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Introduction 

Indices of southern bluefin tuna abundance are used by the CCSBT in both the CCSBT stock 

assessment (Butterworth et al., 2003) and the management procedure (CCSBT26-2019). To develop 

the primary indices used for both purposes, data are fitted using the ‘Base’ standardization model. 

Next, two indices are derived from this model using prediction under two alternative weighting 

schemes, the constant squares and variable squares models.  These two indices are then 

recombined using two alternative weightings into the W0.8 and W0.5 indices (Nishida and Tsuji, 

1998; Itoh and Takahashi, 2019).  

The Base model used to generate the constant squares (CS) and variable squares (VS) indices is a 

linear model that includes categorical variables for all spatial and temporal effects, along with three 

interaction terms: 

log(cpue + 0.2) ~ year + month + area + latitude + cpue.bet + cpue.yft + month*area + year*latitude 

+ year*area 

In recent years CPUE standardization methods have given more consideration to spatial and 

temporal correlations (Nishida and Chen, 2004; Chambers, 2014a; Grüss et al., 2019). Many of these 

methods use the correlations among adjacent areas to estimate parameters more efficiently. 

Approaches using spatiotemporal smoothers within generalized additive models (GAMs) have been 

explored for SBT (Chambers, 2013; Chambers, 2014a; Chambers, 2014b), but to date the primary 

CPUE index has continued to be based on the W0.8 and W0.5 indices.  

In 2019 the Base CPUE model produced an index value for 2018 that was identified as anomalous 

(Itoh and Takahashi, 2019), and the 2020 update generated similarly unrealistic index values for both 

2018 and 2019.  

This paper explores reasons why the linear model-based index is generating high estimates for 

recent years and investigates the potential of models that include spatiotemporal smoothers to 

provide a more reliable index.  

These analyses are based on a slightly different dataset from the Base model, since the dataset used 

in that analysis is not available to CCSBT scientists (Itoh and Takahashi, 2019). The available dataset 

is sufficiently similar to provide useful insights. The main differences are listed below. We explore 

consistency between results from the two datasets.   

- The primary dataset uses a set of core vessels that have high SBT catches for at least 3 years, 

whereas the available dataset includes data from all vessels.  

- The primary dataset includes catches of bigeye and yellowfin tuna, but the available dataset 

does not.  

- The primary dataset is available at the operational level (but is aggregated for the Base 

analysis) whereas the available dataset is aggregated.  
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Methods 

Data preparation 

We downloaded the file ‘CPUEInputs_2020_January.txt’ from the CCSBT website. These data are 

aggregated by year, month, and 5° latitude and longitude, with catches reported by age-class based 

on spatially and temporally stratified size sampling.   

We applied the following processes to the dataset: 

- Filter to include effort from 1986 to 2018, with DATA_CODE ‘COMBINED’, in statistical areas 

4 to 9, and months 4 to 9. Include strata with more than 10000 hooks. Include latitudes 

north of 50°S.  

- Create numeric catch variable, the sum of catches of all SBT 4+ and older.  

- Create categorical latlong5 variable indicating 5° square that combines latitude and 

longitude.  

- Create categorical s_area variable, which merges statistical area 4 with 5 and statistical area 

6 with 7.  

- Create categorical variables for year, latitude, longitude, and month.  

- Create numeric lon2 variable by adding 360 to all longitudes between -180 and -100, to 

provide continuity across the spatial domain of the fishery. Longitudes are recorded as -180 

to 180 and so the range of the lon2 variable was from -95 to 260.  

- Create numeric CPUE variable = catch per 1000 hooks.  

- Remove outlier with CPUE > 120.  

Characterize data 

We explored the data to identify how effort and catches have changed through time.  

To explore the spatial distribution of effort through time and by season, we plotted effort by 5° 

square, and temporally by two-month period, for each 5 years since 1985.  

To explore spatial and temporal changes through time, and the possibility that trends have varied by 

area, we modeled CPUE separately by statistical area, using in each case both a main effects model 

and a model that included a month by latitude interaction term.  

log(cpue + 0.2) ~ year + month + lat + month:lat 

Data coverage and Base model estimates 

We examined the availability of data, and how data gaps in space and time might affect the Base 

model. We generated predicted catch rates from the Base model for each combined stratum of year, 

month, stat area and latitude, by predicting from the parameters of the Base model provided by the 

analyst (Tomoyuki Itoh, personal communication).  

Check relevance of inference from available dataset 

Next we standardized the available dataset using a model similar to the Base model, but without the 

parameters for other species. We call this the simplified Base model.  

log(cpue + 0.2) ~ year + month + area + lat + month*area + year*lat + year*area 

All parameters are categorical variables.  

As for the Base model, we generated predicted catch rates for each combined stratum of year, 

month, stat area and latitude.  



To compare predictions from the Base (with primary dataset) and simplified Base (with available 

dataset) models, we summed each set of predictions by year, normalized by the means across years, 

and plotted them on the same figure.  

Changes to the Base model 

We explored the fit of the simplified Base model and alternative approaches in the categorical data 

paradigm.   

The simplified Base model includes three of the six possible two-way interactions. We examined the 

effects on model fit of including additional two-way and three-way interactions.  

Extreme prediction diagnostic 

A new diagnostic of prediction reliability was developed based on the consistency of model 

predictions by year-month-area-latitude stratum with the range of observed CPUE throughout the 

time series. The max diagnostic counts the number of predictions higher than the maximum 

observed CPUE in the same year, and the min diagnostic counts the number of observations lower 

than the minimum observed CPUE in the same year. These extreme counts are also classified based 

on whether there is an observed CPUE in the same stratum, and whether the stratum is included in 

results that are based on the x15 criterion.  

The preferred version of the extreme prediction diagnostic is based on high values, x15 filtering, and 

all strata. High extreme predictions tend to be much more variable and influential than low values 

when errors are lognormally distributed. The x15 filtered values are used to generate the index, so 

are more relevant than the full range of cells. Estimates for gap-only strata are provided for interest, 

but all strata are used to generate the index.  

Spatiotemporal smoothers 

With data increasingly sparse both spatially and seasonally, spatiotemporal smoothers allow for 

correlations between adjacent spatial and temporal cells, and reduce the number of parameters 

being estimated.  

Initially we replicated the approach used for the simplified Base models, and then explored 

approaches that would explain more variability while retaining parameter identifiability.  

Modeling was carried out in R (R Core Team, 2019) using the generalized additive modelling package 

mgcv (Wood, 2011).  

All models were fitted to the same dataset. Each variable was modelled either as a categorical 

(factor) variable, as in the simplified Base model, or as a continuous variable, which is necessary 

when using smoothers. Factors are indicated here with the suffix f.  

Each model was fitted with the mgcv setting ‘gamma = 2’ to reduce the effective sample size. CPUE 

standardization models in mgcv can suffer from excess variability in the smoothers. Fishery data are 

often over-dispersed due to dependencies among sets and strata, since individual data represent the 

combination of multiple sets by the same vessels, and unmodelled effects such as environmental 

patterns and fish behavior can lead to overdispersion at multiple spatial and temporal scales. These 

dependencies reduce the amount of independent information in the data, which can be allowed for 

by reducing the effective sample size. Setting gamma to 2 was an ad hoc choice and further 

exploration is warranted.  

Initially the simplified Base was replicated in mgcv.  



glm1: <- gam: log(cpue + 0.2) ~ yf + mf + latf + sf + mf:sf + yf:latf + yf:sf 

glm2: <- gam: log(cpue + 0.2) ~ yf + mf + latf + sf + mf:sf + yf:latf + yf:sf + mf:latf 

Next we explored various smoothers (tensor splines), which are listed in Table 5. Changes include 

replacing the latitude factor with a two-dimensional spatial smoother, and adding various two-way 

and three-way interactions. A four-way interaction with all the continuous variables was also 

explored. The model gam13 was designed to be a smoothed version of model ‘Base Plus’, replacing 

area with te(longitude, latitude), and with longitude in interaction terms.  

Model assumptions were checked using the gam.check() function or the equivalent check.gamViz 

function from the mgcViz package.  

Reasons for skewed residuals were checked by examining the relationship of effort to residual size, 

using a smoothing spline in mgcv: gam(N_HOOKS ~ s(residual)).  

Individual smoothers were plotted from the model with the best combination of low AIC and lack of 

extreme / unrealistic predictions.  

Indices from each model were obtained by predicting catch rates in all spatial cells that were fished 

in at least 15 temporal strata (known as ‘x15’ filtering). Catch rates in these spatial cells were 

predicted for all years and months. Based on the unreliable assumption that all spatial cells have the 

same ocean area, catch rates were summed for each year and divided through by the mean of the 

yearly estimates, to give an index with mean of 1. Since ocean areas change with latitude, and some 

spatial cells include land, abundance prediction methods will in future need to be correspondingly 

adjusted.   

Distribution checking 

Fits to the following distributions were checked by running the simplified Base gam model with the 

following distribution assumptions and examining QQ plots using the gam.check() function.  

1. Lognormal(cpue + 0.2) 

2. Gamma(cpue + 0.2) 

3. quasiPoisson(catch) 

4. Poisson(catch) 

5. Binomial(catch > 0) 

6. Lognormal (nonzero catch) 

7. Gamma(nonzero catch) 

8. Tweedie(catch) 

Results 

Data characterization 

The area with most effort (hooks set) was area 9, while areas 5 and 6 had relatively little effort. 

Areas 4, 7 and 8 had intermediate effort levels, with approximately 200 million hooks set from 1986 

to 2018 (Figure 1).  

Areas 4 and 5 had a relatively high proportion of records with zero catch, while areas 6, 7, and 9 had 

a very low proportion of zeroes. High proportion of zeroes in areas 4 and 5 particularly. The 

proportions of records with zero catch did not change substantially through time, though there was 

a small peak in the early 1990s.  



By latitude, most of the effort was between 35° and 45° S. Proportions of zeroes were much higher 

further north, with over half the strata reporting zero SBT north of 35°S.  

Effort by month was highest in May, June and July. Proportions of zeroes were highest in April and 

declined through the season.  

The spatial distribution of effort changed in consistent ways through the year (Figure 2). In April and 

May there was effort in the west (area 9) and east (areas 4, 5, 6, 7) but little effort in area 8. Later in 

the year the effort would move north within these regions and also into area 8. Similar seasonal 

fishing patterns between areas 8 and 9 have been seen for the Korean fleet (Figure 3). If these 

changes in effort distribution reflect SBT catch rates, they suggest interactions between month and 

latitude, and between month and longitude / area.  

There were also some long-term changes in effort, with less effort in all areas during the 2015-2018 

period, apart from an increase in area 8 in April-May.  

Results of standardizing catch rates separately by statistical area showed catch rates in area 67 

increasing rapidly from 2007 and stabilizing at a high level in 2010, and catch rates in area 9 

increasing rapidly from about 2008 to a peak in 2015 (Figure 4). Catch rates in area 45 showed no 

consistent change through time but did spike up in 2018. Catch rates in area 8 were variable 

throughout but have been higher on average since 2010 than in the previous 10 years. Including a 

month:latitude interaction had little effect on most areas but substantially raised standardized catch 

rates in area 8 since 2010.  

Data coverage and Base model estimates 

The number of empty strata (by year, statistical area, month and latitude) increased progressively 

from 1990 to 2018 (Table 1). Predicted CPUE in most years was reasonably consistent with the 

observed CPUE in the same strata, apart from a few negative values due to low predictions and the 

back-transformation exp(pred) – 0.2.  

The increasing number of empty strata is consistent with Figure 1b from Itoh and Takahashi (2019), 

which shows operations with SBT aged 4+ concentrating into a steadily reducing number of 5° cells 

and 1° cells through time, with minima for both 1° and 5° cells in 2018 (Figure 5). At the same time 

the effort per cell has increased since 2010, so that effort in 2018 was perhaps twice as concentrated 

as in 2010. An even stronger pattern of increasingly concentrated effort is apparent for Korea.  

The Base model (predictions from parameters provided by Itoh-san) predicted very high catches per 

thousand hooks in 2018 in area 8, with the highest predictions all in strata with no reported effort 

(Table 1). Of the 18 month-latitude strata in area 8, over 40 fish per thousand hooks were predicted 

in four strata and almost 20 fish in two strata.  

The Base model (predictions from parameters provided by Itoh-san) and the simplified Base model 

gave very similar indices (Figure 6), suggesting that approaches that improve results for the 

simplified Base model are also likely to work for the Base model. The primary and ‘available’ 

datasets are sufficiently similar to allow the available dataset to stand in for the primary dataset for 

exploratory analyses regarding some issues.  

Changes to the simplified Base model 

An interaction term not included in the simplified Base model (month * latitude) had the most effect 

on the AIC of all interactions (Table 3) so we included it in some further analyses, and suggest that 

this interaction should be considered in other analyses. This interaction term is consistent with the 



observed movement patterns of the fleet, which fishes further north within each region later in the 

season (Figure 2).  

The other two interaction terms not included in the Base model (year * month and area * latitude) 

improved the AIC but were ranked 5th and 6th among all possible two-way interactions.  

Three of the four three-way interaction terms improved the AIC of the model, with the most impact 

coming from month*lat*area (Table 4).  

These trials suggest that including additional terms in the simplified Base model is likely to improve 

the fit to the data. The proportion of deviance explained should also be considered when adding 

terms, because most CPUE datasets are overdispersed which makes AIC oversensitive and can lead 

to overfitting. Prediction reliability must also be considered when including additional terms, given 

the increasing concentration of the effort and consequent sparse data.   

Spatiotemporal smoothers 

All models with spatiotemporal smoothers fitted the data with lower AIC values than the simplified 

Base model (Table 5). Where checked, most of the smooth terms explained over 1% of the deviance 

(Table 6).  

The model fits according to AIC were (best to worst) gam12, gam11, gam9, gam8, gam7, gam6, 

gam5, gam13, gam10, gam4, gam3, gam2, Base plus, simplified Base, glmm_YrArea, Base_noYrArea 

(Table 5). Given these results the models gam2 to gam8 were dropped so as to focus on the best-

fitting gams. The model Base plus was also dropped to focus on models more relevant to the 

discussion, but it was nevertheless the best-fitting factor-based model.  

The extreme prediction diagnostic based on high values showed the best performance across all cells 

for model gam11, followed by model gam13, gam9, Base_noYearArea, glmm_YearArea, gam12, 

simplified Base, and gam10. After removing cells not included in index prediction due to x15 filtering, 

the sequence from best to worst became gam9, gam11, Base_noYearArea, gam13, glmm_YearArea, 

gam10, gam12, simplified Base.   

Given their worse performance with extreme predictions, models gam10 and gam12 were dropped.  

Residual diagnostic plots showed relatively normal distributions, although the tails of the gams with 

better fit to the data did not follow the expected distribution in the tails (Figure 7). This appears to 

be because the strata of aggregated data with lower sample sizes (fewer hooks set) are more 

variable than the strata with more effort, as demonstrated by fitting a gam to the relationship 

between residual size (x-axis) and effort (y-axis) (Figure 8).  

Spatiotemporal smoothers from model gam11 showed relatively smooth catch rate patterns across 

space, but it is difficult to interpret individual plots in biological terms given their interactions, and 

the fact that the overall effect is the aggregate of all components (Figure 9, Figure 10, and Figure 11).  

Predictions from model gam11 across the spatial domain showed changing spatial distribution by 

month and year (Figure 12).  

Indices from the 3 smoothed models were relatively similar to the factor models for most of the 

period, but a little less variable through time, and lacking the anomalously high value for 2018 that 

motivated this study (Figure 13).  

Predictions by latitude and by statistical area were much more stable than those from the factor-

based models (Figure 15). High variability associated with sparse data was apparent at the northern 



and southern latitudes -32.5 and -47.5, and in statistical areas 8, 45, and 67. Note however that 

areas with sparse data are given low weight by the constant squares and variable squares algorithm 

and by x15 filtering, which greatly limits their impact on the resulting indices. These figures 

nevertheless illustrate how spatiotemporal smoothing can stabilize estimates when data are sparse.  

Distribution assumptions 

Probably the best QQ plot was obtained with Tweedie distribution, p=1.5 (Figure 15).  

Discussion 
This study has shown that models that use spatiotemporal smoothers can address problems with 

sparse data caused by increasing effort concentration. Such models may also provide more accurate 

indices of abundance by taking into account factors not included in the current model.  

Further work is needed to improve these preliminary gam models, which can be done with both the 

primary dataset and with the dataset available here. Issues to consider include allowing for the 

different ocean areas of the spatial cells, and examining how different data weighting/filtering 

methods affect results. Possible data filtering changes include adjusting the required number of 

records per stratum from 15, and changing the stratification in the filter to lat-long-month rather 

than lat-long. Alternative values of the ‘gamma’ adjustment to effective sample size should be 

considered, as should alternative initial smoothness values (assigned with the k parameter) in each 

of the tensor spline smoothers.  

Other and likely more important and influential issues include (a non-exhaustive list) the use of 

hurdle or zero-inflated models to deal with zero-catch strata instead of adding a constant; 

consideration of vessel-specific fishing power which in many fisheries varies considerably and tends 

to increase through time; adjusting for targeting; and the effects of quotas on vessel behavior and 

catch rates, particularly within-season.  

Given that sparse data is causing problems, including data from other fleets is likely to be helpful if it 

helps to fill in some of the gaps.  

These gam models used tensor splines (te) to fit smoothers, but mgcv provides various other options 

that should be explored. Interaction-only tensor splines (ti) were explored but resulted in many 

more extreme predictions.  

The increasing concentration of fishing effort is very marked in both the Japanese and Korean fleets. 

As well as causing the analysis problems that motivated this study, it may affect the reliability of 

CPUE as an index of abundance in ways that spatiotemporal smoothing does not resolve. The 

reasons for this change, and their implications, need to be understood. If effort is concentrating 

because the fleet is getting better at finding fish, this would also tend to increase the average 

observed catch rate. In this situation the CS method and the gam with spatial smoothers may 

produce a hyperstable CPUE index. It may be appropriate to retain an approach that includes 

aspects of the VS method.  

There may be concerns about changing stock distribution, e.g. associated with climate change. 

Contraction and expansion would be easier to detect if modelling at 1° cell scale, which would be 

straightforward with smoothers. Currently there are only 4 x 5° latitude bands in the model, and 

distribution change must be large to be detectable. It would also be easier to detect distribution 

change if data were available from more vessels, i.e. by including other fleets in the analysis, and 



perhaps including non-core vessels. These approaches would make it even more important to 

consider target change and vessel-specific catchability.  

The residual distributions were distinctly non-normal, perhaps mostly because the dataset was 

aggregated and catch rates for strata with low effort were more variable than those with more 

effort. This is potentially problematic because effort is likely to be higher in strata with higher catch 

rates. Issues like this are complex, and simulation may be the best approach for addressing them.  

Preliminary analysis and QQ plots suggested that the Tweedie model may give the best fit to the 

observed residual distributions. The fit of the lognormal (cpue + 0.2) model was reasonable for the 

Base model but less so for gams with spatiotemporal smoothers.   

Using spatial smoothers in gams with mgcv has successfully addressed problems due to sparse data. 

Gams are very efficient for data exploration and applying a variety of statistical methods but are only 

one of the potential approaches available. A recent comparison of standardization methods found 

that the VAST (Thorson et al., 2015) performed slightly better than gam-based approaches (Grüss et 

al., 2019). VAST also has potential to include multiple categories in a model, so can model size and 

catch rate data jointly (e.g. Maunder et al., 2020). This approach has potential to avoid the age 

slicing currently used to generate the 4+ dataset, which introduces some error.  
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Tables 

 

Table 1:Observed numbers of hooks and catch rates in the aggregated Japanese dataset, and approximate predicted catch 

rates in the same strata generated by the Base model. Hooks are in thousands and catch rates in SBT per thousand hooks.  

   
1990 2010 2017 2018 

stat 

area 

mon lat

5 

hooks cpue Pred 

cpue 

hooks cpue Pred 

cpue 

hooks cpue Pred 

cpue 

hooks cpue Pred 

cpue 

8 4 -45 0  0.14 0  0.54 0  1.01 0  5.17 

8 4 -40 0  0.10 0  0.63 0  1.08 0  5.55 

8 4 -35 0  0.03 196 0.46 0.20 879 0.01 0.02 534 0.06 0.30 

8 5 -45 0  0.35 0  0.98 0  1.73 0  8.35 

8 5 -40 0  0.29 0  1.12 0  1.84 0  8.96 

8 5 -35 0  0.17 427 0.14 0.44 545 0.04 0.16 226 0.25 0.60 

8 6 -45 0  0.99 0  2.37 0  4.00 0  18.39 

8 6 -40 245 1.70 0.85 0  2.66 0  4.23 0  19.71 

8 6 -35 0  0.60 304 1.38 1.19 17 0.00 0.58 0  1.54 

8 7 -45 0  2.38 0  5.37 0  8.91 0  40.16 

8 7 -40 2211 1.79 2.09 0  6.02 0  9.42 0  43.03 

8 7 -35 430 1.68 1.53 0  2.81 35 2.64 1.48 0  3.57 

8 8 -45 0  2.73 0  6.14 0  10.17 0  45.73 

8 8 -40 979 2.55 2.40 186 4.27 6.88 0  10.75 0  49.00 

8 8 -35 1113 2.16 1.77 663 3.49 3.23 1841 5.27 1.72 1857 7.19 4.09 

8 9 -45 0  2.04 0  4.64 0  7.71 0  34.83 

8 9 -40 33 1.99 1.79 0  5.20 0  8.15 0  37.32 

8 9 -35 101 0.79 1.30 43 4.08 2.41 476 8.52 1.26 544 7.96 3.07 

9 4 -45 258 2.90 1.42 0  2.22 0  5.18 77 5.64 5.24 

9 4 -40 3418 2.19 1.24 799 4.16 2.50 1201 8.07 5.48 1603 6.69 5.63 

9 4 -35 491 0.00 0.89 202 0.81 1.11 0  0.79 20 0.00 0.31 

9 5 -45 1082 1.96 1.79 0  2.76 25 7.39 6.38 0  6.45 

9 5 -40 4075 1.44 1.56 1202 3.51 3.10 2070 6.35 6.74 2741 6.38 6.93 

9 5 -35 279 0.27 1.13 282 1.88 1.40 23 2.39 1.02 26 0.00 0.42 

9 6 -45 205 1.42 1.96 0  3.02 0  6.94 0  7.02 

9 6 -40 4167 1.54 1.71 870 4.56 3.39 1171 8.62 7.34 1572 9.21 7.54 

9 6 -35 1555 0.62 1.25 602 1.48 1.54 0  1.12 0  0.48 

9 7 -45 21 1.53 2.53 0  3.87 0  8.83 0  8.94 

9 7 -40 1746 1.31 2.22 366 5.37 4.34 433 8.67 9.34 381 10.97 9.59 

9 7 -35 3952 0.98 1.63 267 2.35 2.00 0  1.47 0  0.65 

9 8 -45 0  2.79 0  4.27 0  9.71 0  9.83 

9 8 -40 0  2.46 17 1.22 4.78 27 7.18 10.26 0  10.54 

9 8 -35 1500 1.10 1.81 392 2.13 2.21 0  1.63 0  0.74 

9 9 -45 0  2.32 0  3.56 0  8.16 0  8.25 

9 9 -40 0  2.04 0  4.00 0  8.62 0  8.86 

9 9 -35 17 0.00 1.49 51 3.08 1.83 0  1.34 0  0.59 

45 4 -35 49 0.00 0.23 313 0.09 0.39 16 0.36 0.30 0  1.35 

45 4 -30 16 0.00 -0.06 45 0.00 -0.12 0  -0.13 0  -0.13 

45 5 -35 149 0.00 0.93 1133 3.02 1.34 294 4.32 1.12 234 5.77 3.89 

45 5 -30 98 0.00 0.16 11 0.00 0.01 0  -0.01 0  -0.02 

45 6 -35 3346 1.18 1.15 507 8.63 1.65 468 2.97 1.38 718 6.61 4.70 

45 6 -30 746 0.01 0.23 340 0.00 0.05 144 0.00 0.02 147 0.00 0.02 

45 7 -35 3610 2.17 1.87 0  2.64 0  2.22 0  7.32 

45 7 -30 2964 0.40 0.46 311 0.00 0.18 339 0.03 0.14 524 0.00 0.14 

45 8 -35 315 1.19 1.97 0  2.78 0  2.34 0  7.69 

45 8 -30 1699 0.25 0.49 137 0.04 0.20 364 0.10 0.16 419 0.00 0.15 

45 9 -35 0  2.44 0  3.42 0  2.89 0  9.40 

45 9 -30 0  0.64 88 0.05 0.29 25 0.00 0.24 0  0.23 

67 4 -45 1795 2.62 1.95 0  6.00 0  5.61 0  6.02 

67 4 -40 3644 2.68 1.71 969 5.57 6.72 2088 5.02 5.93 2005 4.38 6.46 



   
1990 2010 2017 2018 

stat 

area 

mon lat

5 

hooks cpue Pred 

cpue 

hooks cpue Pred 

cpue 

hooks cpue Pred 

cpue 

hooks cpue Pred 

cpue 

67 4 -35 0  1.24 0  3.15 0  0.87 0  0.38 

67 5 -45 1288 2.22 2.23 167 6.79 6.79 0  6.35 0  6.80 

67 5 -40 5918 1.68 1.96 422 9.69 7.60 1983 5.09 6.71 2094 6.93 7.30 

67 5 -35 0  1.43 0  3.58 0  1.01 0  0.45 

67 6 -45 1163 1.24 2.22 0  6.77 0  6.34 0  6.79 

67 6 -40 2950 1.51 1.95 96 5.55 7.58 334 10.15 6.70 340 9.65 7.29 

67 6 -35 0  1.42 0  3.57 0  1.01 0  0.45 

67 7 -45 0  2.32 0  7.06 0  6.61 0  7.08 

67 7 -40 124 1.53 2.04 0  7.90 0  6.99 0  7.60 

67 7 -35 0  1.49 0  3.72 0  1.06 0  0.48 

67 8 -45 0  1.50 0  4.70 0  4.39 0  4.71 

67 8 -40 29 1.05 1.31 0  5.26 0  4.64 0  5.06 

67 8 -35 0  0.94 0  2.45 0  0.65 0  0.26 

67 9 -45 0  1.29 0  4.10 0  3.83 0  4.11 

67 9 -40 0  1.13 0  4.60 0  4.05 0  4.42 

67 9 -35 0  0.80 0  2.12 0  0.54 0  0.20 

 

 

  



Table 2: Changes in deviance, degrees of freedom and AIC as a result of dropping parameters from the Base_simplified 

model.  

log(cpue + 0.2) ~ yf + mf + sf + latf + mf:sf + yf:latf + yf:sf + mf:latf.  

 Df Deviance AIC 

<none>  2049 9530.7 

mf:sf 15 2137.6 9682.1 

yf:latf 96 2245.9 9731.7 

yf:sf 96 2258.6 9756 

mf:latf 15 2220.7 9845.3 

 

 

Table 3: Changes in deviance, degrees of freedom and AIC as a result of dropping parameters from the model with all 

possible two-way interactions.  

log(cpue + 0.2) ~ yf + mf + sf + latf + mf * sf + yf * latf +  yf * sf + mf * latf + yf * mf + sf * latf 

 
Df Deviance AIC 

<none> 
 

1859.6 9443.3 

mf:sf 15 1909.7 9527.2 

yf:latf 96 2030.4 9627.6 

yf:sf 96 2070.5 9711.4 

mf:latf 15 2000.1 9725.3 

yf:mf 160 2014.4 9465.7 

sf:latf 4 1891.5 9508.1 

 

Table 4: Changes in degrees of freedom and AIC as a result of adding three-way interactions to the following model.  

log(cpue + 0.2) ~ yf + mf + sf + latf + mf * sf + yf * latf +  yf * sf + mf * latf  

Interaction term df AIC 

- 267 9530.748 

month*lat*area 285 9379.198 

year*month*area 764 9453.124 

year*lat*area 332 9461.132 

year*month*lat 753 9690.653 

 



 

Table 5: Models run using mgcv. The factors column reports all variables included as categorical variables. Smooth terms include two-way, three-way and four-way (‘All’) interactions. The last 

two columns show the estimated degrees of freedom (df) and the AIC.  

Label Factors Smooth terms 4-way df AIC 

Base 
        

  252 9845.3 

Base plus .+mf:latf 
       

  267 9530.7 

Base_noYrAr .-yf:area          156 10061.8 

glmmYrAr           199.1 9893.7 

gam 2 yf+mf lon,lat 
      

  95.1 9522.9 

gam 3 yf+mf 
      

mn,lon,lat   152.4 8562.3 

gam 4 yf 
      

  All 322.1 8064.9 

gam 5 yf+ll 
      

  All 297.7 7886.2 

gam 6 yf+ll 
 

mn,lat 
    

  All 274.4 7856.4 

gam 7 yf lon,lat mn,lat 
    

  All 220.8 7839.1 

gam 8 yf lon,lat mn,lat lon,mn 
   

  All 248.9 7758.5 

gam 9 yf lon,lat mn,lat lon,mn yr,lat 
  

mn,lon,lat lat,lon,yr  262.2 7701.7 

gam 10 yf lon,lat mn,lat lon,mn yr,lat yr,lon yr, mn    195.8 8048.5 

gam 11 yf lon,lat mn,lat lon,mn yr,lat yr,mn  lat,lon,mn lat,lon,yr  267.1 7593.4 

gam 12 yf lon,lat mn,lat lon,mn yr,lat yr,lon yr,mn lat,lon,mn lat,lon,yr  283.8 7505.7 

gam 13 yf+mf lon,lat mn,lat lon,mn yr,lat yr,lon     217.8 7968.3 

 



 

Table 6: For each three-way smooth term in model gam 11, the percentage of deviance explained, and the effect on the AIC 

of dropping the term from the model. The model is specified as:  

log(cpue + 0.2) ~ yf + te(lon2, LAT, k = c(40,4)) + te(MONTH, LAT, k = c(6,4)) + te(lon2, MONTH, k = c(10, 5)) + te(YEAR, LAT, k 

= c(20, 4)) + te(YEAR, MONTH, k = c(20, 5)) + te(LAT, lon2, MONTH,  k = c(4,15, 6)) + te(LAT, lon2, YEAR, k = c(4,10, 9)) 

AIC delta 

AIC 

Change in 

% Deviance 

explained 

Smoother dropped 

7593.4 0.0 
  

8048.2 454.8 3.4 te(LAT, lon2, MONTH,  k = c(4,15, 6)) 

7859.9 266.5 1.8 te(LAT, lon2, YEAR, k = c(4,10, 9)) 

 

  



Table 7: Extreme prediction diagnostic showing the number of year-month-latitude-area stratum predictions that either 

exceed the maximum observed values in any stratum per year (max) or predict less than zero (min). Results are reported for 

cell filtering methods that include all cells (full) or only those with at least 15 records observed (x15). Results are also 

reported both for all strata (all) and for only those strata with no observed CPUE in the year of the prediction (gap).  

Limit 
Cell 

filter 
Strata Models 

   
Simp 

Base 

Base 

NoYrAr 

glmm 

YA 

gam 

9 

gam 

10 

gam 

11 

gam 

12 

gam 

13 

max full all 34 9 14 4 38 0 19 2 

max full gap 30 9 13 4 38 0 18 2 

max x15 all 19 4 6 1 11 2 12 5 

max x15 gap 15 4 5 0 11 1 11 4 

min full all 95 92 90 47 36 40 36 56 

min full gap 40 39 38 21 18 17 15 21 

min x15 all 88 91 88 44 32 39 33 48 

min x15 gap 33 38 36 24 17 19 17 18 

 

 

  



Figures 

 

Figure 1: Distribution of effort and data records. (a) Total hooks per statistical area; (b) Total records per statistical area, 

including both zero and nonzero catches; (c) number of records per year, including both zero and nonzero catches; (d) 

number of records per latitude band, including both zero and nonzero catches; (e) number of records per month, including 

both zero and nonzero catches.  



 

Figure 2: Maps of total effort per two-month period (across), summed over 10-year periods (down) starting in 1986. Darker 

blue indicates higher effort.  

  



 

Figure 3: Monthly effort per CCSBT statistical area by the Korean longline fleet, from Hoyle et al 2019.  



 

Figure 4: Standardized CPUE indices for individual statistical areas.  



 

 

Figure 5: Number of cells fished by Japanese core vessels (above) and Korean vessels (below), copied from CCSBT-

ESC/1909/BGD05 and CCSBT-ESC/1909/39. (Upper plot for each fleet) The bars represent the number of major cells (5x5° by 

month) fished by CCSBT statistical area and year, see left y-axis. The line represents the mean annual operations per cell, 

see right y-axis. (Lower plot for each fleet) As for upper plot, but with minor cells (1x1° by month) instead of major cells. The 

colours represent the statistical areas and differ between the Japanese and Korean figures.  



 

Figure 6: Compare the CPUE indices between the predictions generated from the Base parameters and the predictions from 

standardized data. In each case the predicted CPUE estimates are summed across all strata without weighting.  



  

 

Figure 7: Residual checking plots for the simplified base model (above) and the gam11 model (below).  



 

Figure 8: Relationship between residuals from the model gam11 and the effort in the stratum, showing that higher 

variability (the tails of the residual distribution) is associated with less effort in a stratum.  

 



 

Figure 9: Two-way long:lat smoother from model gam11.  



 

Figure 10: Smoothers from model gam11: month:lat, longitude:month, year:latitude, and year:month.  



 

 

Figure 11: Smoothers from model gam11 Three-way interaction smoothers: lat:long:month (above) and lat:long:year 

(below).  



 

Figure 12: Predicted catch rates from model gam1 for regions 4 to 9 for the years 1988, 1998, 2008 and 2018, in April, June, 

and August.  



  

Figure 13: Mean annual predicted CPUE after x15 filtering from the models simplified base, base_noYearArea, 

glmm_YearArea, gam9, gam11, and gam13.  

 



 

 

Figure 14: Mean annual predicted CPUE by latitude (above) and statistical area (below) after x15 filtering from the models 

simplified base, base_noYearArea, glmm_YearArea, gam9, gam11, and gam13. 



 

Figure 15:Diagnostic plots for the simplified Base model with residuals assumed to follow the Tweedie distribution with 

p=1.5.   

 




