0 2 0.8 0.4 

9 9 10581.4 141.5 0 0.0 0.0 

10 10 10680.4 240.5 5 3.6 3.5 

11 11 10454.3 14.4 13 16.8 32.8 

12 12 10487.9 48.0 14 28.2 80.0 

13 13 10685.2 245.3 6 7.6 12.2 

14 14 10520.8 80.9 0 0.0 0.0 

14 11 10439.9 0.0 13 17.0 33.1 
 

Table 10: Sums of delta and lognormal AIC values, and extreme value diagnostic results for the ti() smoothed models. The 
delta AIC (ΔAIC) is the difference between the individual model’s AIC and that of the best fitting model. Models with an 
asterisk have ΔAIC less than 100.  

Delta Pos ML REML 
  Total AIC ΔAIC Total AIC ΔAIC max diff diff2 

9 9 10797.5 125.3 10788.2 106.1 0 0 0 

10 10 10953.9 281.8 10945.7 263.6 13 15.8 28.3 

11 11 10741.4 69.2 10743.8 61.7 15 34.9 140.3 

14 14 10738.6 66.4 10741.4 59.3 12 5.2 3.5 

15 15 10717.0 44.8 10706.6 24.5 5 5.2 6.9 

15s 15s 10673.9 1.7 10682.1 0.0 3 1.9 2.2 

16 15 10715.1 43.0 10718.5 36.4 5 5.2 6.9 

16 15s 10672.2 0.0 10684.4 2.3 3 1.9 2.2 

 



 

 

 

Table 11: Table of parameter estimates, standard errors and statistical significance for the categorical year factors in delta 
model 15. The final column includes codes to indicate significance: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.  

 Estimate Std. Error z value Pr(>|z|)  
(Intercept) 8.08 1.00 8.11 5.20E-16 *** 

yf1987 0.03 0.58 0.06 9.54E-01  
yf1988 -1.58 0.64 -2.46 1.39E-02 * 

yf1989 -1.86 0.73 -2.54 1.12E-02 * 

yf1990 -2.50 0.81 -3.09 2.02E-03 ** 

yf1991 -2.41 0.81 -2.96 3.04E-03 ** 

yf1992 -1.54 0.87 -1.77 7.70E-02 . 

yf1993 -2.08 0.88 -2.36 1.84E-02 * 

yf1994 -4.73 0.89 -5.30 1.16E-07 *** 

yf1995 -3.98 0.92 -4.33 1.46E-05 *** 

yf1996 -2.91 0.93 -3.14 1.72E-03 ** 

yf1997 -2.32 0.96 -2.42 1.54E-02 * 

yf1998 -2.49 0.96 -2.58 9.80E-03 ** 

yf1999 -1.67 0.98 -1.71 8.78E-02 . 

yf2000 -2.96 0.99 -2.99 2.79E-03 ** 

yf2001 -3.06 1.00 -3.06 2.19E-03 ** 

yf2002 -2.50 1.08 -2.31 2.10E-02 * 

yf2003 -0.11 1.12 -0.10 9.19E-01  
yf2004 -1.15 1.06 -1.09 2.77E-01  
yf2005 -2.24 1.01 -2.21 2.70E-02 * 

yf2006 -2.21 1.06 -2.08 3.73E-02 * 

yf2007 -0.67 1.06 -0.63 5.31E-01  
yf2008 -2.25 1.03 -2.18 2.90E-02 * 

yf2009 -1.78 1.06 -1.68 9.24E-02 . 

yf2010 -1.53 1.03 -1.49 1.37E-01  
yf2011 -2.08 1.03 -2.01 4.44E-02 * 

yf2012 -2.75 1.01 -2.72 6.50E-03 ** 

yf2013 -0.52 1.12 -0.46 6.45E-01  
yf2014 -1.43 1.08 -1.32 1.86E-01  
yf2015 -0.53 1.09 -0.48 6.28E-01  
yf2016 -1.04 1.13 -0.92 3.55E-01  
yf2017 -1.44 1.16 -1.24 2.13E-01  
yf2018 -1.58 1.22 -1.30 1.94E-01  
yf2019 -1.16 1.26 -0.92 3.56E-01  
yf2020 -0.64 1.32 -0.48 6.28E-01  

 

 

  



 

 

 

Table 12: Table of effective degrees of freedom, Chi square and p-values for the smooth terms in delta model 15. The final 
column includes codes to indicate significance: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.  

 edf Chi.sq p-value  
ti(lon2) 12.47 86.91 3.76E-12 *** 

ti(LAT) 2.13 86.23 1.61E-18 *** 

ti(MONTH) 3.27 91.79 1.34E-18 *** 

ti(lon2,LAT) 5.77 27.03 1.38E-08 *** 

ti(MONTH,LAT) 1.96 2.29 3.49E-01  
ti(lon2,MONTH) 1.00 8.20 4.20E-03 ** 

ti(YEAR,LAT) 3.24 9.09 5.83E-02 . 

ti(YEAR,MONTH) 6.95 23.69 7.61E-03 ** 

ti(lon2,YEAR) 3.18 20.48 5.53E-04 *** 

ti(LAT,lon2,MONTH) 1.00 0.23 6.30E-01  
ti(YEAR,lon2,MONTH) 1.00 14.15 1.69E-04 *** 

ti(LAT,lon2,YEAR) 4.23 28.57 1.63E-08 *** 

ti(LAT,MONTH,YEAR) 5.82 28.36 2.05E-04 *** 

ti(log(N_HOOKS)) 1.48 134.75 1.27E-28 *** 
 

  



 

 

 

Table 13: Table of parameter estimates, standard errors and statistical significance for the categorical year factors in 
positive model 15s. The final column includes codes to indicate significance: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.  

 Estimate Std. Error t value Pr(>|t|)  
(Intercept) -0.15 0.07 -2.12 3.44E-02 * 

yf1987 0.12 0.08 1.36 1.74E-01  
yf1988 -0.02 0.09 -0.22 8.26E-01  
yf1989 -0.11 0.09 -1.22 2.21E-01  
yf1990 0.02 0.09 0.26 7.93E-01  
yf1991 0.07 0.09 0.77 4.40E-01  
yf1992 0.22 0.09 2.36 1.84E-02 * 

yf1993 0.51 0.10 5.26 1.53E-07 *** 

yf1994 0.58 0.11 5.21 2.03E-07 *** 

yf1995 0.51 0.11 4.88 1.09E-06 *** 

yf1996 0.23 0.10 2.24 2.53E-02 * 

yf1997 0.08 0.10 0.83 4.04E-01  
yf1998 0.12 0.10 1.26 2.06E-01  
yf1999 0.24 0.10 2.43 1.52E-02 * 

yf2000 0.14 0.11 1.32 1.85E-01  
yf2001 0.37 0.11 3.43 6.11E-04 *** 

yf2002 0.61 0.11 5.39 7.45E-08 *** 

yf2003 0.38 0.11 3.35 8.14E-04 *** 

yf2004 0.14 0.11 1.34 1.79E-01  
yf2005 0.10 0.11 0.99 3.23E-01  
yf2006 -0.25 0.11 -2.33 1.99E-02 * 

yf2007 -0.40 0.11 -3.72 2.05E-04 *** 

yf2008 0.17 0.11 1.49 1.36E-01  
yf2009 0.75 0.12 6.34 2.53E-10 *** 

yf2010 0.70 0.12 6.00 2.21E-09 *** 

yf2011 0.92 0.12 7.74 1.25E-14 *** 

yf2012 0.77 0.12 6.45 1.25E-10 *** 

yf2013 1.05 0.12 8.58 1.38E-17 *** 

yf2014 1.13 0.13 8.76 3.00E-18 *** 

yf2015 1.33 0.12 10.95 1.78E-27 *** 

yf2016 1.12 0.13 8.67 6.51E-18 *** 

yf2017 1.22 0.14 8.84 1.44E-18 *** 

yf2018 1.36 0.14 9.45 6.23E-21 *** 

yf2019 1.38 0.14 9.74 3.88E-22 *** 

yf2020 1.33 0.13 9.99 3.51E-23 *** 
 

  



 

 

 

Table 14: Table of effective degrees of freedom, Chi square and p-values for the smooth terms in positive model 15s. The 
final column includes codes to indicate significance: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.  

 edf F p-value  
ti(lon2) 20.25 17.14 3.00E-69 *** 

ti(LAT) 2.94 306.59 7.25E-167 *** 

ti(MONTH) 4.26 54.75 7.61E-51 *** 

ti(lon2,LAT) 36.03 9.80 1.30E-160 *** 

ti(MONTH,LAT) 5.70 16.00 1.11E-75 *** 

ti(lon2,MONTH) 8.75 1.83 5.55E-17 *** 

ti(YEAR,LAT) 9.77 0.89 1.17E-15 *** 

ti(YEAR,MONTH) 7.67 0.34 1.30E-07 *** 

ti(lon2,YEAR) 6.62 0.59 6.14E-11 *** 

ti(LAT,lon2,MONTH) 10.17 0.46 1.23E-22 *** 

ti(YEAR,lon2,MONTH) 2.79 1.84 1.66E-05 *** 

ti(LAT,lon2,YEAR) 34.63 1.41 3.19E-52 *** 

ti(LAT,MONTH,YEAR) 4.74 0.26 3.61E-08 *** 
 



 

 

  

 

Figure 1: Relationships between effort, residual variance, and CPUE in the aggregated catch and effort data for soutghern 
bluefin tuna. 

 



 

 

Figures 
 

 

Figure 2: Diagnostic plots for the lognormal constant model and the Tweedie model (right).  



 

 

 

Figure 3: Diagnostic plots for the delta model with logit link (left) and the lognormal model (right). 



 

 

 

Figure 4: Diagnostic plots for the delta model with cloglog link (left) and the Gamma model (right).  



 

 

 

Figure 5: Diagnostic plots for the negative binomial model. 

 



 

 

 

Figure 6: Q-Q plots based on simulated residuals for the models. 



 

 

 

Figure 7: Simulated residuals by covariate for model 11 with the cpue + constant response variable and lognormal 
distribution.  



 

 

 

Figure 8: Simulated residuals by covariate for model 11 with the binomial (delta) distribution.  



 

 

 

Figure 9: Simulated residuals by covariate for model 11 with the complementary log-log link, as specified for the Delta 
Poisson distribution.  



 

 

 

Figure 10: Simulated residuals by covariate for model 11 with the lognormal distribution and nonzero catches. 



 

 

 

Figure 11: Simulated residuals by covariate for model 11 with the Gamma distribution. 



 

 

 

Figure 12: Simulated residuals by covariate for model 11 with the Tweedie distribution.  



 

 

 

Figure 13: Simulated residuals by covariate for model 11 with the negative binomial distribution. 



 

 

 

Figure 14: Scaled residual plots for model 11 and all distribution options, with the x-axes representing ranked model 
predictions, and y-axes representing standardized residuals. 



 

 

 

Figure 15: Annual proportion of nonzero catch strata in the reported effort. 



 

 

 

Figure 16: Delta lognormal model 11 indices with different levels of gamma. 



 

 

  

Figure 17: Delta lognormal model 11 indices with either te() smoother on all variables, or the ti() smoother used for 
interaction terms. 



 

 

 

Figure 18: Delta lognormal model 11 Indices both with and without accounting for the differences among spatial cells in 
ocean area. 



 

 

 

Figure 19:Delta lognormal model 11 Indices with different criteria for the minimum number of samples per spatial stratum.  



 

 

 

Figure 20: Indices from three different model structures fitted with either maximum likelihood (ML) for the delta component 
and GCV for the positive component, or restricted maximum likelihood (REML) for both components.  



 

 

 

Figure 21: Number of strata per year with observations, including zero observations.  



 

 

 

Figure 22: Histogram of predicted stratum values by year that result from combining models delta14 and pos11. 



 

 

 

Figure 23: Comparison of indices with and without the extreme values. Extreme values are removed by limiting the 
maximum predicted values of all strata by year to the maximum observed CPUE in the year.  



 

 

 

Figure 24: Indices for the six models with the lowest total AIC values. 


