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Abstract: Three types of CPUE analyses were carried out by multiple
imputations method using the Japanese longline fisheries data for southern
bluefin tuna (5x5 degree square/monthly basis). The estimation of the
missing CPUE in the core-area where many fishery data are available using
the propensity score method were performed and compared with EFP data.
Although the fitting is not so good, EFP data do not become the adequate
supervised one. We performed the reliability check of the interpolated CPUE
by “n-fold cross-validation” using the same data as those used in the CPUE
standardization by GLM. The accuracy seems not to be so good because of
some extreme outliers. Preliminary statistical analyses with a view to
predict CPUE in non-fished were done by the propensity score method. As a
result, it was found that the year trend of abundance index by multiple
imputation method is rather different from those in CS and VS-type by GLM.
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1. Introduction

The difference of interpretation about SBT CPUE in the non-fished
area between constant square (CS) and variable square (VS) have greatly
affected not only the relative year trends of abundance index but also the
result of stock assessment in which these CPUE indices are utilized as an
input data. Therefore, five abundance indices including two types of the
weighted mean of CS and VS (W0.5 and WO0.8) are defined as the input for
the management procedure.

Several statistical methods for CPUE interpolation in the non-fished
area have been suggested so far in CCSBT. Australian scientists tried to
calculate the so-called “geo-statistical CPUE” using the method of repeated
measure, which is a kind of mixed model (Toscas and Thomas, 1998). We
predicted the CPUE in 5x5 degree blocks in which there is no observed data
by the approaches for data-mining such as tree regression models and neural
networks (Shono et al/.,, 2001: Shono, 2002). However, the discussion in the
meeting and the reliability check by cross-validation about these methods for
CPUE interpolation are not sufficiently done.

In this paper, we carried out the three types of CPUE analyses using
several multiple imputation methods. We mainly utilized the called
propensity score method and performed the reliability check of interpolated
CPUE obtained from these new statistical methods through cross-validation
or comparison with the testing data for verification. These are as follows:

1) CPUE prediction in the “core-area” (including “ST-window” series) by
propensity score method and cross-check with the corresponding EPF
data.

2) Reliability check of interpolated CPUE by n-fold cross-validation using
the same data as used in the GLM analyses. CPUE estimation of the
missing parts was done by the multiple imputation method using the
combination of MCMC and EM-algorithm suggested by Little and Rubin
(2002).

3) Multiple CPUE standardizations by GLM (i.e. extraction of the year
trends of CPUE) using the completely interpolated CPUE data by the
propensity score method.



Propensity score method (Rosenbaun and Rubin, 1983: 1985) is a
statistical way for imputation: The procedure is as follow:
1) Express the probability that the data is observed using a statistical model
such as logit-model.
2) Divide the whole data into several sub-data based on the magnitude of
“propensity score”
3) Interpolate the missing data using so-called “Aproximate Baysian
bootstrap” in each sub-data.
Because the interpolated values obtained from this method have
some uncertainty, multiple imputations are generally performed. In this
paper, we carried out the CPUE imputations for five times.

2. CPUE imputation in the core-area

At first, we applied the calculation of multiple imputations using
propensity score method to SBT CPUE for age4+ (age 4 and older) of
non-fished area in the following “core area” where fishery data can be
securely available even when the pattern of SBT fishery changes.

Year: 1993-2003

Month: 4,5,6,7, 8,9

Statistical area: 8 and 9

Remark): We used the blocks in above areas categorized in every 5 degrees.

These cells include the “ST-windows” and some of them are
corresponding to spatiotemporal window in which EFP experiments have
been carried out in the last 1990s. Therefore, we verified the interpolated
CPUE values using the corresponding EFP data.

Figure 1 shows the mean values of predicted CPUE for five times
imputations and corresponding (i.e. in the same spatiotemporal window)
EFP data. CPUE values by multiple imputations are distributed around two
or three regardless of the EFP data and the precision is not so good. However,
CPUE obtained from the EFP experiment do not fit the corresponding (i.e. in
the same spatiotemporal window) logbook data (Figure 2). Therefore, it is
found that CPUE by EFP is not necessary appropriate as supervised data.



3. Reliability checks by n-fold cross-validation

Next, we checked the reliability of multiple imputations by so-called
“n-fold cross-validation” using the Japanese longline fishery data for SBT
from 1969 to 2003 (5x5 degree square/monthly basis) in all fished area,
which is exactly the same as those used in the calculation of abundance
indices for the 2004 SAG/SC assessment by generalized linear models (Tsuji
et al., 2004). Monthly CPUE (in number of catch for age 4+ (age 4 and older)
per 1000 hooks were utilized within 5x5 squares.

In this paper, we adopted the 5-fold cross-validation. The procedure
of the calculation is as follows:
1) Divide the observed CPUE (7,697 records) into five sub datasets randomly
and assigned a number of these sub-sets in turn.
2) Choose a sub-set and regarded CPUE as the missing values in the dataset.
3) Do multiple imputations of the missing CPUE and check the precision
using Pearson’s correlation coefficient and the following Index (equation
(1)) like chi-squared statistics (or relative mean squared error).
Remark: We used the combination of MCMC and EM-algorithm (Little and
Rubin, 2002) instead of propensity score method in the calculation.
4) Replicate step 2) and 3) to all sub datasets (i.e. replication for five times).
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where

X.: simple mean of predicted CPUE, Y,: supervised data corresponding to X,

Figure 3 shows the overall relationship between simple mean of
interpolated CPUE and corresponding supervised data (i.e. observed CPUE).
Table 1 shows the Pearson’s correlation coefficient and the value of Index
defined by equation (1) in each random sub-dataset. Frequency (histogram)
and cumulative distribution of this Index were illustrated in Figure 4.

Judging from these values and figures, the reliability of the predicted



CPUE obtained from the multiple imputations seems not to be so good.
However these values of Pearson’s R and the Index in Table 1 come under the
strong influence of the small number of extreme “outliers”. Therefore, the
precision of these estimates can be improved by removing some outliers.

We also calculated the CPUE year trends by the following formula (2)
replacing the (shadow) missing data with the interpolated CPUE in each sub
dataset (Figure 5). In the figure, “original” and “predicted” shows the CPUE
trends obtained from the all observed CPUE and all estimated one,
respectively.
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When the ratio of the testing data (i.e. missing values) is low such as
“CPUE( )—CPUE( ): (where the ratio of missing is 20 percent)” in Figure
5, these CPUE trends are similar to the “original” one. On the other hand,
the trend of “predicted” used only the predicted values are quite different
from (and flatter than) that of “original” (Figure 5). Therefore, it seems to be
necessary to do more discussion and study in detail regarding the proportion
of “training-data” and “testing-data” (i.e. data for validation) as well as the
method of “cross-validation” in such kind of multiple imputations.

4. Integrated results of our CPUE analyses

At last, we tried to predict the CPUE of non-fished area (i.e. 5x5
blocks in which there is no observed data: 22,123 records) using the
propensity score method based on the same supervised CPUE data (7,697
records) as used in the previous Section 3 (n-fold cross-validation) of this
paper. We used the 5x5 blocks there exists some fishing effort in the past as
the non-fished area, which is the same as used for the calculation of the
abundance index in constant square (CS) type.

We carried out the multiple imputations for five times in this paper.
Simple GLM analyses defined by the following equation (2) were
independently performed on the basis of the above interpolated CPUE data.



After that, we integrate the results of our calculations for five times (based
on the five dataset in which the missing CPUE data were fully interpolated).

Figure 6 shows the year trends of standardized CPUE using the
completed five datasets interpolated by the multiple imputation methods.
These trends are very similar although each predicted values of our
experiments for five times are rather different. However, an integrated year
trend of abundance index, which is a simple mean of five standardized CPUE
by GLM and where average of CPUE values is set to 1.0, is flatter than those
in constant square (CS) and variable square (VS) type (Figure 7). The
difference of these CPUE trends is rather large.
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Appendix. Table and Figures.

Table 1. Correlation coefficient and above Index corresponding each sub-set.

Sub-Set

Pearson’s | 0.287600 0.313245 0.320535 0.252071 0.280838

Index 3.837353 3.916269 3.668749 3.679176 3.754673

Predicted CPUE versus corresponding EFP data
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Figure 1. Average CPUE (based on propensity score) vs. CPUE (by EFP).




EFP data versus corresponding logbook CPUE
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Figure 2. CPUE (by EFP) versus the corresponding CPUE (by logbook data).
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Figure 3. Average of predicted CPUE versus corresponding supervised data.



Histgram (frequency and cumulative ratio of Index)
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Figure 4. Frequency and cumulative ratio of the histgram of the Index value.

Absolute CPUE trends of SBT
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Figure 5. Year trends of absolute CPUE interpolated in each sub-set ( ).



Absolute CPUE trends of SBT
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Figure 6. Year trends of absolute CPUE by GLM using interpolated dataset.
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Figure 7. Year trends of relative CPUE by GLM (Compared with CS and VS).

10



