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Abstract

Generalized additive models were used to compare approaches for fitting aggregated CPUE data for
southern bluefin tuna. Data aggregation caused some problems with model fit by introducing an
inverse correlation between expected catch rate and residual variance. Delta lognormal models
were selected as the preferred approach. The extreme value diagnostic was improved to account for
the sizes of the extreme values. Models with different components were compared using maximum
likelihood (ML) and final smoothers fitted using restricted ML (REML). Final models used ti() terms to
specify each model component, and gamma of 2 to reduce the effective sample size. The final
models fitted the data well and generated plausible values in strata without observations. Indices
were adjusted to account for differences in the ocean areas of spatial strata.
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Introduction

The CPUE standardization methods used for SBT need to be updated because of problems with
recent estimates, particularly an anomalously high value in 2018 (CCSBT 2020). The main reason for
the unreliability of the estimates has been identified as increasing aggregation of fishing effort,
which has caused parameter estimation problems for the models used to date. Analyses in 2020
(Hoyle 2020) developed an alternative approach using generalized additive models (GAMs)
implemented with the R package mgcv (Wood 2011). Data were fitted with multi-dimensional
smoothers which share information among adjacent values of continuous variables. This work was
considered preliminary (CCSBT 2020), and additional work needs were identified in several areas.

The preliminary analyses followed previous work (Nishida and Tsuji 1998; Itoh and Takahashi 2019)
in assuming that the uncertainty distribution was lognormal after adding a constant to the CPUE
values. This constant was defined as 10% of the mean CPUE across the whole dataset (Campbell et
al. 1996; Campbell 2004). This historically common ‘lognormal constant’ approach has been
superseded (Maunder and Punt 2004; Bellego and Pape 2019) by methods that either permit zero
observations, or use a hurdle process to separately model the probability of nonzero catch and catch
rates in nonzero catches (Lo et al. 1992). Work was therefore required to consider alternative
uncertainty distributions, including both models that permit zero observations and hurdle methods.

Preliminary models were fitted using the GCV criterion and fitting procedure. However, the
generalized cross-validation criterion GCV has a tendency to under-smooth (Wood 2011). In
contrast, REML and ML smoothness selection more strongly penalizes overfit than GCV, which gives
them more clearly defined optima and greatly reduces the risk of undersmoothing. However, their
use can considerably increase the computation time, is unstable for some basis functions, and
comparison of fixed effect models using REML is not valid. Model fitting using both ML and REML
was explored.

The mgcv package determines the appropriate smoothness of model components. Increasing the
gamma parameter from the default value of 1 produces smoother models by multiplying the
model’s effective degrees of freedom, equivalent to reducing the effective sample size. Kim,Gu
(2004) recommend setting gamma to 1.4 to reduce the chance of overfitting when using GCV, given
its tendency to slightly overfit, but this problem is worse with CPUE data which are generally over-
dispersed which leads to overfitting. Overfitting is a particular problem with operational set by set
data because sets are not independent, but also occurs in aggregated data. An important cause is
parameters that affect CPUE but are not available for inclusion in the model, such as environmental
factors and information sharing among vessels. To avoid overfitting, the gamma parameter was set
to 2, but there was a need to explore the effects of alternative values of the gamma parameter.

Smooth terms in GAMs are specified in a formula using one or more s, te, ti, and/or t2 terms (Wood
2011). Each term identifies one (s) or more (te, ti, t2) variables, along with the dimension and class
of the basis function used to represent the smooth term. The preliminary modeling considered
alternative combinations of interactions among variables but did not explore different approaches
for specifying the interactions, or alternative basis functions. Further exploration of these issues was
recommended. Wood states that “gam allows nesting (or ‘overlap’) of te and s smooths, and
automatically generates side conditions to make such models identifiable, but the resulting models
are much less stable and interpretable than those constructed using ti terms.”

Problems with recent estimates were associated with extreme values being estimated in strata with
no observations. Lack of observations meant that there was no constraint on predictions in these
areas. A diagnostic developed (Hoyle 2020) to identify extreme values among these predictions



counted the number of strata in which the predicted value was greater than the largest observed
stratum value for the year. This approach did not account for how much the predicted CPUE was
larger than the highest observed value, and further work was requested to explore improvements to
the diagnostic.

Statistical area weighting has been recommended for CPUE analyses, based on work done for
eastern Pacific tunas and southern bluefin tuna (Punsly 1987; Campbell 2004). This approach is
designed for situations in which time-area interactions are not accounted for in the model, so is
probably unnecessary for models that do take spatiotemporal trends into account. The effect of
using this approach was explored.

The preliminary models developed indices using the mean annual CPUE across all strata, which
assumed that the density implied by CPUE was directly related to relative abundance. However,
abundance is the product of density and area, and different spatial cells include different areas of
ocean. Some spatial cells include land as well as ocean, and cell areas diminish further from the
equator. The presence of time-area interactions in the models indicated the potential for ocean area
to affect abundance trends. There was therefore a need to change the analysis approach so that
indices were based on trends in abundance rather than cell density.

Estimating trends through time requires predictions of CPUE for the same cells in each year. To avoid
inclusion of spatial cells with too much uncertainty due to insufficient sampling effort, the
preliminary approach included only spatial cells with at least 15 observations in the aggregated
dataset (at the year-month-cell level). The criterion of 15 observations was chosen without
considering alternatives, and there was a need to explore the effects of other values.

Methods

Input data

These analyses were based on a slightly different dataset from that used for the primary analyses
(Itoh & Takahashi 2019), which is only available to Japanese scientists. The available dataset was
sufficiently similar to the primary dataset to provide useful insights. The main differences between
the two datasets are listed below.

- The primary dataset uses a set of core vessels that have high SBT catches for at least 3 years,
whereas the available dataset includes data from all vessels.

- The primary dataset includes catches of bigeye and yellowfin tuna, but the available dataset
does not.

- The primary dataset is available as operational (set by set) data (but is aggregated for the
main analysis) whereas the available dataset is aggregated.

The data file ‘CPUEInputs_2021_June.txt’, available from the private area of the CCSBT website, was
used for the analysis. These data are aggregated by year, month, and 5° latitude and longitude, with
catches reported by age class based on spatially and temporally stratified size sampling.

The following processes were then applied to the dataset:

- Filter to include effort from 1986 to 2018, with DATA_CODE ‘COMBINED’, in statistical areas
4 t0 9, and months 4 to 9. Include strata with more than 10 000 hooks. Include latitudes
north of 50° S.

- Create numeric catch variable, the sum of catches of all SBT 4+ and older.



- Create categorical lIf variable, indicating 5° square that combines latitude and longitude.

- Create categorical areaf variable, which merges statistical area 4 with 5 and statistical area 6
with 7.

- Create categorical variables yf, latf, and mf, for year, latitude, and month.

- Adjust numeric longitude variable (lon) by adding 360 to all longitudes between -180 and -
100, to provide continuity across the spatial domain of the fishery. Longitudes are recorded
as -180 to 180 and so the range of the adjusted longitude variable was from -95 to 260.

- Create numeric cpue variable = catch per 1000 hooks.

- Remove a single outlier with cpue > 120.

Error distribution assumption
Using the variables and interactions previously selected (Hoyle 2020), a series of models were run
with alternative assumptions about the uncertainty distribution.

Previous models used the lognormal constant approach, i.e. a normal distribution with response
variable log(cpue + k), where k is 10% of the mean of all cpue values. Alternative distribution
functions included the following: binomial distribution with two link function options, lognormal and
gamma models for nonzero catch rates, and Tweedie and negative binomial for discrete
distributions.

All models started with the same sets of variables on the right-hand side of the equation (RHS). The
mgcv package uses the offered terms and initial basis dimension (k) as a starting point for a search.
The k parameter sets the upper limit on the degrees of freedom associated with a smooth s, while
for a te or ti tensor product smooth the upper limit is the product of the k values for each marginal
smooth. The basic form of the model was selected by AIC after fitting with maximum likelihood or
GCV, and the optimal smooths were obtained by fitting with REML.

RHS = yf + te(lon2, LAT, k = ¢(40,4)) + te(MONTH, LAT, k = c(6,4)) + te(lon2, MONTH, k = ¢(10, 5)) +
te(YEAR, LAT, k = ¢(20, 4)) + te(YEAR, MONTH, k = ¢(20, 5)) + te(LAT, lon2, MONTH, k = c(4,15, 6)) +
te(LAT, lon2, YEAR, k = (4,10, 9))

The lognormal model used log(cpue) as the response, with identity link and gaussian error
distribution, while the Gamma model used cpue as the response, with log link function and Gamma
error distribution (Table 1).

Binomial models added effort to the RHS formula above, to account for the effect of effort on the
probability of non-zero catch in a stratum. Effort was included as a spline rather than a straight line
or offset, to allow for potential nonlinearity in the relationship.

catch >0~ RHS + s(log(N_HOOKS))

Models with discrete response terms (Tweedie, negative binomial) used catch as the response
variable and included effort on the right-hand side of the equation.

catch ~ RHS + s(log(N_HOOKS))

The Tweedie parameter p and the negative binomial scale parameter theta were difficult to estimate
with full models, which were unstable when estimating these parameters. Instead, these parameters
were estimated with a simpler gam (see below) and provided to the model for more complex
analyses. For Tweedie distributions p was estimated using the tw() family and models with fixed p
fitted using the Tweedie() family. For the negative binomial, theta was estimated using the nb()
family and full models fitted with the negbin() family.



sbt ~ yf + te(lon2, LAT, k = ¢(20,3)) + te(MONTH, LAT, k = ¢(6,4)) + te(lon2, MONTH, k = c(9, 4)) +
te(YEAR, MONTH, k = ¢(10, 4)) + s(log(N_HOOKS))

Table 1: Settings used in mgcv to compare models with different distributions.

Distribution Family Dataset response Link function Likelihood
lognormal + constant Gaussian | all log(cpue+c) | identity ML
Binomial (DLN) Binomial | all cpue >0 logit REML
Lognormal (DLN) Gaussian | nonzero log(cpue) identity ML
Binomial (delta Poisson) | Binomial | all cpue >0 cloglog REML
Gamma (delta Poisson) Gamma | nonzero | cpue log ML
Tweedie Tweedie | all sbt log,p=1.5 REML
Negative binomial negbin all sbt log, theta=0.9 | REML

deltall <- gam(cpue > 0 ~ formula, data = a, gamma = 2, method = 'REML', family = binomial)

delpoll <- gam(cpue > 0 ~ formula, data = a, gamma = 2, method = 'REML’, family =
binomial(link=cloglog))

posl1 <- bam(log(cpue) ~formula, data = apos, gamma = 2)
gammall <- gam(cpue ~ formula, data = apos, gamma = 2, family = Gamma(link = "log"))
modtw11 <- gam(sbt ~ formula, data = a, gamma = 2, method = 'REML', family = Tweedie(p=1.5))

modnb11 <- gam(sbt ~ formula, data = a, gamma = 2, method = 'REML', family = negbin(0.9))

Model diagnostics

To explore how data aggregation may affect residuals and consistency with model assumptions,
patterns in the residuals from the lognormal constant model were explored by fitting generalized
additive models. First, the absolute value of residuals was modelled as a function of effort: abs(resid)
~ s(n_HOOKS), and the relationship was plotted. Next, CPUE predicted from the fitted model in
strata with effort was modelled as a function of effort after adjusting for year: pred_CPUE ~
s(N_HOOKS) + yf. Finally, residual variance was modelled as a function of predicted CPUE after
adjusting for year: abs(residuals) ~ s(predicted CPUE) + yf.

Models fits were initially explored using the standard R diagnostic plots as implemented in the
mgcViz package (Fasiolo et al. 2020). These include a Q-Q plot with theoretical quantiles based on
simulated residuals, a histogram of residuals, a scatter plot of predicted values versus residuals, and
a scatter plot of predicted versus observed values.

Further diagnostic analyses were carried out using the DHARMa package (Hartig 2020). These
diagnostics involve simulating residuals from the fitted model and comparing the distributions of
simulated and observed residuals, with a number of plots and statistical tests available.

Q-Q plots were generated suing simulated residuals, and each Q-Q plot also ran a uniformity test
(Kolmogorov-Smirnov test for overall uniformity of the residuals) and a dispersion test (a simulation-
based test for over/under-dispersion). For further details see Fasiolo et al. (2020).



Boxplots of residuals were plotted for each categorical variable, to compare the relationship
between the quantile distribution and the predicted response. For each boxplot tests were run to
check whether residuals within each group were distributed according to model assumptions
(multiple Kolmogorov-Smirnov tests, with adjustment of p-values for multiple testing), and whether
the variance between groups was heterogeneous (using a Levene test). Residuals were also plotted
against the smoothed year effect and model predictions, and tests carried out to detect whether
qguantiles deviated from the expected values. For further details of these tests see Fasiolo et al.
(2020). Finally, the median residuals were plotted against rank-transformed model predictions.

Extreme value diagnostic
The previous version of extreme value diagnostic was based on counting the number of predictions
per year that exceed the maximum value observed in that year.

The diagnostic was updated by adding two components

1. Differences by stratum between the predicted stratum value and the maximum observed
value in a year across all strata, for those predictions that exceeded the maximum observed
value. Only strata without observations were included in the diagnostic since strata with
observations are constrained by their contribution to the likelihood.

2. The above value squared.

These components were provided summed by year and summed across all years.

Changes to modeling approach

Statistical area weighting

The recommended approach for fitting CPUE models that do not include time-area interactions
(Punsly 1987; Campbell 2004) gives the same statistical weight to each unit of area, by counting the
number of rows of data n(a, year) associated with each area and applying statistical weight of
1/n(a,yr). The effect of this approach was explored through simulation and by applying statistical
reweighting to the indices.

Alternative gamma adjustments to effective sample size
Both the delta and lognormal positive models were rerun with different levels of gamma: 1, 2, 4, 10.

Alternative smoothers

It is recommended (Wood 2011) that models with multiple levels of interactions should, rather than
using te() smoothers for all terms, specify main effects using either s() or ti() and interaction terms
with ti(). Trials in 2020 with the lognormal constant model found excess extreme values when using
the ti() approach, but these models included a mixture of thin plate regression splines (s() terms) and
cubic splines (ti() terms), so were different from the te() models which used cubic splines only. These
trials were revisited for the delta lognormal approach, by comparing models using te() with models
using ti() for all terms.

Model 11 RHS = yf + ti(lon2, k=40) + ti(LAT, k=4) + ti(MONTH, k = 6) + ti(lon2, LAT, k = c(40,4)) +
ti(MONTH, LAT, k = ¢(6,4)) + ti(lon2, MONTH, k = ¢(10, 5)) + ti(YEAR, LAT, k = ¢(20, 4)) + ti(YEAR,
MONTH, k = ¢(20, 5)) + ti(lon2, YEAR, k =c(10, 9)) + ti(LAT, lon2, MONTH, k = c(4,15, 6)) + ti(LAT, lon2,
YEAR, k = ¢(4,10, 9))

Alternative optimisation criteria

Models were fitted using either the generalized cross-validation (GCV), maximum likelihood (ML), or
restricted maximum likelihood (REML). Delta models were fitted using ML to compare models with
different number of terms, and REML in final models to estimate the smooth terms. Positive models



were fitted using GCV to compare models with different number of terms, and REML in final models
to estimate the smooth terms. Positive models were unstable when fitted with ML.

Alternative basis functions

Mgcv provides a variety of basis functions. The default basis function for the s() function is ‘tp’, the
thin plate regression spline, while the default for tensor products te() and ti() is ‘cr’, the cubic
regression spline. Wood (2019) states that thin plate regression splines tend to give the best MSE
performance within s() terms, but are slower to set up than the other bases, and within tensor
products seem to offer no advantage over cubic splines. Nevertheless, to complement the default
approach with the ti() model above of using ‘cr’ for ti() terms, models were set up applying ‘tp’ basis
functions to all terms.

RHS = yf + ti(lon2, k=40, bs = 'tp') + ti(LAT, k=4, bs = 'tp') + ti(MONTH, k = 6, bs ="tp') + ti(lon2, LAT, k
=¢(40,4), bs = 'tp') + ti(MONTH, LAT, k = ¢(6,4), bs = 'tp') + ti(lon2, MONTH, k = ¢(10, 5), bs = 'tp') +
ti(YEAR, LAT, k = (20, 4), bs = 'tp') + ti(YEAR, MONTH, k = ¢(20, 5), bs = 'tp') + ti(lon2, YEAR, k =c(10,
20), bs ="tp') + ti(LAT, lon2, MONTH, k =c(4,15, 6), bs ="'tp') + ti(LAT, lon2, YEAR, k = ¢(4,10, 9), bs =
'tp')

However, models set up in this way were unstable and caused R to crash, so this approach was not
taken further.

As a final step the ti model was specified using a ‘shrinkage’ version of the cubic spline smooth (bs =
“cs”), which can penalise a curve to zero and effectively eliminate it from the model.

Changes to preparation of indices

Abundance adjustment for ocean area
Ocean areas of all cells were calculated (Hoyle and Langley 2020) and used to adjust CPUE estimates
before calculating indices.

Criteria for including spatial strata

The effects were explored of using alternative minimum numbers of observations as the criterion for
including spatial cells in the dataset (which is aggregated at the year-month-cell level). Alternatives
trialled were 1, 5, 10, 15, 20, and 25 observations.

Effect of extreme values on indices

Extreme values in strata without observations are problematic if they are sufficiently large to affect

the index. To explore the potential effects of extreme values on the index, indices were recalculated
after reducing all extreme values in each year to be equal to the largest observed value in that year.

Model selection

A series of binomial models with logit link and lognormal positive models was run with a range of
smoother configurations with a wider range using the te() approach (Table 3), followed by focused
analyses using the ti() approach (Table 4). Models were compared using AIC after ML fitting, and
extreme value prediction performance for versions of the models fitted using REML.

The ti() approach involved separately fitting all main effects and interaction terms, and specifying all
terms involved in higher order terms in the model. This differed from the te() approach, in which all
one-way and some two-way terms were implicitly specified more than once, by being included in
two or more higher order terms.



R code
All R code is available at the github repository https://github.com/hoyles/R ccsbt cpue. Please
email simon.hoyle@gmail.com to request permission to access the repository.

Results

Data aggregation

Residuals showed a strong pattern of declining variance with increasing effort (Figure 1, top left), as
expected since higher effort means a stratum CPUE is the average of more sets with the consequent
reduced variability. More interesting but also unsurprising was that higher effort was associated
with higher CPUE (Figure 1, top right). The SBT fleet wants to catch more SBT, so tends to focus on
areas with higher catch rates. The consequence of these two effects is a negative relationship
between expected CPUE and residual variance (Figure 1, lower left), which differs from the
assumptions of the available error models.

Distributions

Diagnostics run for all distributions included standard arrays of four diagnostic residual plots (Figures
2 - 5), Q-Q plots with tests of uniformity (Kolmogorov-Smirnov) and dispersion (Figure 6), plots of
residual distributions by group with tests of within-group uniformity and Levene tests of
homogeneity of variance (Figures 7 - 13), and scaled residual plots (Figure 14).

Most of the models showed some lack of fit, as expected given the use of aggregated data. With
aggregated data the residual variance is related to the effort associated with each row of data. Effort
varies spatially and temporally and tends to be greater in areas with higher catch rates, so the mean
and variance are likely to be negatively correlated. This violates the model assumption that variance
is homoscedastic.

All error distributions except the two delta models showed a pattern of residuals that were more
peaked than expected in the middle, indicated by residual histograms and the S-shape of the Q-Q
plots (Figures 2 - 5). The lognormal constant, lognormal positive and Gamma models (Figures 2, 3
and 4) also showed overdispersion with excess variability of outliers at both ends, while the Tweedie
(Figure 2) and negative binomial (Figure 5) models fitted better at the lower end but with excess
outliers at the upper end.

All models failed the dispersion tests, and all but the delta models failed the tests of uniformity
(Figure 6).

More detailed explorations of residuals by input variable showed substantial variation in residual
variation for the lognormal constant model by latitude and to a lesser extent by month (Figure 7).
There was no apparent pattern by year in median quantile deviation by year, but there was strong
dependency of residuals on model predictions.

Both delta models fitted the data well, with the logit link (Figure 8) fitting slightly better than the
complementary log-log (cloglog) link (Figure 9). The cloglog link function is asymmetric and preferred
for extreme events where the probability is close to either 0 or 1, whereas in this dataset the
average proportion of nonzero catches is more moderate at 84.8%, varying between 63% and 93%
(Figure 15).

Neither the lognormal positive (Figure 10) nor the Gamma positive model (Figure 11) fitted the data
well. Residuals were heteroscedastic with much larger residuals at lower latitudes. Quantile tests
showed significant lack of fit. Fits appeared slightly worse and potentially more biased for the
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gamma distribution compared to the lognormal, with more bias in the residuals particularly at lower
predicted values (Figure 14).

The Tweedie model also had substantial heteroscedasticity, and some potentially concerning bias in
median residuals by year (Figure 12). However, it fitted considerably better than the negative
binomial model (Figure 13), which showed large deviations from the expected distribution.

Changes to modeling approach

Statistical area weighting

Giving consistent statistical weights to each spatial stratum noticeably changed the trend of the
model. However, simulations showed that this adjustment is unnecessary for models that include
time-area interactions, and that the adjustment of statistical weighting increases uncertainty and
can cause bias.

Alternative gamma adjustments to effective sample size
Changing the gamma assumption about effective sample size changed the trend in the model since
2013 but had relatively little effect on the index before this (Figure 16).

Alternative smoothers
Changing the smoother from te() to ti() slightly changed the trend after 2013 but had little effect on
the index before this (Figure 17).

Changes to preparation of indices

Abundance adjustment for ocean area
Including the ocean area had negligible impact on the index (Figure 18).

Criteria for including spatial strata

Changing the criterion for the minimum number of strata per area slightly reduced the number of
strata available to estimate trends (Table 2). Changes had only a small effect on the indices (Figure
19), suggesting that strata with few samples do not have a large effect on the model results.

Table 2: Alternative minimum strata criteria for including spatial cells, and the resulting number of strata in the models.

Minimum Total number | Prediction
strata per area = of strata strata per year
1 4344 672
5 4307 552
10 4183 450
15 4089 396
20 3921 336
25 3793 300

ML/GCV versus REML
The optimization criterion used in the model had relatively little impact on the resulting index
(Figure 2), since the indices fitted using different methods largely overlaid one another.

Model selection
Model selection was explored for the different arrangements of smoothers (Table 3 and 4). The
more flexible smoothed models fitted the data considerably better than the categorical variable



models in both the binomial (Table 5) and lognormal (Table 6) components, and also in most cases
had many fewer parameters. The three best fitting delta models according to AIC fitted using the te()
approach were models 14, 7, and 11. The three best-fitting lognormal positive models according to
AIC were models 11, 12, and 14.

The AIC values from the ti() approach were slightly but not substantially higher than those from the
te() approach with similar models (Tables 7 and 8). The delta shrinkage model 15s effectively
removed the terms ti(mon, lat) and ti(lat, lon, mon), so an additional non-shrinkage model 16 was
run that omitted those terms. The best fitting ti() models were 16, 15s and 15 for the delta
component, with models 11 and 14 also fitting relatively well. For the positive component models
15s fitted best, followed by models 15, 11 and 14.

Delta and positive models were combined by multiplication at the stratum level to generate
predicted catch rates. AIC values were added to provide an overall score for each index (Tables 9 and
10).

Predictions were also assessed using the extreme value prediction diagnostic. Almost all extreme
value predictions were in the last 7 years, with the largest effect in 2018. Data are increasingly
sparse towards the end of the series (Figure 21). Most smoothed models had relatively few extreme
values that were small compared to the sum of the predicted values. Each year has 396 (Table 2)
predicted values (Figure 22), with annual averages between 0.78 and 4.88. For example, the sum of
all predicted values from the deltal4posl1 model for 2018 was 3718, which an excess prediction of
12 in that year would change by 0.3%. When extreme values were removed by limiting the
maximum predicted values of all strata by year to the maximum observed CPUE in the year, indices
for the model deltal4pos11 were largely unchanged (Figure 23).

Tables of parameter estimates and statistical significance for the factors and statistical significance
for the smooth terms are provided for the best-fitting delta (Tables 11 and 12) and positive (Tables
13 and 14) models.

Indices were plotted for the 6 combined delta lognormal models with the lowest total AIC values
(Figure 24). All models were largely unaffected by extreme values.

Discussion

Comparison of model distribution diagnostics suggests that the delta lognormal model should be
preferred to other distributions. The apparently poor fit of the lognormal positive component is
largely due to the aggregation of the data, which affects all models of the positive component. This
is difficult to avoid when working with aggregated data. Models of the positive component assume
either homoscedasticity, i.e. constant variance (lognormal model) or residual variance positively
correlated with the mean (negative binomial, Gamma and Tweedie), whereas in this dataset residual
variance is negatively correlated with mean CPUE.

The models that use the ti() approach have been preferred to those using te(), which duplicate some
terms and tended to be less stable than the ti() models. The ti() approach is recommended by the
author of the mgcv package. Nevertheless, the te() models generally had slightly lower AIC values
than the corresponding ti() models. It may be rewarding to explore why this occurs.

The best fitting index used model 16 for the delta component and model 15s for the positive
component. Almost all the difference in trend comes from the positive component, so this index
completely overlaid the next best model which used model 15s for both components. Indices from



models 15 (both components) and delta 16 pos 15 were also very similar to the best fitting index.
Small differences in the indices were observed for models 14 and 11, which fitted slightly worse with
delta AIC of 66.4 and 69.2 respectively.

Model selection is challenging and unreliable with aggregated CPUE data, given the violation of
distribution assumptions, the limited variables available, and spatial and temporal autocorrelation.
AIC is used as an indicator but is not a particularly reliable as a criterion for weighting models of
aggregated CPUE data. A reasonable approach may be to select a group of models that fit the data
comparably well and to give them similar weights as alternative outcomes.

Most of the variability among model results occurs at the end of the time series, when data are
sparse, and predictions depend on assumptions about what happens in locations with little
information. As such, this variability among models seems to represent real uncertainty. The
variability between model structures may better represent true uncertainty than parameter
uncertainty.

Most of the approaches used in this analysis can be applied to analyses of operational data. The use
of ti() terms is recommended, as are the use of the extreme value diagnostic to check index
predictions, and DHARMa residuals to check model fits. The delta lognormal model is likely to be
effective for operational data, but it would be also useful to explore other distributions such as the
Tweedie, Gamma, and negative binomial.
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Tables

Table 3: Specifications for models run using mgcv. The factors column reports all variables included as categorical variables. Smooth terms include two-way, three-way, and four-way (‘All’)
interactions.

Label Factors Smooth terms 4-way
Base
Base plus +mf:latf

Base_noYrAr .-yf:areaf

glmmyYrAr

gam 2 yf+mf lon,lat

gam 3 yf+mf mn,lon,lat

gam4 yf All
gam5 yf+lIf All
gam 6 yf+lIf mn,lat All
gam 7 yf lon,lat mn,lat All
gam 8 yf lon,lat mn,lat lon,mn All
gam 9 yf lon,lat mn,dlat lon,mn vyrlat mn,lon,lat lat,lon,yr

gam 10 yf lon,lat mn,lat lon,mn yr,lat vyr,lon yr,mn

gam 11 yf lon,lat mn,lat lon,mn yr,lat yr,mn lat,lon,mn lat,lon,yr

gam 12 yf lon,lat mn,lat lon,mn yr,lat vyr,lon yr,mn lat,lon,mn lat,lon,yr

gam 13 yf+mf lon,lat mn,lat lon,mn yrlat vyr,lon

gam 14 yf lonlat mn,dat lon,mn wyrlat vyrlon,mn yr,mn latlon,mn lat,lon,yr



Table 4: Specifications for models fitted with smooth terms specified using ti(). The factors column reports all variables included as categorical variables. Smooth terms include one-way terms
and two-way and three-way interactions. All models include categorical variables for year (yf) and one-way smooth terms for longitude (lon), month (mn), and latitude (lat). Within interactions
year is specified as a smooth term (yr). Terms marked 0 were included but effectively removed via shrinkage.

Model Factors lon,lat mn,lat lon,mn wyr,lat yr,lon yr,mn yr,lon,mn lat,lon, mn lat, lon,yr lat, mn,yr

9 yf X X X X X X X

10 yf X X X X X X

11 yf X X X X X X X X

13 yf+mf  x X X X X

14 yf X X X X X X X X X

15 yf X X X X X X X X X X
15s yf X 0 X X X X X 0 X X

16 yf X X X X X X X X



Table 5: Comparison of delta models fitted using te() after optimisation using maximum likelihood, to compare main
effects. The degrees of freedom for smoother models is the estimated degrees of freedom (edf). The delta AIC (AAIC) is the
difference between the individual model’s AIC and that of the best fitting model.

Delta edf AIC AAIC
Base 259 1882.8 440.1
BasePlus 274 1897.7 455.0

Base_noYrArea 160 1840.4 397.7
glmm_YrArea 151.0 1822.5 379.8

1 277.8 1687.2 2445
2 63.6 1569.2 126.5
3 84.8 1569.2 126.4
4 105.5 1534.2 915
5 173.5 1579.5 136.7
6 104.1 1512.0 69.3
7 94.5 1446.0 3.3
8 98.3 1473.6 30.9
9 89.3 14914 486
10 94.8 1479.6 36.9
11 95.1 1457.1 144
12 92.6 1469.7 27.0
13 81.8 1488.2 454
14 91.1 14427 0.0

Table 6: Comparison of lognormal positive models after optimisation using generalized cross-validation (GCV), to compare
main effects. The degrees of freedom for smoother models is the estimated degrees of freedom (edf). The delta AIC (AAIC) is
the difference between the individual model’s AIC and that of the best fitting model.

Pos edf AIC AAIC
Base 255 10483.5 1486.3
BasePlus 270 10425.3 1428.1

Base_noYrArea 157 10531.9 1534.6
glmm_YrArea 166.5 10507.5 1510.3

1 3115 93449 347.7
2 96.9 10240.5 12433
3 149.7 94916 4944
4 2253 94194 4221
5 250.7 9180.9 183.6
6 2441 91254  128.2
7 191.1 91251 1279
8 2005 9108.3 1111
9 197.3  9090.0 92.8
10 1719 9200.8 203.6
11 217.8  8997.2 0.0
12 2179 9018.2 21.0
13 167.3 91970 199.8

[
S

230.0 9078.1 80.9



Table 7: Comparison of delta models fitted using ti, optimized with maximum likelihood (ML) or restricted maximum
likelihood (REML). The degrees of freedom for smoother models is the estimated degrees of freedom (edf). The delta AIC
(AAIC) is the difference between the individual model’s AIC and that of the best fitting model.

Model ML REML
Delta Shrinkage edf AIC  AAIC  edf AIC AAIC
9 N 80.8 1505.2 59.5 94.5 14789 589
10 N 86.6 14855 39.8 97.7 1463.6 435
11 N 89.4 14685 22.8 97.8 14415 214
14 N 89.5 1465.8 20.2 98.4 14449 24.8
15 N 93.2 14475 19 102.8 14201 0.0
15s Y 108.4 1447.4 1.7 122.0 1429.7 9.6
16 N 91.2 1445.7 0 99.6 14319 119



Table 8: Comparison of lognormal positive models, optimised using optimized with generalized cross-validation (GCV) or
restricted maximum likelihood (REML). The degrees of freedom for smoother models is the estimated degrees of freedom
(edf). The delta AIC (AAIC) is the difference between the individual model’s AIC and that of the best fitting model.

GCV REML
Pos shrinkage edf AIC AAIC  edf AIC AAIC
9 N 202.0 92923 65.8 210.8 9309.3 56.9
10 N 1789 9468.5 242.0 185.9 9482.1 229.7
11 N 225.7 92729 46.4 214.2 93023 499
14 N 2159 92727 46.3 227.8 9296.5 44.0
15 N 2245 9269.4 43.0 238.4 9286.6 34.2
15s Y 224.8 9226.5 0 226.8 9252.4 0.0

Table 9: Sums of delta and lognormal AIC values, and extreme value diagnostic results for the te() smoothed models,
optimized using maximum likelihood (delta) and generalized cross-validation (positive). The delta AIC (AAIC) is the
difference between the individual model’s AIC and that of the best fitting model. Models with an asterisk have AAIC less
than 100.

Delta Pos Total AIC AAIC max diff diff?

1 11032.1 592.2 16 35.9 168.0
11809.7 1369.8 57 53.2 91.8
11060.8 620.9 0 0.0 0.0
10953.6 513.7 38 420.2 11338.8
10760.4  320.5 6 8.9 22.0
10637.4 197.5 20 59.1 266.9
10571.1 131.2 32 76.2 350.4

=

O 00 NO UL A WN
O 00N O U &~ WN

10581.9 142.0 2 0.8 0.4

10581.4 1415 0 0.0 0.0
10 10 10680.4 240.5 5 3.6 3.5
11 11 104543 14.4 13 16.8 32.8
12 12 10487.9 48.0 14 28.2 80.0
13 13 10685.2 2453 6 7.6 12.2
14 14 10520.8 80.9 0 0.0 0.0
14 11 10439.9 0.0 13 17.0 33.1

Table 10: Sums of delta and lognormal AIC values, and extreme value diagnostic results for the ti() smoothed models. The
delta AIC (AAIC) is the difference between the individual model’s AIC and that of the best fitting model. Models with an
asterisk have AAIC less than 100.

Delta Pos ML REML
Total AIC  AAIC Total AIC AAIC max diff diff
9 9 10797.5 125.3 10788.2 106.1 0 0 0

10 10 10953.9 281.8 10945.7 263.6 13 15.8 283
11 11 107414 69.2 10743.8 61.7 15 34.9 1403
14 14 10738.6 66.4 107414 59.3 12 52 3.5

15 15 10717.0 44.8 10706.6 24.5 5 52 6.9
15s 15s 10673.9 1.7 10682.1 0.0 3 19 2.2
16 15 10715.1 43.0 107185 36.4 5 52 6.9
16 15s 10672.2 0.0 10684.4 23 3 19 2.2



Table 11: Table of parameter estimates, standard errors and statistical significance for the categorical year factors in delta
model 15. The final column includes codes to indicate significance: 0 “***’0.001 “** 0.01 *”0.05 . 0.1 *’ 1.

(Intercept)
yf1987
yf1988
yf1989
yf1990
yf1991
yf1992
yf1993
yf1994
yf1995
yf1996
yf1997
yf1998
yf1999
yf2000
yf2001
yf2002
yf2003
yf2004
yf2005
yf2006
yf2007
yf2008
yf2009
yf2010
yf2011
yf2012
yf2013
yf2014
yf2015
yf2016
yf2017
yf2018
yf2019
yf2020

8.08

0.03
-1.58
-1.86
-2.50
2.41
-1.54
-2.08
-4.73
-3.98
2.91
2.32
-2.49
-1.67
-2.96
-3.06
-2.50
-0.11
-1.15
2.24
2.21
-0.67
-2.25
-1.78
-1.53
-2.08
2.75
-0.52
-1.43
-0.53
-1.04
-1.44
-1.58
-1.16
-0.64

Estimate Std. Error

1.00
0.58
0.64
0.73
0.81
0.81
0.87
0.88
0.89
0.92
0.93
0.96
0.96
0.98
0.99
1.00
1.08
1.12
1.06
1.01
1.06
1.06
1.03
1.06
1.03
1.03
1.01
1.12
1.08
1.09
1.13
1.16
1.22
1.26
1.32

z value

8.11

0.06
-2.46
-2.54
-3.09
-2.96
-1.77
-2.36
-5.30
-4.33
-3.14
-2.42
-2.58
-1.71
-2.99
-3.06
-2.31
-0.10
-1.09
-2.21
-2.08
-0.63
-2.18
-1.68
-1.49
-2.01
-2.72
-0.46
-1.32
-0.48
-0.92
-1.24
-1.30
-0.92
-0.48

Pr(>|z])

5.20E-16
9.54E-01
1.39E-02
1.12E-02
2.02E-03
3.04E-03
7.70E-02
1.84E-02
1.16E-07
1.46E-05
1.72E-03
1.54E-02
9.80E-03
8.78E-02
2.79E-03
2.19E-03
2.10E-02
9.19E-01
2.77E-01
2.70E-02
3.73E-02
5.31E-01
2.90E-02
9.24E-02
1.37E-01
4.44E-02
6.50E-03
6.45E-01
1.86E-01
6.28E-01
3.55E-01
2.13E-01
1.94E-01
3.56E-01
6.28E-01

* % %

* %

* %

* % %

* %k *k

* ¥

* %

* ¥

* ¥

* ¥



Table 12: Table of effective degrees of freedom, Chi square and p-values for the smooth terms in delta model 15. The final
column includes codes to indicate significance: 0 “*** 0.001 **’ 0.01 “*” 0.05 " 0.1 *’ 1.

edf Chi.sq p-value
ti(lon2) 12.47 86.91 3.76E-12 ***
ti(LAT) 2.13 86.23  1.61E-18 ***
ti(MONTH) 3.27 91.79  1.34E-18 ***
ti(lon2,LAT) 5.77 27.03  1.38E-08 ***
ti(MONTH,LAT) 1.96 2.29 3.49E-01
ti(lon2,MONTH) 1.00 8.20 4.20E-03 **
ti(YEAR,LAT) 3.24 9.09 5.83E-02 .
ti(YEAR,MONTH) 6.95 23.69  7.61E-03 **
ti(lon2,YEAR) 3.18 20.48  5.53E-04 ***
ti(LAT,lon2,MONTH) 1.00 0.23  6.30E-01
ti(YEAR,lon2,MONTH) 1.00 14.15 1.69E-04 ***
ti(LAT,lon2,YEAR) 4.23 28.57 1.63E-08 ***
ti(LAT,MONTH,YEAR) 5.82 28.36  2.05E-04 ***

ti(log(N_HOOKS)) 1.48 134.75 1.27E-28 ***



Table 13: Table of parameter estimates, standard errors and statistical significance for the categorical year factors in
positive model 15s. The final column includes codes to indicate significance: 0 “***’0.001 “** 0.01 *”0.05 “.” 0.1 *’ 1.

Estimate Std.Error tvalue  Pr(>|t])

(Intercept) -0.15 0.07 -2.12  3.44E-02 *
yf1987 0.12 0.08 136 1.74E-01
yf1988 -0.02 0.09 -0.22  8.26E-01
yf1989 -0.11 0.09 -1.22 2.21E-01
yf1990 0.02 0.09 0.26  7.93E-01
yf1991 0.07 0.09 0.77 4.40E-01
yf1992 0.22 0.09 236 1.84E-02 *
yf1993 0.51 0.10 526  1.53E-07 ***
yf1994 0.58 0.11 521 2.03E-07 ***
yf1995 0.51 0.11 4.88 1.09E-06 ***
yf1996 0.23 0.10 224 253E-02 *
yf1997 0.08 0.10 0.83  4.04E-01
yf1998 0.12 0.10 1.26  2.06E-01
yf1999 0.24 0.10 243 1.52E-02 *
yf2000 0.14 0.11 1.32 1.85E-01
yf2001 0.37 0.11 343 6.11E-04 ***
yf2002 0.61 0.11 5.39  7.45E-08 ***
yf2003 0.38 0.11 3.35 8.14E-04 ***
yf2004 0.14 0.11 1.34 1.79E-01
yf2005 0.10 0.11 0.99 3.23t-01
yf2006 -0.25 0.11 -2.33  1.99E-02 *
yf2007 -0.40 0.11 -3.72  2.05E-04 ***
yf2008 0.17 0.11 149 1.36E-01
yf2009 0.75 0.12 6.34  2.53E-10 ***
yf2010 0.70 0.12 6.00 2.21E-09 ***
yf2011 0.92 0.12 7.74  1.25E-14 ***
yf2012 0.77 0.12 6.45  1.25E-10 ***
yf2013 1.05 0.12 8.58  1.38E-17 ***
yf2014 1.13 0.13 8.76  3.00E-18 ***
yf2015 1.33 0.12 10.95  1.78E-27 ***
yf2016 1.12 0.13 8.67 6.51E-18 ***
yf2017 1.22 0.14 8.84  1.44E-18 ***
yf2018 1.36 0.14 9.45 6.23E-21 ***
yf2019 1.38 0.14 9.74  3.88E-22 ***

yf2020 1.33 0.13 9.99 3.51E-23 ***



Table 14: Table of effective degrees of freedom, Chi square and p-values for the smooth terms in positive model 15s. The
final column includes codes to indicate significance: 0 “***" 0.001 **’ 0.01 “*0.05 " 0.1 *" 1.

edf F p-value
ti(lon2) 20.25 17.14 3.00E-69 ***
ti(LAT) 2.94 306.59  7.25E-167 ***
ti(MONTH) 4.26  54.75 7.61E-51 ***
ti(lon2,LAT) 36.03 9.80 1.30E-160 ***
ti(MONTH,LAT) 5.70 16.00 1.11E-75 ***
ti(lon2,MONTH) 8.75 1.83 5.55E-17 ***
ti(YEAR,LAT) 9.77 0.89 1.17E-15 ***
ti(YEAR,MONTH) 7.67 0.34 1.30E-07 ***
ti(lon2,YEAR) 6.62 0.59 6.14E-11 ***

ti(LAT,lon2,MONTH)  10.17 0.46 1.23E-22 ***
ti(YEAR,lon2,MONTH)  2.79 1.84 1.66E-05 ***
ti(LAT,lon2,YEAR) 34.63 1.41 3.19E-52 ***
ti(LAT,MONTH,YEAR) 4.74 0.26 3.61E-08 ***
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bluefin tuna.
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Figure 8: Simulated residuals by covariate for model 11 with the binomial (delta) distribution.
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Figure 9: Simulated residuals by covariate for model 11 with the complementary log-log link, as specified for the Delta
Poisson distribution.
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Figure 10: Simulated residuals by covariate for model 11 with the lognormal distribution and nonzero catches.
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Figure 11: Simulated residuals by covariate for model 11 with the Gamma distribution.
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Figure 12: Simulated residuals by covariate for model 11 with the Tweedie distribution.
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Figure 13: Simulated residuals by covariate for model 11 with the negative binomial distribution.
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Figure 15: Annual proportion of nonzero catch strata in the reported effort.
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Figure 16: Delta lognormal model 11 indices with different levels of gamma.
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Figure 17: Delta lognormal model 11 indices with either te() smoother on all variables, or the ti() smoother used for
interaction terms.
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Figure 18: Delta lognormal model 11 Indices both with and without accounting for the differences among spatial cells in
ocean area.
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Figure 19:Delta lognormal model 11 Indices with different criteria for the minimum number of samples per spatial stratum.
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Figure 20: Indices from three different model structures fitted with either maximum likelihood (ML) for the delta component
and GCV for the positive component, or restricted maximum likelihood (REML) for both components.
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Figure 21: Number of strata per year with observations, including zero observations.
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Figure 22: Histogram of predicted stratum values by year that result from combining models deltal4 and pos11.
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Figure 23: Comparison of indices with and without the extreme values. Extreme values are removed by limiting the
maximum predicted values of all strata by year to the maximum observed CPUE in the year.
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Figure 24: Indices for the six models with the lowest total AIC values.



