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Abstract
It is in principle possible to estimate the absolute abundance of adult SBT with-

out using catch or CPUE data, via a variant of mark-recapture applied to parents
and o�spring identi�ed by genotyping large numbers of adults and juveniles. The
method was �rst described in CCSBT-SC/0709/18, and since 2006 we have been
running a large project to implement it. The project is now coming to a success-
ful end, and this paper describes the [main] outcomes. We genotyped over 13,000
SBT caught between 2006 and 2010 in the GAB (juveniles) and o� Indonesia (ma-
ture adults), and found 45 Parent-O�spring Pairs (POPs). Combining data from
the POPs (the number found, plus their age, size, sex, and date of capture) with
fecundity-at-size studies and Indonesian length, sex, and age-frequency data, we
constructed a self-contained assessment of absolute adult abundance that does not
require any catch or CPUE data. As well as abundance, we were able to estimate
adult survival, selectivity-size relationship, and e�ective female reproductive con-
tribution as a function of length. This paper explains the method, and presents
an example of results for a steady-state scenario. These results, plus those from a
limited number of other scenarios explored to date, indicate that adult abundance
is considerably higher than current OM estimates. A small amount of work remains
to �nalise our self-contained assessment and more fully explore the model uncer-
tainties, and we expect to complete it in the coming months as part of �nal project
reporting. Options for the integration of the new data into the OM are considered
in CCSBT ESC 1208/21.
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1 Introduction

The SBT close-kin abundance project rests on two simple ideas:

• modern genetics allows us to tell whether any two �sh constitute a Parent-O�spring Pair,
via �paternity analysis�;

• all juveniles have two parents.

Consequently, if you compare any juvenile with a randomly-chosen adult, there is a probability
2/N that you will discover that the adult is one of the juvenile's parents, where N is the
adult population size. Given large samples of mJ juveniles and mA adults, and repeating the
comparison for each of the mJ ×mA pairs, some number P of Parent-O�spring Pairs (POPs)
will be observed. The expected value of P is 2mJmA/N , so using the observed value the adult
abundance can be estimated from N̂ = 2mJmA/P . The devil lies in two details: doing the
genetics well enough to correctly �nd the number of POPs, and adjusting for sampling biasses
in the �randomly-chosen adults� aspect (e.g. selectivity biasses towards larger �sh).
The project began collecting adult samples in Indonesia during the 2005/2006 spawning

season (November-April), and in Port Lincoln during the 2006 season. Subsequent progress
has largely followed the approach described in CCSBT-SC/0709/18, and a progress report has
been given to CCSBT each year. Preliminary results presented to CCSBT in 2010 and 2011,
after most of the originally-planned sample size had been genotyped, showed that the number
of POPs found would end up considerably lower than originally expected if the original sample
size was maintained, which would make the precision of the �nal results very uncertain. It was
therefore agreed to substantially increase the sample size. This was straightforward since we
have available many more frozen tissue samples from juveniles 2006-2010 than we have budget
to genotype, but of course required extra time, so the �nal results of the project are only
available now. Oversight of the project has been provided throughout by a Steering Committee
including expertise in genetics, mark-recapture, and SBT assessment.
The main departures from the original project plan are that we have genotyped more �sh over

a longer period, used more loci to ensure the genetics are unambiguous, and have developed a
full stand-alone statistical mini-assessment of adults during the 2000s in order to deal with the
complexities of growth, selectivity, and fecundity. The assessment uses the POP data, external
studies on fecundity-size relationships, and Indonesian length/sex/age composition data, but
no catch or CPUE data.
Table 1 shows the �nal breakdown of 13,023 genotyped samples by year and site. A few

hundred more were genotyped, but excluded in the end for assorted quality-control reasons.
Although the optimal scheme for a given budget would have been to genotype equal numbers
of juveniles and adults (since this is likely to yield the greatest number of POPs for a �xed
amount of genotyping e�ort), regulatory changes and delays with Indonesian export permits
meant that we had to shift the balance somewhat towards juveniles. Almost all the Port Lincoln
juveniles were age 3 in the year of sampling (based on clear separation of modes in the length
frequency), except for a few in 2006 that were age 4. After 2006, the Indonesian samples were
taken from every available �sh (almost all >150cm length) alongside the existing length/weight
measurement and otolith-collection schemes1. Sample collection is continuing in both Indonesia
and Port Lincoln, but there are no immediate plans or funding to genotype more samples; they
are simply being frozen for possible future use.

1In two years, some Indonesian vessels �shed further south than usual, o� the main spawning ground, and
were catching subadult �sh. Fish from those vessels and years are excluded both from the genetic study and
from the length-frequency data.

1

                                         CCSBT-ESC/1208/19



Table 1: Final tally of �sh genotyped successfully. For Indonesia, �year 2006� means �spawning
season from November 2005 to April 2006�, consistent with the de�nition of �SBT
birthdays�.

2006 2007 2008 2009 2010 Total
Indonesia 214 1457 1526 1394 1164 5755
Port Lincoln 1523 1707 1448 1338 1432 7448
Total 1737 3164 2974 2732 2596 13203

In the rest of this report, section 2 describes the principles and the results of our quest
for POPs; further details of the genetic procedures and QC aspects are given in Appendix 1
(section 6), and further statistical details in Appendices 2 and 3 (sections 7 and 8). Section 3
describes some qualitative �ndings about the POPs found (e.g. average size), section 4 explains
the mini-assessment and shows results from one example of its application, and section 5 is a
summary.

2 Genetic results: �nding POPs

We use the genetic data to �nd POPs, by �rst genotyping all the �sh and then comparing every
juvenile to every adult, eliminating non-POPs via �Mendelian exclusion� as described next. A
brief guide to terminology can be found at the start of the Appendix, which contains a more
detailed description of the operational aspects of genotyping.
Every animal has two alleles at each locus, though the two may by chance be the same; one

is inherited from each parent. Therefore, a POP must share at least one allele at every locus. If
there are one or more loci at which the pair do not share an allele, then the pair is not a POP.
Although two non-POP individuals could by chance share an allele at every locus compared,
the probability is very low if the number of loci examined is large and the loci are individually
highly variable, so that no one allele is particularly common. Therefore, the most basic and
most rigid exclusion principle is: a pair is treated as a POP if and only if the two animals have
at least one allele in common at all loci.
This project relies on the number of POPs actually identi�ed being close to the true number

of POPs in our samples. There are two possible issues. The �rst is false-positives: an unrelated
pair might happen to share an allele at every locus just by chance, and thus look like a POP.
This probability can be assessed in advance from the allele frequencies, and this step is essential
in determining whether enough loci are being used. Not all loci are successfully scored for all
�sh, so some comparisons will involve a lot fewer than the theoretical maximum of 25 loci in our
study, and those comparisons will have a substantial false-positive probability. By excluding
those �weak� comparisons, we can control the overall false-positive rate so that the expected
number of false positives is negligible compared to the number of true positives2.
The second possible issue is false-negatives, whereby a POP appears not to share an allele at

one or more loci. This could arise through mutation, but only very rarely; published estimates
of mutation rate for the kind of loci that we used are of the order of 10−4 per generation,
so with about 25 loci in our comparisons well under 1% of true POPs would be a�ected by
any mutations. A more likely cause of false-negatives is scoring error, whereby the true alleles
are incorrectly recorded. Scoring error rates are highly variable between studies (and to some
extent between loci within a study), depending on the quality of the DNA itself (i.e. tissue

2When we originally planned the study, our intention was to use fewer loci in the �rst pass (about 15), but to
have a suite of �backup� loci that could be used to double-check possible POPs. However, both on economic
grounds and more importantly to minimize the chance of processing mixups whereby the wrong animal gets
scored, we decided to use many more loci (about 25) and to deploy them all on the �rst pass.

2



preservation), how carefully the loci are chosen, how carefully protocols are followed, and how
much checking is done. Careful checking can detect and eliminate large-scale scoring errors
involving many �sh at once (see 6.5). However, a di�erent approach is required for small-scale
errors at the level of single loci on single specimens.
Because there are so many di�erent possible causes of scoring error, false-negative rates

cannot be predicted in advance (unlike false-positive rates), and can only be inferred after
the fact. This is usually done by re-scoring individuals to see how often the scores change.
However, depending on the details there may be a possibility of making the same mistake
twice, so re-scoring may underestimate the scoring error rate. With our POP-oriented study,
we can use a more direct and robust approach; we are using so many loci that the chance of
two non-POPs sharing an allele at all-but-one of (say) 25 loci is negligible, and consequently
any pairs that seem to share alleles at 24 of 25 loci with a mismatch at the 25th are highly
likely to be false-negatives arising from scoring error3. The proportion of such cases compared
to unambiguous true POPs (where all loci share an allele) can be used to estimate the overall
false-negative rate.

2.1 False positives?

Barring errors, a POP must have at least one allele in common at every locus, so if a pair is
unrelated we will eventually be able to rule it out as a POP by �nding a locus that does not
share an allele, provided that we look at enough loci. We have scored 25 loci4 overall, but not
all loci are scored for every �sh, so some pairwise comparisons involve many fewer loci. If too
few loci are used in a comparison between unrelated �sh, there is a substantial probability that
all the loci will share an allele just by chance. We therefore need to do some �ltering, to exclude
comparisons that are too likely to give a false positive. Table 2 shows what happens if we don't
do any �ltering. True POPs� plus false POPs, which just happen by chance to share an allele
at every locus compared� are in the leftmost column �F0�, i.e. with zero loci compared that
do not share an allele. False POPs are obvious in the top-left of the table, where very few loci
are being compared.
Note that the Table includes a small proportion of (i) impossible and (ii) useless comparisons,

where the adult was (i) caught in a year before the juvenile was born, or (ii) caught in the same
year. Type (ii) comparisons are biologically possible, but it's not helpful to include same-year
comparisons in abundance estimation, because in the year of its capture an adult will not
achieve its normal annual reproductive output. All such comparisons have been removed in
subsequent summaries and results.

3Note that scoring errors do not increase the false-positive probability� there is no reason to think that an
error in scoring one �sh will either increase or decrease the probability of it sharing an �allele� with another
unrelated �sh.

4Plus another two that showed occasional anomalies, and were therefore omitted from routine pairwise com-
parisons, but were used in checking ambiguous possible-POPS.
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Table 2: All comparisons, broken down by #loci compared and #loci inconsistent with POP-
hood. Hash (#) means �number of�, dot means zero, plusses mean too big to �t.

In order to �lter out false POPs, we �rst compute in advance for each possible pair a False-
Positive Probability (i.e. the probability that the two animals will share an allele at every
locus compared, even if unrelated) based on which loci were scored successfully for both �sh in
the pair, and without looking at the actual genotypes that resulted. We then sort these FPP
in ascending order, and �nd the cuto� such that the total FPP from all (sorted) pairs below
the cuto� is below some pre-speci�ed threshold T . Only those pairs whose FPP falls below
the cuto� are subsequently checked for POPhood, the remainder being deemed too ambiguous.
Note that not testing POPhood of an ambiguous pair does not cause any bias in the proportion
of included comparisons that yield POPs, because the FPP check is done before testing for
POPhood, and is unrelated to whether the pair really is a POP or not. The threshold T is
by de�nition equal to the total expected number of false POPs, so we choose it to be a small
fraction of the number of true POPs, of which we have a shrewd idea of by this stage. For this
report, we have set the threshold at 0.35, below 1% of the number of POPs actually found.
Because false POPs lead to a proportional negative bias in abundance estimates, the upshot is
that we have kept such bias to under 1%.
The resulting set of �ltered comparisons is shown in Table 3. At least 11 loci must be

compared to get an FPP above the cuto�, and less than 100 11-locus pairs squeeze in; these
occur where the 11 happened to be amongst the most powerful5 of the 25 loci used for the table.
On average, the loci used have about a 0.65 chance of not sharing an allele by chance, and the
table shows very clearly how (near-)binomial probabilities work; from right to left, the numbers
in the columns decline rapidly, except for the leftmost column where true POPs appear.
Importantly, in the bottom-left-hand-corner, the Table shows �clear blue water� between the

best-matching unrelated pairs (i.e. with fewest loci that do not share an allele) and the true
POPs. The separation is less obvious in the rows above say C16, but by looking at how fast
the numbers in each row decline from right to left through the F4-F3-F2 columns, it is clear

5I.e. genetically more diverse, and being least likely to share an allele by chance
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that very few unrelated pairs would have made it into the F0 column. And of course this is
what the FPP calculations suggest: given the �ltering rule, we would only expect 0.35 spurious
POPs in the F0 column. Given that expectation, it is certainly possible that one (p = 0.25) or
maybe even two (p = 0.05) false POPs could have crept in, but very unlikely that false POPs
make up an appreciable proportion of the total of 45.

Table 3: Number of usable pairwise comparisons, by #loci and #excluding loci. Comparisons
are not usable if the adult was caught in or before the year of juvenile birth, and/or the
false-positive probability was too high (see text). Columns 8-21 omitted for brevity.

. F0 F1 F2 F3 F4 F5 F6 F7 > F22 F23 F24 F25 TOTAL

C11 . . . . 1 4 5 21 > . . . . 84

C12 . . 5 42 340 1345 4019 9114 > . . . . 57,000

C13 . 1 16 151 887 3420 9900 20482 > . . . . 143,000

C14 1 4 61 587 2876 11277 32947 70962 > . . . . 652,000

C15 . 3 42 375 1962 8411 27165 66386 > . . . . 923,000

C16 2 1 18 131 966 4716 17097 47526 > . . . . 1,170,000

C17 2 . 8 92 655 3674 14677 45482 > . . . . 1,942,000

C18 5 . 6 65 483 2699 12037 40524 > . . . . 3,063,000

C19 7 . 1 33 288 1728 7992 29511 > . . . . 4,158,000

C20 2 1 1 15 131 886 4630 18722 > . . . . 5,512,000

C21 14 . 1 5 62 481 2589 11387 > . . . . 7,197,000

C22 . . . . 4 38 165 698 > 117 . . . 1,170,000

C23 4 . . . 2 20 143 754 > 2383 179 . . 2,966,000

C24 2 . . . 4 22 90 558 > 17376 2799 214 . 5,097,000

C25 6 . 1 . 1 5 22 199 > 42419 10339 1607 139 4,123,000

SUM 45 38,180,182

It is also possible to compute an �expected� version of Table 3, assuming there are no true
POPs. That is: for each comparison, taking into account which loci were used, we can compute
the probability that there were 0, 1, 2, ... mismatching loci if the pair was truly unrelated.
By summing the probability of, say, 1 mismatching loci over all comparisons with, say, 11 loci,
we can compute the expected value of the (C11, F1) element corresponding to Table 3. The
left-hand columns of the result are shown in Table 4, after �ltering out the same comparisons
as in Table 3. By de�nition, the row-totals would be the same as in Table 3; the question is
how close the column totals are, as shown in the bottom two rows of Table 4. And they are
very close, except of course for the F0 column where we are seeing true POPs. This is good; the
laws of probability seem to be working well today. The close correspondence between observed
and expected totals for F1/F2/F3 suggests that the calculations leading to 0.35 expected false
POPs are sound; of course, the actual number cannot be exactly 0.35, but it is most likely 0,
and most unlikely to be more than 2.
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Table 4: Expected number of comparisons with a given number of mismatching loci, given the
loci actually used in each comparison, and assuming no true POPs. The TOT OBS
row at the bottom is taken from Table 3.

F0 F1 F2 F3

C11 . . 0.02 0.17

C12 0.02 0.63 9.43 82.46

C13 0.04 1.27 17.91 149.85

C14 0.15 4.50 60.38 491.97

C15 0.08 2.56 36.35 315.94

C16 0.03 0.98 15.15 144.87

C17 0.02 0.55 9.16 94.78

C18 0.01 0.30 5.32 58.88

C19 . 0.15 2.75 32.39

C20 . 0.05 1.12 14.42

C21 . 0.02 0.47 6.48

C22 . . 0.02 0.30

C23 . . 0.02 0.25

C24 . . 0.01 0.13

C25 . . . 0.03

TOT EXP 0.35 11 158 1392

TOT OBS 45 10 160 1496

Using a cuto� to exclude ambiguous comparisons does entail a bias-variance trade-o�, because
some true POPs may have been overlooked in the excluded comparisons, and any reduction in
the overall number of POPs found will increase the uncertainty in our �nal estimates. However,
given the threshold we used, it is only when the number of loci compared is 14 or less that
substantial numbers of comparisons are excluded (from comparison of Figure 2 and Table 3),
and overall only about 5% of comparisons are excluded. Thus we have managed to achieve less
than a 1% bias while only incurring a

√
5 ≈ 2% increase in standard error compared to what we

would have gotten from �perfect� genotyping (where every pairwise comparison is usable). This
re�ects very well on the tissue quality, the processsing, and the selection of powerful, reliable
loci.
Of the 45 POPs found, it is interesting that 9 included one locus where the two animals were

scored as di�erent homozygotes (one AA and the other BB). We had deliberately relaxed the
exclusion rule to permit this situation, in case of �heritable nulls� (see Appendix, section 6.3),
and there was no ambiguity about the POP status of these pairs based on the remaining loci6.
In all but one of the 9 cases the apparent mismatch occurred in one or other of the two loci
which exhibited substantial excess homozygosity (D569 and D573; see Appendix), consistent
with the �heritable null� possibility.
Note also that close-kin relationships at the level of uncles-and-nephews, while possibly as

common as POPs in reality, are not going to lead to false POPs in this study. Between an uncle
& nephew, only 50% of loci will share an allele by descent anyway, so with these loci the overall
chance of sharing an allele is about 1/2 ∗ 1 + 1/2 ∗ (1− 0.65) = 0.68 (compared to about 0.35
for an unrelated pair), and the chance of getting say 20 loci all sharing an allele through chance
is about 0.0004� so there would need to be about 2000 uncle-nephew-level pairs to generate a
single false POP.

6Including additional checks at the extra one or two loci which were not normally used in mass-screening for
POPs
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2.1.1 Cases where no POPs should be found

As an exercise, we can repeat Table 3 just comparing juveniles with themselves, where true
POPs are impossible; see Table 5. The expected total in the F0 column is again 0.35; this time,
the observed total is 1 (in C13/F0, so towards the lower end of the number of loci compared)
which as noted earlier has about a 25% probability and gives no indication that the false-positive
calculations are failing.
We can also compare all adults with all other adults (not shown). This time, POPs are

actually possible, albeit likely rare because of the time required to reach maturity� see later
discussion. There is indeed one possible POP (C18/F0; unlikely to be by chance, given 18 loci
used), and it is plausible biologically. The female �parent� was aged 24 when caught in 2007,
and the female �o�spring� was 177cm (not aged, but any age from 12 up is plausible, given
other length-at-age data) when caught in 2009; this gives plenty of scope for the �parent� to
have been mature when the o�spring was born.

Table 5: Comparison of juveniles to themselves.

F0 F1 F2 F3 F4 F5 F6 F7

C11 . . . . . . 6 9

C12 . . 8 45 329 1404 4611 10109

C13 1 . 7 63 399 1574 4935 10697

C14 . 1 36 257 1335 5386 15948 35522

C15 . 1 15 153 872 3307 10661 25493

C16 . 1 6 42 304 1465 5341 14986

C17 . . 2 31 232 1236 4744 14436

C18 . . 2 26 169 1010 4318 14160

C19 . . 6 21 144 888 4136 14761

C20 . . 1 14 85 603 3025 12153

C21 . . 1 . 37 275 1644 7109

C22 . . . . . 22 97 524

C23 . . . . 6 14 98 524

C24 . . . 1 2 8 69 403

C25 . . 1 . 1 6 23 115

2.2 False negatives?

What about accidentally excluding true POPs? That can only happen if there is genotyping
error7. Large-scale errors involving multiple loci at once would be (and were) detected and
�xed by our QC procedures described in the Appendix, so the concern here is about small-scale
errors at a single locus and specimen. If such errors lead often to false-negative POPs, these
should show up low down in the F1 column of Table 3, as near-POPs that apparently fail to
match at one locus (false-negatives at multiple loci being correspondingly rarer). That is not
what is seen; rows C17 down have only one entry in F1, compared with an expected total of
1.1 from Table 4.
Prior to producing Table 3, we independently re-scored8 all the apparent true POPs in F0,

all the F1s, and F2s in the rows from C17 down. The original version of Table 3 had 44 rather
than 45 POPs; the re-scoring moved one pair from C15/F1 to C17/F0 (changing one existing

7Or mutation, but with say ~50 POPs and ~20 loci each, and mutation rates thought to be about 10−4 per
generation, mutation is unlikely to have happened amongst our POPs.

8�Re-scored� means: we re-examined all the peaks and came up with new scores, but did not re-do any of the
chemistry.
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score, and scoring 2 more loci originally deemed unscorable). The lower left-hand corner of the
Table (apart from true POPs in F0) was still empty even without rescoring. Although rescoring
changed only about 1 POP, it does give some indication of scoring error rates. Across the 1400
loci that were rescored, there were 8 individual changes, plus deleting one panel of loci for one
�sh; four of the changes were to delete a score altogether when a locus looked dubious, and
the other four were to add a second allele to a �homozygote� (a de�nite error). Note that all
8-9 changes in the rescoring only unearthed one false-negative (corrected in Table 3), so the
e�ective false-negative rate for POP purposes seems to be well under 0.5%. It would also be
possible to produce per-locus estimates of scoring error rate based on the partial re-runs and
re-used control �sh in our QC procedures.
The most important line of evidence to suggest that false negatives from individual scoring

errors are not a serious problem, though, remains the absence of entries in the lower left-hand
corner of Table 3. Appendix 2 presents a formal statistical approach to estimating false-negative
rates by comparing Tables 3 and 4; the point estimate of the overall number of remaining false-
negatives is in the range 1-2, and the upper 95% CI in the range 2-3. In any event, false
negatives must be at most a small proportion of the 45 POPs.

2.3 Summary of genetic results

Extensive QC procedures were used to ensure consistent and reliable scoring throughout the
project. In all, we conducted about 40,000,000 pairwise comparisons to look for POPs. A few
pairs had to be excluded because they had too few scored loci to reliably screen out unrelated
pseudo-POPs. However, because of the number and quality of loci used, we were able to choose
a cuto� for exclusion that implies very little bias (i.e. unlikely to unearth false POPs) while
incurring very little penalty in variance (i.e. using nearly all the comparisons). QC protocols
were devised to catch large-scale mixups. With respect to small-scale (individual-level) scoring
errors, the error rate is too low to cause a substantial proportion of true POPs to be overlooked.
In all, we found 45 POPs in about 38,000,000 usable comparisons.

3 Qualititative �ndings about the POPs

3.1 Sex, age and size of parents vs general adults

Of the 45 POPs, 20 were female and 25 male. All adults in POPs have now been aged; about
1/3 were aged under the Indonesian/Australian ageing program, and the remainder were aged
speci�cally for this project after being identi�ed through genotyping. On average, parents at

capture are somewhat older (and bigger; not shown) than typical captured adults of the same
sex. However, this comparison is not �fair� because the parents have had the opportunity to
grow during the interval between juvenile birth and adult capture, which in this study is on
average about 31

2
years.

Since juvenile age is known (3 in almost all cases), it is easy to back-calculate parental age
when the o�spring was born. The youngest successful spawners were aged 8, for both sexes9.
When back-calculated parental age is used instead of age of capture, the di�erence between
parental and typical adult age distribution disappears for females, and actually reverses for
males; But it is important to realize that this back-calculated comparison is also not �fair�.
Adults are subject to selectivity bias in favour of bigger/older �sh, and the selectivity pattern

9An earlier version of this document reported an anomalous 6-year-old spawner. On re-checking the otoliths,
it turned out that the two otoliths for this �sh actually came from di�erent adults, so there must have been
a handling error at the collection site. Based on the correct otolith (i.e. the one whose DNA matched the
main adult tissue sample), the actual spawning age turned out to be 9.
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on the parents would also have changed over the interval between giving birth and being caught.
Back-calculated age distributions will be skewed towards younger/smaller �sh, compared to
what would have been found if the same set of parents had somehow been sampled in the year
of o�spring birth.

Figure 3.1: QQ plots of parental age vs adult age, by sex . Points left/above the line mean
parents are bigger/older. Females on left, males on right. Upper graphs show
parental age at year of capture, lower graphs at year of birth.
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The upshot of this rather involved argument is:

• parents at capture are older/bigger than typical adults, because they have aged/grown
since giving birth;

• back-calculated parental age distribution at o�spring birth is similar to typical adult age,
but...

• the back-calculated distribution is biassed towards smaller/younger �sh, so...

• female parents would actually be bigger than typical adults if it was possible to sample
them in the birth-year.

• It's not clear whether the same would be true for males.

These phenomena can only be fully disentangled with the aid of a mini-assessment model.
Similar results are found using length rather than age, but the mini-assessment then has to

be �tted beforehand, because of the need to back-calculate length.

9

                                         CCSBT-ESC/1208/19



3.2 Skip-spawning

From the small number of POPs identi�ed in time for CCSBT 2011, there was no obvious
indication of skip-spawning. However, the larger sample of POPs now available does show
evidence of biennial spawning for younger �sh. The test is to take each POP, and note how
many years actually elapsed between juvenile birth and adult recapture, vs how many years
could have elapsed given the POP was eventually found. For example, if the juvenile in a POP
was born in 2007, then only comparisons with 2008/2009/2010 adults would be meaningful,
so the probability of matching to a 2008 adult is roughly10 equal to the proportion of adults
checked in 2008 relative to those checked in 2008+2009+2010. Table 6 shows the results,
split by parental age at o�spring's birth; for younger parents, almost all observed gaps are
even-numbered, but not for older parents. The pattern is not sex-speci�c.

Table 6: Distribution of gap between Juvenile-Birth-Year and Adult-Capture-Year, for young
& old parents. Dot means zero. Right-hand table is condensed to odd/even gaps.

Age Gap (years) -> 1 2 3 4 5 6 7
8-12 Obs 1 6 . 2 . 4 .

Exp 1.6 2.3 2.7 2.6 1.9 1.1 0.6
13-25 Obs 7 5 10 7 2 1 .

Exp 4.3 6.8 7.4 6.2 4.5 1.8 1.0

Age Gap-> Even Odd
8-12 Obs 12 1

Exp 6.1 6.9
13-25 Obs 13 19

Exp 14.9 17.1

Any errors in ageing would obscure patterns such as seen here. Although the sample size is
not huge, the di�erence for younger adults is signi�cant at 1%.
Skip-spawning is not a particular problem for this close-kin study because the study covers

many years and the even/odd e�ect should largely wash out; the general e�ect of smaller �sh
being less present is already allowed for in the mini-assessment, because average spawning-
ground residence-time (including the probability of not being on the spawning grounds at all)
gets estimated as a function of length and sex. However, in a more perfect world, probabilistic
size/age-based skip spawning would be allowed for in the mini-assessment.

3.3 Timing in spawning season

Parents of GAB juveniles have the same distribution of capture date within season as do
�average adults� (Figure 3.2). Thus there is no evidence of �temporal stock structure� in a way
that might lead the abundance estimates to be biassed (eg we might have seen that parents
of GAB juveniles always spawn early, and we might not have had equal coverage through the
Indonesian �shing season). Breaking down by sex does not reveal anything either.

10Calculations are approximate: e.g. the �expected� rows do not account for growth or mortality, but should
re�ect any even/odd pattern OK.
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Figure 3.2: QQ plot of day-of-year of capture of Parents (X) vs Adults-in-general (Y)
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3.4 Incidence of (half-)siblings among the POP juveniles

There are none. In other words, none of the POP adults match to more than one juvenile.
That is a good thing, because if (half-)sibs are common among the sampled juveniles, then the
pairwise comparisons become non-independent. Figure 3.3 shows what might happen; if there
are many (half-)sibs in the juvenile sample, then the number of links to parents remains the
same so the abundance estimate is still unbiassed (noting that an adult can �count� in more
than one POP), but its variance would increase because the number of POPs actually found
would depend critically on whether the �super-parents� were caught.

Figure 3.3: Cartoon depicting the impact that reproductive variability would have. Small �sh
are juveniles, red ones are sampled.

A preliminary check in 2010 just among juveniles indicated that (half-)sibs could not be very
common (a critical decision point for the project), and the 7 POPs found in 2010 contained no
sibs or half-sibs. Having found none in this much larger set of POPs, we can maybe conclude
that (half-)sibs are rare enough among our juvenile samples for their e�ects on variance to be
ignored. This is not to say that (half-)sibs are at all rare among all 3-year-olds, but simply
that our juvenile samples are a very small fraction of the total, and are well-enough-mixed to
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make sib-pairs rare. As an academic exercise, it will at some point be interesting to re-run the
juvenile-only sib check with the greatly expanded set of loci now available.

4 Mini-assessment

4.1 What e�ects need to be considered?

There are two main reasons why the 2m2/P �cartoon� estimator (�cartoon� in the sense of
Figure 3.3, for example) would be seriously misleading for SBT. The �rst is that we cannot
do comparisons only against the �parental cohort-group� of each o�spring, i.e. the group of
adults that were alive at its birth. Figure 4.1 illustrates the main point; if survival rates are
the same for all adults, then the cartoon estimator would still be valid even with time lags,
provided we could restrict comparisons to the light-grey parental cohort-group. But we cannot
do so, because (i) we do not know the age of all adults sampled, (ii) maturity is not knife-edge
so there is no absolute de�nition of the parental cohort-group, and (iii) maturity is quite likely
length- rather than age-driven. If we are forced instead to sample adults from say the entire
4th column of Figure 4.1, after a 3-year gap, then a high proportion of comparisons will be
with �impostor� adults that could not have been parents, and the cartoon estimator would be
biassed high.

Figure 4.1: Dilution of original parent-cohort-group by incoming recruitment

The second, linked, reason is that adult sampling is strongly selective towards large/old �sh,
which are also likely to have been more fecund (even allowing for a 3-year time lag). Because
they are more fecund, they have more �tags� per capita (i.e. juveniles that they are parents
of), and each tag is more likely to be �recaptured� (i.e. the adult is more likely to be caught)
because of selectivity in favour of larger adults. This is the close-kin analogue of �heterogeneity
in capture probability�, a well-known issue in mark-recapture abundance estimation. Figure 4.2
shows the cartoon version. The upshot for the naive 2m2/P estimator would be that each
comparison is more likely to yield a POP than would a comparison with a randomly-chosen
adult.
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Figure 4.2: Big tuna are more fecund and more likely to be caught

Both e�ects concern not the number of POPs actually found, but rather the di�culty of
working out how many comparisons are �relevant� for abundance estimation. The two e�ects
act in opposite directions; the time-lag dilution means that some comparisons are invalid and
thus less e�ective than �random� comparisons, whereas the selectivity-fecundity correlation
means that the valid comparisons are more e�ective than �random� comparisons. The time-lag
dilution is also mitigated by growth, since the surviving �original� adults after 3-4 years will be
bigger than the �impostors� and thus more likely to be caught. However, there is no particular
reason to assume the e�ects will cancel out, since the time-lag e�ect is driven primarily by the
length of the study whereas the selectivity-fecundity e�ect is determined by the nature of the
�shery and the growth curve. And the e�ects can be quite large; with an adult survival of say
0.8, after 3 years only 50% of the original adults are still alive to be sampled and the impostors
will (in equilibrium, and neglecting selectivity and growth) be involved in about 50% of the
comparisons. To deal with these issues properly, we need a mini-assessment.
One further issue arises from of the extended timespan of this study, which spans juvenile

birth-years from 2002 and adult capture-years to 2010, as well as the initial age structure of
the adults in 2002 which was determined by even earlier events. The 1990s and 2000s have
been eventful decades for SBT, and it may be such that steady-state assumptions are simply
not viable.
A proper close-kin abundance estimate for SBT therefore has to deal with survival, selectiv-

ity, fecundity, and growth, and perhaps with changes in abundance over time. The requisite
data come from the length and age-at-length samples from Indonesia, plus fecundity studies
explained below. While not strictly ��shery-independent�, length and age data are not subject
to the same problems as CPUE or total catch. It also makes sense to split the analysis by sex:
the cartoon applies equally well if applied to males and females separately, where the chance of
a POP comparing to a male adult is 1/Nmale not 2/

(
Nmale +Nfemale

)
, and C is split into(

Cmale, Cfemale
)
.

4.1.1 Residence time, selectivity, and fecundity

The tropical waters o� Indonesia are really no place for an adult SBT, an animal that is adapted
superbly for much cooler temperate waters. Adults arrive on the spawning grounds fat, and
leave thin. Of course, the longer they can stay on the grounds, the more chances to spawn they
will have, so it seems reasonable to suppose that they will put up with Indonesian conditions
for as long as their bodies let them. The key for disentangling the e�ects of fecundity, survival,
and selectivity, is average residence time on the spawning grounds, as a function of length.
A cursory glance at length distributions from Indonesia shows that few �sh under 150cm, and
none under 130cm, are caught on the spawning grounds, so there is obviously some link to
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length. As per the skip-spawning discussion, �average residence time� already factors in the
probability that a �sh won't be there at all in any given year. Our mini-assessment speci�cally
assumes that, given length and sex:

• Selectivity ∝ residence time

• Annual reproductive output ∝ residence time × daily reproductive output

Except as speci�cally noted later, we assume that length and sex are the driving in�uences
behind the behaviour of adult SBT, rather than age.
Of course, there could be other �second-order� phenomena which slightly change the above

relationships (e.g. di�erent depth distributions by size, and thus di�erent exposure to hooks;
di�erent egg quality with parental size; etc etc) but these seem likely to be small compared to
the dominant e�ect of residence time. For the rest of this document, it may be helpful to think
about selectivity and residence time as directly equivalent, at least within each sex.
We have no direct data on residence time as a function of length, so the relationship needs to

be estimated indirectly from data. Independent data on residence time and depth distribution
as a function of length, from archival tags placed on big �sh, would be extremely useful: both
in tightening up parameter estimates in our existing model, and in assessing whether the e�ects
that we hope are �second-order� really are.

4.1.2 Fecundity analyses: daily reproductive output

The canonical reference for SBT (female) spawning biology and fecundity is a study from the
early 2000s by Davis et al.11. In summary, female SBT while on the spawning grounds have an
on-o� cycle, consisting of several days of consecutive daily spawning (one spawning event per 24
hours), followed by several days of rest while more eggs are built up. This on-o� cycle may be
repeated several times. As soon as the �nal spawning cycle is complete, they leave. The mass
of eggs released per daily spawning event can be estimated from the change in gonad weight
between just-about-to-spawn and just-after-spawning �sh; it is approximately proportional to
length to the power 2.47. The average duration of each part of the cycle (and thus the proportion
of days on the spawning grounds when spawning actually occurs) can also be estimated as a
function of body length using histological data, because the �rst day of a spawning sequence
can be distinguished from the other days, and similarly for a resting sequence. However, the
number of cycles per season is completely unknown, and is obviously set by the residence time.
To summarize, the factors involved in daily reproductive output are:

• reduction in gonad weight per spawning event

• duration of consecutive spawning day sequences

• duration of consecutive resting day sequences

A reasonable amount of data is available for all three of these, and the relationship to length
can be estimated from �tting three GLMs. (This was already done for the �rst two factors in
Davis et al., and the third factor was addressed during this study.) For now, we have treated
the parameter estimates as exact in the rest of the mini-assessment.
We have no comparable data for males, nor on the extent to which male abundance actually

in�uences the number of fertilized eggs per year.

11T. Davis, J. Farley, M. Bravington, R. Andamari (2003): Size at �rst maturity and recruitment into egg

production of southern blue�n tuna FRDC project 1999:106
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4.2 Indonesian length, sex, and age data

A substantial proportion of the Indonesian SBT catch is sampled as it passes through the main
landing port of Benoa. Length (to the centimetre) and sex are always recorded, and nowadays
otoliths are always extracted, although only a length-strati�ed subset (500 per year in the recent
past) are read. Between 900 and 1700 animals were measured per year between 2002 and 2010.
Thus the data can be seen as

1. Random samples of length and sex from the entire adult catch

2. Random samples of age, given length and sex.

Even without the POP data, it is possible to do some steady-state analysis of the age/length/sex
data (though it is obviously impossible to estimate absolute abundance), but it is impossible
to completely separate selectivity (as a function of length) from average adult survival rate.
When the survival rate is very high (e.g. 0.9) or very low (e.g. 0.5) it does become impossible
to match the observed length-frequency distributions except by invoking a ludicrous selectivity
function, but in the absence of other data reasonable �ts to the age and length data can be
obtained across a wide range of survival rates.
Fortunately, the POPs can help estimate survival rate, in addition to absolute abundance.

The typical gap between o�spring birth and adult capture� assuming that the adult is in fact
captured subsequently, i.e. that the pair is an identi�ed POP� is related to survival. If survival
rates are low, very few parents will survive to be caught say 7 years later (the maximum gap
possible in this study), so most of the POPs that are found will be separated by just one or two
years. Growth and residence time need to be properly accounted for too, but the intuitive basis
should be clear. The close-kin data thus has three vital roles: the number of POPs (given the
number of comparison) essentially sets the scaling of absolute abundance, the age and length
distribution within the POPs informs on selectivity/fecundity, and the distribution of time-gaps
within the POPs essentially determines survival.

4.3 Model structure

The model keeps track of numbers by age and sex; each year, each �sh either gets one year
older or dies. However, most phenomena are driven by length, which is assumed to have a �xed
distribution at age. Each �sh has its own personal L∞, drawn from a sex-dependent log-Normal
prior whose mean and variance at age are �xed, while the other von Bertalan�y parameters are
the same within each sex. A plus-group is used for ages 25 up, and a minimum �recruitment�
age for possible spawning also needs to be set (currently 8). There is also a plus-group for
length (200cm) and, unusually for stock assessments, a sort of �minus-group� as well, currently
set to 150cm. Experience with �tting just to age and length data showed that trying to extend
the �t to the small proportion of adults below 150cm gave poor results, in that this small �tail�
started to �wag the dog� and distort the �t elsewhere. The focus of this study is spawners,
which are mostly 160cm and up, so it is more important to get a good �t there than to squeeze
a last drop of misinformation out of very small adults. However, it is necessary to somehow
keep track of the small spawning contribution of �sh in the minus-group, and accordingly there
is some tedious book-keeping code in the model.
Most of the likelihood is quite standard; multinomial distributions for length-sex frequency

data, and for age given length and sex. The e�ective sample sizes of the length and age data
were capped at 300 per year, to avoid these data swamping the information from the POPs.
The novel term is the contribution of the POPs. For each comparison made between a juvenile
j and an adult i of sex (gender) gi, the outcome (POP or not) is a Bernoulli random variable
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with probability given by

P [j ∼ i] =
expected ARO from i in year of j's birth

total ARO from adults of sex gi in that year

where ARO is Annual Reproductive Output, i.e. daily fecundity multiplied by residence time as
in section 4.1.1. This formula replaces the �2/N � probability in the simplest possible close-kin
implementation.
To actually compute a likelihood, it is necessary to specify various terms:

• numbers-at-age in 2002, and for incoming recruitment (age 8) in 2003-2010;

• survival rate in each year and age;

• residence/length relationship;

• growth parameters;

• relation between daily RO and length for males.

The total number of potential parameters is colossal because of the numbers-at-age and survival
terms, so of course one needs to specify them parsimoniously given the limited amount of data
available. This is done using formulas (sensu R) for each bullet-point term, describing what
covariates are allowed to in�uence it, and perhaps what functional form that in�uence might
take. For example, we might choose to make survival constant over age and time, except for
the plus-group12. We might also make assumptions of constant �recruitment� (at age 8) in the
2000s; and/or that numbers-at-age prior to 2000 were in equilibrium with survival; and/or that
von Bertalan�y k is the same for both sexes; and/or that the slope of the residence/length
relationship (but not its midpoint) is the same by sex; etc. One example is given in the Results
section.
The �nal term� male daily reproductive output as a function of length� can in principle

be estimated provided we are willing to assume that survival rates for males are the same as for
females. Without that assumption, there is nothing to anchor the selectivity/survival/fecundity
triangle for males. For females, we do not need to estimate this term because we have direct
data from the fecundity studies.
The likelihood itself is coded in Pascal, with derivatives computed by an automatic di�eren-

tiation toolbox similar to ADMB. The overall data-handling and �tting is done in R, calling
the nlminb() optimizer to do the �tting. Some care was needed to avoid numerical problems in
calculating the log-likelihood, and because of limited time there are still starting-value problems
so that some model parametrizations can't yet be �tted. However, once a starting value has
been obtained, no convergence problems were encountered, at least for the fairly parsimonious
speci�cations (say 15 parameters) that have been tried to date.

4.4 Results

It will be apparent that an enormous number of di�erent versions of the mini-assessment could
be run. A full investigation is far beyond the scope of this project, and should probably be
undertaken in conjuntion with other data sources, particularly to provide context on recruitment
levels. A limited set of versions has been run, but the results actually shown here come from an
almost-steady-state version of the model, with constant adult survival and constant recruitment

12In SBT as with other top-predators, it must be the case that natural mortality rate increases for old animals,
since simple maths shows that the sea would otherwise just �ll up with decrepit tuna.
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from 2002 onwards but an age composition in 2002 that need not correspond to a steady-state
prior to 2002.
Basic investigations across suggest that:

• Mean L∞ is appreciably larger for males than females. The evidence for any di�erence
in k or t0 is not overwhelming, but making these two sex-linked as well does not seem to
overparametrise the model. CV of length-at-age appears to be the same for both sexes.

• Residence time appears to be lower for males of a given length than for females, so we do
need a sex-speci�c intercept in this term. However, there is not enough data to estimate
any sex di�erence in the slope of the relationship. Also, introducing extra �exibility in
model form beyond the logistic (asymptotic) can give nonsensical predictions for very
large �sh. A good choice seems to be ~sex+length.

• There is not much information for estimating male daily reproductive output as a function
of body length. We have assumed instead that male daily output is directly proportional
to length (i.e. exponent of 1). There is no good reason for that particular choice, but
fortunately the abundance and survival estimates seem not to be much a�ected by as-
sumptions about male daily output in practice, even though it could matter in theory.

• Based on just one comparison: changing the annual e�ective sample size for length/age
data from 300 to 900 did not much a�ect the abundance estimates much (i.e. by a few
percent).

Having got these basic issues out of the way, the remaining questions are how to set up initial
numbers-at-age and incoming recruitments. In a full steady-state model, the age distribution
in year 1 (actually 2002AD in our setup) is determined by the survival rate, and the incoming
recruitments thereafter are equal to the numbers at recruitment age in year 1.
Some diagnostic plots for the steady-state model are shown in Figures 4.3-4.4. These pertain

to the length and sex data only, since the POP data are really too sparse for diagnostics. The
length-frequency data, shown for few years only in Figure 4.3, are mostly not too bad despite
the steady-state assumption, except for 2002 where the data seem completely di�erent from
other years. The �ts to age-at-length are very good (not shown). However, there is a problem
with the �ts to sex ratio by length class (Figure 4.4): in the biggest length classes lower down
the graph, where males tend to predominate thanks to their bigger asymptotic size, there is
a strong decrease in proportion of females over the 2000s. This decrease is seen overall too
(in the black dots), but is not apparent in the smaller lengths, where there is a rise followed
by a dip. This di�erence in trend across length classes suggests that methodological changes
in how sex is assessed are unlikely to be the cause. The underlying cause needs some further
thought; it has nothing much to do with close-kin, and is a question for the OM as well as this
mini-assessment.

17

                                         CCSBT-ESC/1208/19



Figure 4.3: Steady-state diagnostics: length. The unreadable parts do not need to be read;
they show details of the particular model version �tted.
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Figure 4.4: Steady-state diagnostics: sex-ratio. The unreadable parts do not need to be read;
they show details of the particular model version �tted.
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4.4.1 Parameter estimates and uncertainty

Annual adult survival for the steady-state model was estimated at 0.73, fairly close to OM
estimates. However, the estimated abundance of 10+ adults in 2004 is much higher than in
the OM: 2.04M �sh, with a biomass of 157kT. This happens to be fairly close to the simple
�twice the comparisons divided by the POPs� estimator, but only by coincidence; the competing
e�ects of dilution by incomers, growth, and selectivity are all strong, and merely happen to
largely cancel each other out.
The estimated relationship between residence time (i.e. selectivity, in this model) and length

is shown in Figure 4.5; the curve climbs steeply from 160cm for males and about 155cm for
females, with males taking longer to �mature�. The apparent asymptotic slowdown around
180cm may be a consequence of the functional form chosen (a logistic curve), and warrants
further study.

19

                                         CCSBT-ESC/1208/19



Figure 4.5: Residence time as a function of length
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By combining the estimated residence-time with the estimated growth curves (which have
average L∞ of 191cm for females, and 201cm for males) and the fecundity data, it is possible to
infer the average female spawning contribution at age. The results are very di�erent to what is
assumed in the existing OM, i.e. that spawning contribution is proportional to biomass for ages
10 and up (Figure 4.6); the mini-assessment suggests that older �sh are comparatively much
more e�ective spawners than younger �sh. This underlines the point that the mini-assessment
is structurally di�erent to the OM, and results need to be compared with that in mind.

Figure 4.6: Relative spawning contribution as a function of female bodyweight. Average body-
weight at ages are indicated. Green line corresponds to current OM assumption.
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The nominal CV of N̂ (10+, 2004), obtained by inverting the Hessian, is 17.3%. This is only
slightly higher than the theoretical lower limit of 14.9% set by the intrinsic sampling noise
associated with the observed total of 45 POPs (see Appendix 3 for why the POP count is
unlikely to be overdispersed). The concurrent estimation of survival, residence time, etc., as
well as abundance, has contributed only an additional 2.3% to this nominal CV. However, the
CV is still �nominal� because that additional contribution is not �nalised yet; for one thing,
it depends on the �e�ective sample size� used for the length frequency data, which we simply
assumed to be 300 �sh per year. Given that there is substantial variability (noise) between
observed and predicted length- and sex-compositions, the additional CV should probably be
higher than 2.3%. Even so, in an exploratory run with the e�ective sample size for length
frequencies set to just 30 �sh per year, the additional CV still only reached 5%, i.e. a total CV
around 20%.
To improve and fully de-nominalize the CV, it will be necessary to handle better the overdis-

persion/variability in the non-POP data, so that the �likelihood� in the mini-assessment accu-
rately re�ects the uncertainty. Also, experiments with non-steady state versions of the mini-
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assessment indicate that the model uncertainty associated with possible past & present trends
in recruitment is substantial (though less so around 2004 than in the most recent years). Moving
to a random-e�ects rather than �xed-e�ect framework for recruitment should mitigate this, and
help to accommodate the model uncertainty automatically in the �nal result. These changes
will push the CV up somewhat but, from what we have seen so far, we would be surprised if
the �nal CV13 exceeds 25%.
Accordingly, we plan to make just a few further changes to the mini-assessment model in

2012, in the course of submitting for peer-reviewed publication and �nalizing the CSIRO/FRDC
project report. The main ones are:

• allow recruitment (annual incoming 8-yr-olds) to be a random-e�ect, rather than constant
or a trend;

• formally estimate the �e�ective sample size� for the length-frequency data;

• formally propagate the uncertainty associated with the fecundity GLMs.

With our current mini-assessment, these issues would have to be treated as �model uncertainty�,
which we have not attempted to explore in this report. Preliminary explorations suggest that
(i) the �rst two can have an appreciable e�ect on the point estimates of abundance, though by
no means enough to change the qualitative conclusions, and (ii) the CV is probably not going
to increase much. Once we have tackled these issues inside the mini-assessment, the associated
uncertainty should be re�ected directly in the �nal CV.

5 Discussion

This project has successfully managed to complete an enormous amount of genotyping with
tight quality control. The data do seem to be able to deliver an internally-consistent �shery-
independent14 estimate of adult abundance, just as planned. The stand-alone estimates are
still somewhat preliminary, but are clearly considerably higher than the OM estimates� at
least 3 times the point estimate from the �base case� scenario, and on the edge of the upper
con�dence interval of the most optimistic scenario. While this may seem surprising, it should
be emphasized that there is very little reliable data in the OM with which to estimate absolute
adult abundance (although other quantities such as relative depletion can be estimated more
reliably), which of course is in itself is a big part of the reason for undertaking this study. Also,
as noted in section 4.4.1, the di�erent notions of e�ective fecundity in the two models make
direct comparisons tricky. So getting an adult abundance estimate that is very di�erent to the
OM's is by no means an indication of a serious problem with either the CK estimate or the main
conclusions of the OM. Nevertheless, it is important to ask the obvious question: how wrong
could these CK estimates be? There are a limited number of issues to consider, given that we
are not asking about small changes here� the point is to try to think of any phenomena that
could make a huge reduction to the estimate, of the order of 50%.

5.1 Is the number of POPs about right?

The genetic results strongly suggest that there are few if any false negatives or false positives,
given the �ltering we have used, the proven e�ectiveness of our large-scale QC checks in de-
tecting and �xing problems, and the absence of �near-misses� in the lower left-hand corner of

13It is important to choose a sensible quantity to estimate the CV of. For example, once recruitment is allowed
to vary annually as planned for our �nal model, the average 10+ abundance across 2002-2008 will have a
lower CV than the corresponding abundance in any single year.

14Strictly: catch and CPUE independent
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Table 3. An independent implementation of the QC software checks would be useful, particu-
larly when the data migrate to our existing SBT database, and this conceivably might unearth
a few further problems. However, while it is certainly possible that there are a small number
of false negative or false positives in (or not in) our POPs, there is strong evidence that the
proportion is not substantial.

5.2 How precise is the estimate?

The nominal CV of our steady-state example estimate is 17.3%, driven mostly (15%) by sam-
pling variability in the number of POPs found. That 15% component seems solid, since there
is no reason to expect substantial overdispersion in the number of POPs; see Appendix 3 (sec-
tion 8). The e�ective sample sizes we assumed for the length data seem to have been somewhat
high, so the current additional contribution of 2.3% from the length/sex/age aspects is proba-
bly too low but not by all that much, going by our explorations so far. The remaining changes
planned for the mini-assessment will include uncertainty related to those e�ective sample sizes,
and will accommodate aspects of model uncertainty not currently captured in the nominal CV.
Based on our explorations so far, though, we will be quite surprised if the �nal CV exceeds
25%. And, apart from the proviso about selectivity discussed next, the �nal CV should be a
statistically defensible measure of overall uncertainty.

5.3 Is the abundance estimate about right, given the number of
POPs?

If the number of POPs is about right, and if the adult sampling is simultaneous with juvenile
birth and random, then the cartoon estimate can't go wrong� each juvenile really does have
exactly two parents. Most of the other potential problems with close-kin� stock structure, or
massive proportions of sibs/halfsibs� don't apply to SBT. So the only other source of possible
error is in the adult-assessment model. As mentioned at the end of section 4.4.1, the model is not
completely �nished and the remaining modi�cations will change the point estimates somewhat,
but we do not expect those changes to be very large. So, aside from possible programming
mistakes (this is still a very recent assessment, all coded by one person), there are two main
points to consider:

1. The entire CK assessment, and the way in which the cartoon adjustments are implicitly
calculated, rests on the assumption that selectivity is primarily driven by residence time�
the longer a �sh is on the spawning grounds, the more likely it is to be caught, all else
being equal. The link between residence time and annual female reproductive output
rests on the same assumption (more spawning opportunities). It is hard to see how these
assumptions could actually be wrong, but the caution might be in the phrase �all else
being equal�. If there are other really major length-based e�ects on selectivity or on
reproductive output (aside from female daily fecundity, for which we at least have some
data), then bias could perhaps arise.

2. The only other way that an abundance estimate could be biassed, is if there is some type
of heterogeneity between adults that is not just due to length and sex, and which results
in some adults (i) being more likely to spawn o�spring caught in the GAB, and (ii) more
likely to be caught themselves in the Indonesian �shery at least one year later. It is hard
to imagine what might cause such heterogeneity.

Even if there do turn out to be errors in these estimates, they seem more likely to be pro-
gramming errors, and therefore �xable, rather than being intrinsic problems with the data or
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its interpretation. The CK data fundamentally do seem to be extremely useful for SBT: they
are bearing out their promise. There is obvious scope for continuing to collect and genotype
in future, both to build up the time series and also (thanks to the retrospective qualities of
close-kin) to increase the number of POPs found from our already-genotyped juveniles from
2006-2010. The way this might �t into SBT management, and the links with other monitoring
possibilities, is far more than can be explored in this study, but the potential value of further
CK genotyping is clear.
Finally, we draw attention to the key role of residence time on the spawning grounds�

or, to be accurate, how the average residence time depends on size� in getting to an actual
abundance estimate, and a selectivity estimate, and an appropriate de�nition of spawning
potential. Although there is just about enough data in the POPs and the age/length samples
to infer the residence/size link indirectly, it would be immensely useful to have direct estimates
from a few adult �sh across di�erent sizes, since this could both ground-truth the model and
give a basis for estimating further length-dependent e�ects on selectivity, if that turned out
to be necessary. Pop-up satellite tags could yield limited information quickly, but the best
data would come from archival tags because they can record over several years, and are not as
vulnerable to short-term tagging shock. The low �shing mortality on adults means that quite
a few archival tags would be needed to get recaptures, and that we might have to wait a while
to get the tags back, but the number of returned tags needed would not have to be at large
(even single �gures) to give a very useful check on, and input to, close-kin based abundance
estimates in future. Such tagging ought not be a very expensive exercise in terms of the value
of the �sheries, or indeed the cost of this close-kin project.

6 Appendix 1: The genotyping and QC process

6.1 Terminology

This section is meant as a guide for a non-geneticist in a CCSBT context. It is not intended as
an authoritative set of de�nitions from a genetic perspective, which are widely available in the
genetics literature. These de�nitions include forward-cross-references in italics, and use bold
to indicate additional de�nitions. In the text after this section, a few technical genetic terms
have been used and marked with an asterisk, but deliberately not de�ned since their relevance
will only be apparent to those who already understand them.

Locus: an identi�able place on the genome with characteristic start and end sequences of DNA,
and a variable DNA sequence between them. The loci we used are diploid, so that each
individual has two versions (copies), one copy being inherited from each parent. The
sequences of the two copies might be di�erent or might by chance be the same. We used
microsatellite loci, whereby each sequence is characterized simply by its length or size
(i.e. the number of nucleotide bases it contains), which will be a integer in the range
say 80-600 depending on the locus and how it is to be puri�ed away from the rest of the
genome in any particular study.

Alleles: the set of possible sequences a locus can have, i.e. for microsatellites a set of inte-
gers. Alleles at di�erent loci might happen to have the same length, but are in no sense
comparable� it only makes sense to refer to an allele for a speci�c locus. The allele
frequency for the locus is the frequency distribution of the di�erent alleles across the
population under study. A highly variable locus has a large number of di�erent alleles
and an allele frequency that is not dominated by just one or two common alleles. The
probability that two unrelated animals will have an allele in common is lowest if the locus
is highly variable, so such loci are preferred for close-kin work. A null allele is an allele
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that is present in the animal, but is not revealed by genotyping; possible causes include
scoring error, and a mutation in or near the locus that causes the DNA ampli�cation
process to fail for that copy.

Genotype: which alleles an animal has. Usually means for all the loci together (sometimes
called a multilocus genotype or DNA �ngerprint), but can mean just the alleles
carried at a single locus if speci�ed.

Homozygote/heterozygote: An animal is said to be a heterozygote at some locus if the
two copies are di�erent alleles, or a homozygote if they are the same.

Scoring/genotyping/calling: deciding which alleles are present at a locus for a particular
animal. This really involves many steps, but sometimes �scoring� just refers to the �nal
step of adjudicating on the possible alleles proposed by the GeneMapper software. The
protocol in our study is that, if the genotype at a particular locus for a particular specimen
is ambiguous, no score is recorded (rather than trying to make a subjective best-guess).

Scoring error: Recording the wrong genotype at one or more loci. Large-scale scoring errors
a�ecting many �sh and loci simultaneously can arise from inadvertently swapping or
rotating entire plates of �sh, or from miscalibration of the sequencer for a particular run
plate. Small-scale scoring errors a�ecting individuals most commonly involve failure to
detect a small second peak in a heterozygote, so that the locus is mistakenly scored as
a homozygote instead. At least in this study, actual mislocation of peaks were very rare
(based on a subset of the �sh which were independently re-scored).

Ampli�cation/PCR: the chemical process by which the DNA from certain desired loci only is
selected and ampli�ed for input to the sequencer.

(Nucleotide) base is one genetic �letter� (C/G/A/T), the molecular building-blocks which
are linked together to form a DNA molecule. DNA occurs in two strands, and each base
is paired with its complement on the other strand, so the term base pair is often used
instead.

Tetranucleotide: The sequences within microsatellite loci are mostly repeats of some short
subsequence of base pairs, such as GATA (four base pairs, so a tetranucleotide locus) or
CA (a dinucleotide). Dinucleotide loci are more common in most genetic studies, but are
more prone to scoring error. In this study we used only tetranucleotide loci.

Panel refers to a set of loci (usually 4-7) which can be analyzed simultaneously by the se-
quencer.

Plate is a group of 96 DNA samples (including a couple of controls� standard specimens
included on every plate� and blanks) placed in wells numbered A1-H12 in an industry-
standard format on a small rectangular tray (�96-well microtitre plate�) ready to load
into a sequencer. Each group of 96 �sh is originally set up on a template plate from
which are prepared several run plates, all with the same layout of specimens in the 96
wells, but with each run plate speci�c to a particular panel of loci.

Sequencers are the machines that physically do the genotyping. One run plate is run or
sequenced at a time. For each locus on each specimen, the output is a graph with
X-axis corresponding to allele length (as a continuous variable) and �signal intensity� on
the Y-axis. Alleles are visible as peaks with a characteristic shape.
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GeneMapper is software which identi�es possible alleles from the sequencer's output. In most
cases, GeneMapper will propose the correct peaks, but each sequencer graph and proposed
scores is scrutinized by an experienced scorer who makes the �nal decision on which peaks
truly represent alleles, and which peaks are artefacts.

Bins and binsets: Because of slight variations in run conditions, the locations of peaks re-
ported by GeneMapper will vary fractionally between sequencer runs, even for the same
sample. Bins are therefore used in GeneMapper to provide tolerance and to convert
the continuous-valued peak locations into an integer-valued allele size. Each bin is a
continuous-valued range such as [137.2, 138.6], which should span the range of peak loca-
tions found for that allele across many runs. The binset for each locus is the collection
of all its bins. The binset needs to be consistent throughout a study. In this project,
we initially developed bins and binsets from genotyping the �rst 500 individuals, then
revisited them after 5000 specimens had been genotyped.

6.2 Flowchart of genotyping

For the last 9000 of the 14000 �sh genotyped (from both sites), the procedure was as follows.

1. Tissue biopsy samples from each �sh are collected, labelled, and stored in boxes of 100
�sh, with corresponding information on �sh length, date of capture etc, and in the case
of the Indonesian �sh are cross-linked to the existing data (sex, otolith if collected, etc).

2. The original tissue from each �sh is subsampled down to the 10mg size suitable for DNA
extraction. The remaining biopsy tissue is archived, so this (relatively costly) step can
be repeated if necessary.

3. The DNA of 96 subsamples at a time is extracted into solution. Part is kept frozen as an
archive plate. Part is used as the template plate, incorporating two controls (in speci�ed
positions) and two water blanks (in known positions, variable from plate to plate).

4. For each template plate and panel of loci, a small amount of �uid is used to prepare a
run plate. Enzymes are used to amplify the desired loci (for the panel) from the rest of
the genome, and their DNA is PCRed in a multiplex(*) reaction at CSIRO.

a) The �rst column of each run plate is then duplicated as a column on a check plate,
of which there is one per 12 run plates.

5. Run plates are sent to AGRF15 in Adelaide for sequencing. There are four run plates per
96 �sh, labelled H/I/J/L depending on panel of loci are involved. For each run plate, the
result is a set of 96 �FSA �les� suitable for input to GeneMapper.

6. FSA �les are scored at CSIRO by an experienced team; we have used only four scorers,
each of whom scored several thousand samples. Results from the various scorers have
been cross-checked for consistency on some plates.

a) The check plates are sequenced at CSIRO using similar machinery to AGRF's, and
the results are compared to the corresponding columns of the FSA �les from AGRF.
This provides a safeguard against plates being swapped or rotated, and against
miscalibration of the sequencer.

15Australian Genome Research Facility

25

                                         CCSBT-ESC/1208/19



b) The panels all include a common locus B8B, so by comparing the B8B scores across
run plates ostensibly from the same template plate, we could check whether the �les
for each run plate really did come from their nominal samples.

7. A variety of QC checks are run on the FSA �les, to detect plate-level phenomena such
as rotation/swapping/miscalibration (see 6.1), atypical allele frequencies, and excess ho-
mozygotes, and individual-level phenomena such as duplicate genomes which arise if sam-
ples are inadvertently double-sampled at the point of collection.

For the �rst 5000 �sh genotyped, a slightly di�erent and less streamlined procedure was used
in steps 4-5. Only 20 of the 27 �nal loci were used. The PCR for some of the 20 was done by
AGRF in single-plex(*) reactions which were then grouped into three panels A/B/C to make
run plates, while the remaining loci were multiplexed at CSIRO as above into two run plates
corresponding to a pair of panels D & E. [The A/B/C loci were subsequently reorganized into
two of the panels (I & J) used for the last 9000 �sh; the D/E panels became the H & L panels
after the 7 extra loci were added.] After the FSA �les returned to CSIRO, we used a shared
locus on the D & E panels to check their �alignment�, as in 6b. To check alignment of the
A/B/C panels with each other and with the D/E panels, we put DNA drawn from the �rst
column of the template plates for D/E panels into one column of an extra template plate, which
was then used to make run plates for the I & J panels (containing the same loci as A/B/C,
but organized di�erently). These were sequenced, scored, and the genotypes compared against
the corresponding columns in the original A/B/C plates. Although this process was somewhat
cumbersome and led to some duplication in scoring (about 10%), it provided an important
safeguard against the handling errors that become almost inevitable with such large sample
sizes.

6.3 Selection of loci

Loci for this project went through an particularly extensive checking process. Past experience
indicated that, to be conservative and to facilitate automated genotyping, we needed to strictly
focus on using tetranucleotide repeats that gave solitary, sharp, allele peaks. In short, we
wanted a set of loci that: were highly variable but not so variable that the longest alleles
failed to amplify well; had simple peak structure with minimal shoulder to the peaks and little
stutter; and had clear gaps between alleles. Over time, as more �sh were scored, some of
our best tetranucleotide loci turned out to have some two-base-pair insertion/deletions, which
meant that some alleles were separated by only two base pairs (though usually at least one of the
alleles involved was rare). This was tolerated, provided there was at least a one-base-pair gap
between bins. Loci were immediately discarded during the initial testing phase if they showed
alleles separated by just one based pair, indicative of poly-nucleotide tracks in the ampli�ed
allele. After genotyping 5000 �sh, we had developed 20 loci organized into 5 panels A-E, with
very comprehensive scoring binsets into which almost all detected alleles fell. At this point we
included an additional 7 loci (total 27) which were re-organized into four multiplex panels H,
I, J, and L. We scored all 27 loci where possible in the remaining 9000 �sh, but used only 25
loci for �nding POPs; the remaining two loci, with slightly less reliable scoring, were used only
for QC purposes, as per 6b above. When scoring, our protocol was not to record a score if in
doubt, which is safe for purposes of POP-�nding.
An important check in genetic studies, is on the proportion of homozygotes found at each

locus. In theory, provided a number of assumptions hold, this can be predicted from the allele
frequencies, and the extent to which there is an excess of apparent homozygotes is one indication
of the reliability of a locus. As shown in Table 7, all but 3 of the 25 primary loci have both low
expected homozygosity (which corresponds to being highly variable, and thus powerful for POP
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identi�cation), and at most a small excess observed homozygosity as given by the di�erence
between the EXP and OBS rows; this suggests relatively few cases of failure to see the 2nd peak
in a heterozygote, for example16. The exceptions are in the bottom right of table: D569 and
D573. It appears (as described shortly before section 2.1.1) that the excess of homozygotes in
those two loci is due to �heritable nulls� (eg from a mutation in the �anking sequence(*) so that
primers(*) don't bind), so that some alleles simply don't amplify. No loci showed appreciable
evidence of Short-Allele Dominance(*).
To guard against the possibility of heritable nulls in any locus, a comparison of two di�erent

apparent homozygotes (AA in one �sh vs BB in the other) was not used to exclude a POP even
though there is ostensibly no shared allele, in case the real score was �A-null vs B-null� with the
null being inherited. This relaxation has only a small e�ect on the false-positive probability.
However, it is not feasible to relax the exclusion criterion further to allow for the commonest
(but still fairly rare) scoring error whereby the second peak of a heterozygote is missed, i.e.
by treating AA vs BC as not necessarily excluding. Such a weakened criterion would generate
many false positives with the existing set of loci, so many more loci and more expense would
be required.

Table 7: Homozygote percentages, �expected� (ignoring nulls) and observed; see text.

3D4 B5 D10 D111 D11B D12 D122 D201 D203 D211 D225 D235 D3 D4D6

EXP 19.8 6.8 7.1 11.8 10.7 10.8 9.7 11.7 7.5 11.4 3.4 8.5 16.8 5.5

OBS 19.8 7.3 7.3 12.2 12.3 10.9 11.4 12.4 9.0 17.0 3.7 14.8 16.8 6.7

D541 D524 D549 D570 D592A Z3C11A D517 D534 D582 D569 D573

EXP 14.0 12.4 11.9 7.3 9.8 13.0 3.1 9.3 7.6 9.9 4.9

OBS 14.0 13.5 11.9 7.3 10.2 13.4 3.4 10.1 7.7 45.5 30.9

6.4 QC for Consistency of Allele Size Calling

Examining the consistency of allele-size calling is fairly straightforward, and is mostly dealt with
by use of an internal standard and use of an automated genotyping program developed by ABI-
Life Technologies (supplier of the DNA sequencer used for fragment separation). To further
minimise inter-run variation, all size fragmentations were run on only one DNA sequencer
located at the Australian Genomic Research Facility (Adelaide node). This eliminated variation
occasionally observed when the same samples are run at two facilities even on the same model
of sequencer.
In addition, the ABI system uses an internal size standard added to each sample from which

the size curve is extrapolated for estimating allele peak length relative to the standard curve.
ABI states that variation using this system ensures +/- 0.5bp accuracy from run to run. Fur-
thermore, the GeneMapper program analyses each individual size curve for peak quality and
general �t to the theoretical ideal size curve. Any discrepancies detected by the software raise
�ags in the analysis window and can be scrutinized in further detail. We also examined each
size curve analysis as well as the individual peaks that were used to generate the size curve for
each individual in a run plate to ensure another level of QC in addition to that used by the
GeneMapper software.
GeneMapper uses a standard set of allele size bins used to smooth out further subtle varia-

tion and ensured easy comparison among alleles from di�erent individuals and provided another

16Other reasons for deviation from Hardy-Weinberg, such as population structure, are unlikely for SBT, and
in any case no deviation is seen for many of the loci despite the very high sample sizes and consequent high
power to detect any deviation.
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level of QC among plates. Bin sets are developed for each locus to permit automated geno-
typing using the GeneMapper software. Individual bins represent a value range centred on the
median length value of each allele as ascertained following sizing of an initial set of individuals.
Preliminary bin sets were developed following detailed analysis of about 500 �sh. These sets
were designed to encompass slight variations to permit detection of gross deviations from the
norm greater than +/- 1.0 bp. After genotyping about 5000 �sh, the bin sets were re-assessed
for consistent allele calls, and a �nal consensus adjustment was determined. Bins permit as-
signment of an integer value to the continuous-valued allele length based on the GENESCAN
size standard, and permit simple comparison of allele identities among individual genotypes.
A gap of one to three base pairs between bins ensures that an objective decision rule can be
consistently applied to a genotype for inclusion of an allele into a designated integer bin. Alleles
falling in the gap were rare and presumed to be a result of an insertion or deletion event on an
individual's DNA. These were scored as �unknown genotype� but the real value could still be
used for con�rmation of parentage should it be required to con�rm identity (not required with
our samples to date).
The use of automated genotyping with a single set of GeneMapper bin-sets allowed us to

detect if peaks were consistently falling outside of predetermined bins and would highlight a
general problem with the running of a plate (eg. old bu�er or polymer in the sequencer leading
to general failure of proper electrophoresis and inconsistent separation). Runs where problems
were found were re-run with new bu�er and polymer; this recti�ed the problems in every case.

6.5 Avoidance of chimeras

Chimeric genotypes are (in this study) a composition of DNA from more than one �sh, rather
than (as in some other studies) DNA pro�les resulting from multiple DNA in a well (two or more
contaminated DNA leading to more than two alleles present for each locus). There are only
two possible sources. First, a chimeric error will result from turning a run plate 180 degrees,
whereby e.g. the A1 position became the H12 position. This error produces what looks like a
legitimate DNA pro�le but made up of some loci from �sh A1 mixed with the remainder of loci
from H12 from the run plates that were not rotated. Second, if two run plates are swapped, the
loci for those panels (but not for the other panels on the same �sh) will be swapped. Clearly,
these errors will lead to any POP members on the plate being overlooked, a�ecting 100-200 �sh
at a time, so it is important to catch them. Fortunately, once one is aware of these possibilities,
it is fairly easy to write QC software using the check-plate results and/or the controls to detect
and �x the problem. We did �nd both types of chimera in this study (rarely), but thanks to
the QC protocols we were able to detect and �x them.

6.5.1 Further processing details for the �rst 5000 �sh

For the �rst 5000 �sh we developed a unique system to cope with the potential issues arising
from PCR and fragment separation methods used at the outsourcing facility (AGRF). The �rst
5000 �sh were run at AGRF as three single-plex (A, B, and C) and two multiplex (D and E)
panels. At this point the multiplex PCR was clearly the most optimal solution and we included
7 additional loci that were incorporated into an optimised set of four multiplexed panels (H,
I, J, and L). The A, B, and C panels were combined into the I and J panels while D and E
were combined into H and L. To check for generation of chimeric genotypes we used the set
of template plates that were the source of DNA for the D and E panels. Since D and E had
a common locus scored for both plates we were able to ensure that there were no chimeric
individuals there. We then ran the �rst column of each template plate for panel-I and for
panel-J. This checked the genotype calls of 8 individuals that should be identical if no mix up
had occurred. We veri�ed that all 8 genotypes for each locus was congruent across all tested
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plates indicating that no single-plex mixups had occurred. Since the template plates used were
those used to set up D and E we were then assured that there were no chimeric �sh generated
in the �rst 5000 genotyped individuals.

6.5.2 Further processing details for the last 9000 �sh

For the balance of the �sh, a unique system to identify individual template plates was developed
to ensure that the �sh on the plate could be identi�ed, and that it was not accidentally rotated
prior to sequencing. The four panels had a common locus to check on plate to plate variation,
and also to detect PCR contamination via negative water controls. Template plates were
created in a speci�c routine fashion with four positions in each plate reserved for positive and
negative controls. We used two positive control individuals on every plate with position A01
being control �sh #1 (TC-2005, male) and G12 being control �sh #2 (TC-2205, female). The
positions of the negative water controls were used to uniquely identify each plate. For example,
one plate would have water controls in position A02 and A07, while the next plate would have
A02 and A09. Care was taken to ensure that the water was placed in one odd-numbered and
one even-numbered well row due to the way the 48 capillary sequencer picked up the samples;
every dip of the sequencer thereby had one positive and one negative control, so that each
electrophoresis had internal controls to check run quality. The internal common locus control
for each individual checked to see that each �sh was scored with consistent fragment separation
for each of the panels. By use of this system for the �nal 9000 �sh, we were able to QC for
chimeric individuals, check for PCR contaminants in the master mix, ensure that run conditions
did not a�ect genotype scoring among the four panels, and also ensure that plates were not
mislabelled or loaded into the sequencer incorrectly. Our QC caught a few errors but these
were few and subsequently dealt with by a quick rerun of the PCR or fragment separation or
both.

7 Appendix 2: Rigorous estimation of false-negative (FN)

rates

The question of interest is: what proportion of true POPs could have a scoring error that leads
to the POP being overlooked? We can estimate this directly by comparing Table 3� observed
numbers of (loci compared, loci failing to match)� with Table 4 (expected version of Table 3,
assuming zero POPs and therefore zero FNs). If the expected-value calculations behind Table 4
are correct, and if there are numerous true POPs without FNs, then Table 3 should resemble
Table 4 except for numerous entries in the F0 column� which is pretty much the case. If
the Table 4 calculations were wrong for some reason17, then the upper-right-hand triangle of
numbers in Table 3 would be stretched to the left compared to Table 4� which is not the
case. Therefore, we can take the expected values in Table 4 as correct if there were no POPs,
and use the di�erences between the tables to make inferences about the true number of POPs,
and about how many FNs are in Table 3. We can do this because FNs will appear in Table 3
as an �echo� of the F0 column, predominantly in column F1, and somewhat weighted towards
the lower rows because there is more chance of a scoring error when more loci are involved.
Apart from chimeras and mass failures of PCR on a run plate, as described and ruled out in
Appendix 1, there seems no reason why scoring errors should not be independent across loci

17The only theoretical reason we can see why the calculations in Table 4 might ever go wrong, is if genotypes
at di�erent loci within each �sh are not independent, something which could arise from substantial cryptic
stock structure, with di�erent allele frequencies in the di�erent stocks. That situation is a priori unlikely
for SBT, and happily there is no suggestion of it in Table 3.
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on the same �sh; hence, provided scoring errors are uncommon to begin with, FNs are most
likely to be in the F1 column, less likely to be in F2, and rapidly less likely beyond that.
The numbers in Table 3 actually result from a second round of checking; we re-scored all the

pairs in the F0 and F1 column, and in the lower rows of the F2 column. However, only a small
percentage of the �sh were re-scored during the second round, and the level of attention paid
to these �sh may not be typical of the rest of the sample. In this section, we have therefore
analysed the data from the preliminary version of Table 3, before any selection of �sh to re-score
took place. This makes the analysis general, but also means that the results are pessimistic in
terms of FN likely FNs compared to the �nal data, because the FN/near-FP status of many
would have been cleaned up during re-scoring. The preliminary data, shown in 8, is very similar
to Table 3, the main di�erence being that the C23 row starts (3,1) rather than (4,0); this is one
case where a scoring error did cause a false-negative, though this was subsequently detected
and �xed on re-scoring. The other di�erences did not a�ect POP status of any pairs.

Table 8: Preliminary number of usable pairwise comparisons, by #loci and #excluding loci,
before re-scoring. First three columns only.

. F0 F1 F2

C11 . . .

C12 . . 5

C13 . 2 16

C14 1 4 61

C15 . 3 42

C16 1 1 18

C17 3 . 7

C18 5 . 7

C19 7 . 1

C20 2 1 1

C21 14 . 1

C22 . . .

C23 3 1 .

C24 2 . .

C25 6 . 1

SUM 44 .

7.1 Likelihood for estimating false-negative rate

Let θ be the probability that a pair of �sh will be a POP (so θ is inversely related to abundance,
etc), and let e be the probability that one shared locus in a POP will fail the parent-o�spring
compatibility test18, either through mis-scoring or mutation. Assuming scoring errors at di�er-
ent loci are independent19 and equally likely20, then the probability of f loci failing in a POP
where c loci are compared, is a simple Binomial probability. Also, for a non-POP pair where c

loci are being compared, let pNONcf be the probability that f of the loci will fail the test. For

18The basic test is: do they share a visible allele? We used a more relaxed version, so that AA vs BB
homozygotes are also deemed (potentially) compatible.

19Apart from chimeras, as described and ruled out in Appendix 1, and mass failures of PCR on a run plate
which would be picked up by our other QC checks, there seems no reason why independence could fail.

20Strictly, the probability of a scoring error that leads to rejection of POPhood probably varies somewhat across
loci, but there is not nearly enough data to estimate this; and since the set of loci that actually get used in a
comparison is a random variable, and we are only concerned with one or two errors here, the approximation
is statistically negligible.
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any given pair, this actually depends on the particular loci involved, and is already calculated
to form the basis for the expected values in Table 4. Any given pair with c loci compared is
either a POP or not, and the probability pcf that the pair will fail at f loci is therefore

pcf = θ

(
c
f

)
ef (1− e)c−f + (1− θ) pNONcf

Therefore, if nc denotes the number of comparisons using c loci in Table 3, the expected
value of cell (c, f) is ncpcf . Strictly, the distribution within each row is Multinomial, but in the
�rst few columns the multinomial �size� is enormous (millions) and pcf is small, so a Poisson
approximation is perfectly adequate. If ycf denotes the observed number of pairs in the (c, f)
entry of Table 3, then the likelihood of the �rst few columns up to F failures is (up to a
constant)

25∏
c=11

F∏
f=0

e−ncfpcf (ncfpcf )
ycf

The term pcf involves the parameters θ and e, which can be estimated via maximum likeli-
hood.
The bulk of the information on false-negative rates is contained in the F1 column (and the

F0 column, which is needed for estimating θ), with a little coming from the F2 column. To the
right, the noise from the increasingly large numbers of almost-false-positives swamps any signal
related to false-negatives with 2, 3, etc number of failures, which will be increasingly rare.

7.2 Con�dence intervals on actual FNs

Although the Hessian from the above likelihood could be used in the standard way to derive a
con�dence interval for the expected number of FNs in a replicate of this study, that would be
solving the wrong problem. Our interest lies in the actual number in this study; so, if FNs were
very unlikely beyond the F1 column, then the number of FNs would be capped above by the
total F1s seen, regardless of how many might be found if the study was repeated. This makes
quite a di�erence in practice. A Bayesian argument is required to get the answer we need.
We need the probability distribution of the number of false-negatives #FN given the ob-

served data, i.e. P [#FN |y] where #FN is the total number of False Negatives and y =
(ycf : c ∈ 11 · · · 25, f ∈ 0 · · · 1) is the observed numbers in the F0 and F1 and possibly F2
columns (F3 onward are irrelevant because the chances of 3 or more scoring errors is negligi-
ble). For simplicity of argument, say for now that we neglect the F2 column as well. Obviously,
the maximum possible value of #FN is the observed number of F1s, in this case 12. Each
of these F1 pairs is either a near-FP or an FN. The probability that an F1 pair with c loci
compared is actually a FN rather than a near-FP, is

P [1 error in c loci]× P [is POP]

P [1 error in c loci]× P [is POP] + P [match at c− 1 of c loci]× P [is not POP]

One implication is that a (C12,F1) �sh is much more likely to be a near-FP than a (C25,F1)
is, because (i) the probability of a non-POP matching by chance at 11 of 12 loci is much higher
than for 24 of 25, and (ii) the chance of a scoring error is about twice as high with 25 loci as
with 12.
The FN-status of the pairs are independent21, θ and e, so the total number of F1 pairs

that are FNs is the sum of (in this case) 12 independent Bernoulli (0/1) random variables, with

21I.E. the probability that a given F1 pair is actually FN or near-FP is una�ected by the FN-status of the other
F1 pairs, given θ and e.
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probabilities depending on the number of loci involved. There is an algorithm for calculating the
Bernoulli-sum probability distribution, which is already used in the expected-FP calculations22.
Hence, given a pair of values (θ∗, e∗), we can easily compute P [#FN = x|y, θ∗, e∗] for x ∈
0 · · · 12. What we actually need, though, is

P [#FN = x|y] =
ˆ

P [#FN = x|θ, e, y] f (θ, e|y) d (θ, e)

which can be estimated by repeatedly drawing pairs (θ∗j, e∗j) from the posterior distribution
of (θ, e|y) via importance-sampling, and then averaging the P [#FN = x|y, θ∗j, e∗j] across all
the draws. This requires a prior for (θ, e), which we took to be independent uniform on log θ
and logite, plus of course the likelihood from section 7.1. A fully-conditioned con�dence interval
on #FN |y can then be found simply by inverting the cumulative distribution of #FN |y.

7.3 Results of FN analysis

We ran the above algorithms �rst on just the F0 & F1 columns of Table 8, and then on the
F0, F1, and F2 columns. In the �rst version, the Maximum Likelihood Estimate on #FNs was
1.95 and the 95% UCI was 2.46; in the second version, the numbers were 3.19 and 4.0. The
di�erence is entirely driven by the (C25, F2) entry, discussed further below; without it, the two
versions are almost identical. Both versions indicated a very low expected number of FNs in
the F2 column or beyond (less than 10% of the number expected in F1), although the second
version clearly identi�ed an observed likely-FN at (C25, F2).
As noted above, these FN estimates are prior to rescoring the F0, F1, and F2 (from C16

down) columns. Rescoring certainly �xed one FN, at (C23, F1), so the appropriate estimates
and limits for the number of FNs in our �nal dataset (after re-scoring) are no more than (MLE
0.95, UCI 1.46) or (MLE 2.19, UCI 3.0).
The nature of the mismatching loci for any pair provides additional information on whether

an F1 or F2 pair is really a FN, as opposed to just being a lucky near-FP from an unrelated
pair. This is because one type of mismatch arises from a comparatively common scoring error
(overlooking one allele, so a �sh is recorded as AA when it should be AB), whereas the other
type (incorrect size for an allele) is extremely unlikely; this was apparent in the results from
our routine QC rescoring exercises of individual �sh. In particular, after carefully rescoring the
(C25, F2) pair, the only way it could be a FN POP would be to have a mutation at one locus
and a scoring error at a second� a very unlikely conjunction of events. However, this pair is
also a very unlikely event under the only two other possible scenarios: an exceptionally-matched
unrelated pair, or a well-matched uncle-nephew-pair (which must be much, much rarer than
unrelated pairs). In the end, the only way to resolve the true status of the (C25, F2) pair will
be to use more loci, which we plan to do as part of a di�erent project. We cannot at present
decide whether to treat (C25, F2) as a FN (in which case we should use the second version of
the FN analysis, including the F2 column, to get a point estimate of about 2 FN), or not (in
which case we should use the �rst version, with a point estimate of about 1 FN).
Thus, further detailed investigation of the rescored F1s and F2s might eventually shed some

light on whether we should expect 0, 1, or 2 FNs in addition to our 45 POPs. However,
whichever the answer, the analysis in this Appendix demonstrates that the proportion of FNs
to true POPs must be small, and is certainly not going to a�ect the qualitative conclusions of
this project.

22K Butler, M Stephens (1993): The distribution of a sum of Binomial random variables. Tech Rep 467,
Department of Statistics, Stanford University
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8 Appendix 3: What might cause overdispersion in the

POPs?

The CV of the �cartoon� abundance estimate is just the CV of the number of POPs found. We
have treated this as �count data�, so that its variance is equal to its mean. The question arises:
under what circumstances might there be overdispersion in this count?
Overdispersion would arise when the 38,000,000 comparisons are substantially non-independent.

It's easy to see why a high frequency of (half)sibs would do that: if every juve had one full-sib
partner in the sample, then the results for one sibling completely predict the results for the
other, and the information content would only be that of 19,000,000 independent comparisons.
(Recall that each POP is counted, even if the same adult is involved in several POPs� so
there's no bias, only a loss of precision.) Fortunately, (half)sibs do not seem to be common
in our juvenile samples, and for clarity we therefore ignore the possibility of (half)sibs in the
discussions below.
There are other phenomena that might at �rst be suspected of causing overdispersion, but

careful thought is required. For example, the 38,000,000 SBT comparisons are based on "only"
13,000 �sh, each being used in multiple comparisons. Does this somehow mean that the �e�ec-
tive sample size� is much smaller, i.e. that there is somehow serious non-independence amongst
the 38,000,000 comparisons? No� but the reasoning is subtle. Ignoring sibs as per above,
consider a comparison of two �sh, juvenile J and adult A, in the "cartoon" version. With no
further information except the population size N, the chance of a POP would be 2/N. Assume
(as with SBT) that N is large, the sample is moderately large, and the number of POPs is
small. Independence amounts to the following question: does knowing that (i) J is not in a
POP with any of the other non-A adults, and (ii) A is not in a POP with any of the other

non-J juveniles, help us to predict the outcome of the J-A comparison?
The information in (ii) is irrelevant (given that the other juveniles aren't halfsibs of J), be-

cause if N is large then the number of non-J o�spring of any adult in the sample will almost
always be zero anyway, so knowing that it really is zero for one particular adult is not informa-
tive. And as for (i): knowing that the other sampled adults aren't J's parents tells us almost
nothing almost nothing about whether A will be J's parent23. Finally, comparisons that don't
involve either J or A are obviously irrelevant. So, at least in the more than 98% of comparisons
that don't involve a member of a true POP, knowing the result of all the other comparisons
doesn't help us predict the outcome of this one� which is the de�nition of independence. [If
the sampled fraction of �sh was a substantial proportion of the total population size, and/or
if a substantial proportion of the sampled �sh turned up in POPs, and/or if there were many
sibs in the samples, this argument would break down.]
Another phenomenon that might super�cially seem like a source of overdispersion but actually

isn't, is the non-random sampling of juveniles, e.g. shifts in sampling locations within the GAB
between years. Non-random juvenile sampling has in fact been a deliberate aspect of the design
all along, from the 2007 CCSBT paper onwards; for example, we don't sample any juveniles o�
South Africa. However, as noted in that paper, the only things that matter in order to keep the
comparisons statistically independent, are that (i) there are few (half)sibs among the juvenile
samples, and (ii) that the adults be sampled randomly (apart from selectivity and other e�ects
that are speci�cally allowed for in the mini-assessment). Even then, all that "randomly" has
to mean is: "a parent of one of the sampled juveniles is just as likely to be sampled X years
after that juvenile's birth, as is another adult of the same sex, age, and size".
There is one other phenomenon which theoretically could be important for CK abundance

23"Almost" because this information does slightly reduce the potential pool of parents, from N to [N minus the
adult sample size].
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estimates, not so much for overdispersion as for bias: an unholy trinity of cryptic stock structure,
biassed sampling of adults, and biassed sampling of juveniles. A lengthy explanation was given
in our 2007 CCSBT paper, and is copied below. The key point to add in 2012, is that we
have now checked as suggested in 2007 for any temporal substructure on the spawning grounds
(see 3.3), and found none; we have not checked spatial substructure, but as below this seems a
priori unlikely.

[4.7 from CCSBT 2007 CK paper] Population structure

So far, it has been assumed that SBT form a single population with complete interbreeding.
Although no previous study has found evidence of population structure, conventional population
genetics applied to large populations is a notoriously blunt tool for that task. It turns out
(see [6.0.6]) that the basic method is unbiassed even when there is population sub-structure,
providing that sampling is proportional to abundance across either the sub-populations of
adults, or the sub-populations of juveniles. In our SBT project, juvenile samples come only
from the GAB, so if there are substantial numbers of non-GAB juveniles out there somewhere,
then juvenile sampling will obviously not be proportional. However, adult samples should cover
the spawning season and spawning area, although not necessarily in strict proportion to adult
SBT density. Hence, the basic estimator would exhibit population-structure bias if and only if
three conditions all apply:

1. adults exhibit �delity across years to particular parts of the spawning season and/or
spwaning grounds;

2. the timing or location of spawning a�ects a juvenile's chances of going to the GAB (rather
than going elsewhere or dying young);

3. sampling coverage of the spawning grounds (in time and space) is substantially uneven,
and correlated with the �delity patterns in (1). (In other words, if adults showed timing-
�delity but not spatial-�delity, whereas coverage was even across the spawning season but
not across the spawning grounds, then the uneven spatial coverage would not matter.)

There is no direct information on condition 1. With respect to condition 2, much the greatest
part of SBT spawning occurs within the North Australian Basin ([?]), and particularly towards
the east and south of the basin beyond the Australian shelf, where the Indonesian through-�ows
in summer would tend to push the larvae together into the Leeuwin current. These conditions
seem unlikely to induce a strong location-of-spawning e�ect on most juvenile's subsequent
propensity to go to the GAB24, although a timing-of-spawning e�ect is possible. With respect
to condition 3, the Benoa-based operations that we are sampling coincide well with this main
spawning area ([?], Figure 4.3.1; note that the �shing range has expanded southwards since
then, as per [?]). Approximate timing-of-e�ort information could be probably be obtained from
the sampling program; spatial information has proved harder to get, but the data obviously
do exist somewhere at the company level, and some insights may be obtainable through, for
example, the observer program ([?]) or the Fishery High School program ([?]).
Fortunately, there is enough information in the project data to check the �rst two conditions.

If the seasonal/spatial distribution of identi�ed parents of GAB juveniles is substantially dif-
ferent to the seasonal/spatial distribution of all adult samples, then that is a clear signal that

24A small proportion of larvae are found to the north of the NAB and west of it. Di�erent oceanographic
conditions apply there, and those larvae could well end up somewhere di�erent as juveniles. However, at
least until 1981, this proportion was small.
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the �rst two conditions do apply. Such evidence of population structure25 would be of major
qualitative importance to management, regardless of its impact on quantitative results.
If and only if the �rst two conditions do apply, then the third could be checked using timing

(and perhaps location) information on Indonesian samples. And if all three conditions do apply,
then it should be possible to adjust for the uneven adult sampling probabilities, again using
sampling coverage information. That is very much a bridge to be crossed only if we come to it;
but because the sampling coverage is at least fairly complete26 even if not necessarily balanced,
we would in principle be able to develop a correction if required.

[6.0.6 from CCSBT 2007 CK paper] Population substructure and sampling bias Sup-
pose the entire adult population of N is made up of two sub-populations with proportions π and
1−π, and that adults are sampled proportionally from their respective sub-population, so that
the overall adult sample contains mAπ �sh from the �rst sub-population and mA (1− π) from
the second. Juveniles, though, are not necessarily sampled in proportion to sub-population
abundance; let mJ1 and mJ2 be the numbers sampled from each sub-population.
If the entire dataset is analysed without regard to sub-populations, then the expected number

of POPs can be calculated by considering samples from each sub-population separately (since
there will be no cross-POPs between juveniles from one sub-population and adults from the
other):

E [H] =
2mJ1 (πmA)

πN
+

2mJ2 (1− π)mA

(1− π)N

=
2mJ1mA

N
+

2mJ2mA

N

=
2mJmA

N

just as in the case without sub-populations. In other words, the basic estimate is unbiassed
provided at least one life-stage is sampled in proportion to sub-population abundance. If both
are sampled disproportionately, though, there will be bias.

25�Population structure� is probably the wrong phrase, because the behaviour does not have to be heritable;
adult spawning preference need not be related to earlier juvenile GABness, even if o�spring's GABness is
driven by adult spawning preference.

26Again: over the great majority of the spawning area.
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