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Abstract 

Assessing the risks of fishing-induced mortality on bycatch and protected species is a priority for fisheries managers, 
who require an accurate estimation of the fleet and individual vessel bycatch interaction rates. Standard estimation of 
individual vessel bycatch rates (number of interactions divided by total effort) can be biased, as it does not consider 
effort heterogeneity among the fleet and ignores prior knowledge of the fleet or fishery interaction rate. We develop 
an empirical Bayesian approach for estimating vessel bycatch rates that: (i) considers effort heterogeneity among 
vessels and; (ii) pools the data from similar vessels for more accurate estimation of interaction rates. The proposed 
average interaction rate of a vessel is, therefore, the weighted average pool rate and the standard interaction rate of the 
vessel. We apply this inference method to the estimation of seabird bycatch rates in the component of the Australian 
Eastern Tuna and Billfish Fishery targeting southern bluefin tuna to illustrate its capability to provide fishery managers 
with insights on fleet-wide bycatch mitigation performance and identification of disparate vessels for targeted 
compliance intervention. This method can also be used by fishery managers to develop fleet-wide performance criteria 
or quantitative evaluation standards for bycatch species, similar to that implemented for seabirds in Australia under 
the Threat Abatement Plan. 

Introduction 
Bycatch in commercial wild-capture fisheries is an international issue of growing concern for 
fisheries managers (Diamond, 2004; Gilman et al., 2008). For the purposes of this study, bycatch 
is defined as the “portion of the catch that is discarded at sea dead, or injured to an extent that 
death is the result” (Hall et al., 2000). Species that have little or no economic value to fishers (e.g. 
due to their small size); prohibited species (e.g. those targeted in other fisheries); regulatory 
discards (e.g. species below the size limit); or protected species (e.g. marine turtles, seabirds etc.) 
are all various examples of bycatch species that may be subsequently discarded at-sea (Diamond, 
2004). 

While the 1982 United Nations Convention of the Law of the Sea (UNCLOS) under Article 61 
requires signatories to determine the biological and ecological impacts of fishing on non-target 
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(bycatch) species, this is made more difficult due to a lack of fishery-dependent data in most 
commercial fisheries. As reported by Tuck (2011), bycatch data are often limited due to inadequate 
and incomplete information on vessel characteristics, fishing effort and species composition. Many 
bycatch species are under or over reported, non-reported or misreported in fishery logbooks 
(Walsh et al., 2002; Walsh et al., 2005; Sampson, 2011; Mangi et al., 2016; Macbeth et al., 2018). 
For example, in an examination of catch rates for blue shark (Prionace glauca), Walsh et al. (2002) 
found that underreported catches in fishery logbooks were due to fishers being too busy to report 
incidental catches. In a similar study examining the catch rates for blue marlin (Makaira nigricans), 
Walsh et al. (2005) observed that fisher-reported logbooks tended to over-report catches due to 
fishers misidentifying striped marlin (Tetrapturus audax) and shortbill spearfish (Tetrapturus 
angustirostris) as blue marlin. The inadequacies of fishery logbook data have often led decision-
makers to use at-sea observer data as an alternative to quantify bycatch taken by commercial 
fisheries. However at-sea observer data has its own suite of biases (Benoît and Allard, 2009; 
Faunce and Barbeaux, 2011; Wakefield et al., 2018) and any extrapolations of at-sea observer data 
at low-levels of coverage is likely to produce imprecise results when capture of species is a rare 
occurrence (Wakefield et al., 2018).  

In commercial fisheries where logbook data can be verified and trusted as an accurate 
representation of fishing catch and effort, the nominal discard rate for bycatch or interaction rate 
for protected species can be calculated at a fishery or individual vessel level. This is often done by 
dividing the number of interactions by the total effort for a given vessel. This is termed the 
“standard estimation rate”. This vessel-level estimation could be unbiased if there are enough 
observations and fishers have not changed their fishing practices over the time period assessed. 
However, this is often not the case as different vessels enter and exit the fishery through time and 
change their fishing practices, influencing catchability (Tuck, 2011). Furthermore, consider two 
longline vessels with the same standard seabird interaction rate of zero (0.0 interactions per 1,000 
hooks), where vessel one expended a significantly greater amount of effort compared to vessel 
two. A standard estimation rate would suggest that both vessels are performing identically; 
however from the perspective of a fishery manager, vessel one is outperforming vessel two since 
there have been no interactions with a substantially greater exposure to risk (i.e. effort). Moreover, 
a fishery manager is more confident in the interaction rate of vessel one simply due to the greater 
level of effort expended compared to vessel two, whose zero interaction rate could simply be due 
to chance through limited exposure. The standard estimation also only uses each vessel’s 
information for estimating the rate and ignores prior knowledge about the overall rate in a given 
fleet or a fishery. Given these limitations, we propose a “revised estimation rate” at a vessel level 
using an empirical Bayesian approach that considers effort heterogeneity among the fleet and pools 
data from “similar” vessels for rate estimation. Similar vessels being those that share comparable 
fishing behaviour patterns (i.e. “fishing styles” after Boonstra and Hentati-Sundberg (2016)) and 
are pre-determined using a machine learning clustering method (see, Parsa et al 2018, unpub. data 
for further information on the cluster analysis). The proposed revised estimation rate of a vessel is 
therefore the weighted average of the pool (fleet) rate and the standard estimation rate of the 
individual vessel. 

We contend that a vessel-level estimation of bycatch rates is equally valuable as one at a fleet or 
fishery-level. A vessel-level estimation may provide insights on why a particular vessel is 
underperforming (higher interaction rate) or outperforming (lower interaction rate) the fleet 
average (e.g. due to fishing in an area with high abundance of protected species or appropriately 
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deploying mitigation devices, respectively). Assessing individual vessel performance also ensures 
individuals are accountable for their actions and allows managers to seek further information or 
undertake targeted compliance action against vessels with poor performance. By comparing the 
vessel-level estimated bycatch or interaction rates to the fleet-level-estimate allows managers to 
set quantifiable bycatch targets for the fishery. Quantifiable targets, standards or reference points 
that guide expected levels of performance can create incentives for industry to reduce bycatch or 
interaction rates, through for example, altering fishing behaviour or adopting alternative bycatch 
mitigation technology (Diamond, 2004; Grafton et al., 2007; Kirby and Ward, 2014; Lent and 
Squires, 2017). When these performance standards create economic incentives or disincentives 
(carrot and stick) for industry, they have the potential to further improve fleet bycatch performance 
and reduce regulatory costs (Gjertsen et al., 2010; Pascoe et al., 2010). For example, in Australia, 
there is a Threat Abatement Plan (TAP) for seabirds, which sets a maximum permissible bycatch 
rate of 0.01 to 0.05 birds per 1,000 hooks in various Australian Commonwealth fisheries 
(Commonwealth of Australia, 2018). Attached to this performance standard are criteria developed 
to guide the management response when the bycatch rate is exceeded, which may target individual 
vessels or the fishery and may have immediate economic costs (Commonwealth of Australia, 
2018). 

In this paper, we outline an inference method for calculating a “revised estimation rate” and apply 
it to a case study of seabird interaction rates in the southern bluefin tuna (cluster) component of 
the Australian Eastern Tuna and Billfish Fishery (ETBF). We use the Australian ETBF as an 
example because we are confident that the fishery logbook data is an accurate representation of 
catch composition and interactions with protected species in the years subsequent to the 
introduction of EM technologies (Emery et al., 2019a). The results of the analysis are discussed in 
the context of (i) developing quantitative performance standards for bycatch and protected species; 
(ii) reducing the costs of fishery compliance and enforcement activities through targeted 
intervention and; (iii) making fishers individually accountability for their bycatch and interaction 
rates. 

Methodology 
In our model, we assume that the average amount of bycatch or number of interactions (hereafter 
termed interactions) is proportional to the total units of effort. This assumption is valid and it is 
supported by both literature (Hatch, J. M.  2018)and our discussion with fishery managers (AFMA, 
pers. comm. 2018). We should emphasise that other factors could contribute to the interaction rate 
such as climate, food abundance and availability, as well as seasonality. While they are not 
considered in our study, in an effort to keep the model as simple as possible, they could be 
incorporated as covariates.  

One of the main strengths of our model is that it requires minimal data. We only need total effort 
and the total number of interactions for each vessel in the fleet/fishery in the timeframe of interest. 
To estimate the interaction rate of individual vessels, we develop a Poisson-Gamma (Carlin and 
Louis 2010) model considering two sources of uncertainties: (i) the uncertainties that are arising 
from lack of knowledge (e.g. the actual interaction rate is not known), termed as epistemic 
uncertainty and; (ii) uncertainty associated with natural variations in the sample, termed as aleatory 
uncertainties (e.g. same amount effort leads to a different number of interactions). Consequently, 
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we use a gamma prior distribution to capture epistemic uncertainties within the pool of data to 
model the variation in interaction rates as we do not know the actual rates. That is, we assume that 
the interaction rate of vessel 𝑖 is a random variable with the gamma distribution of shape parameter 
𝛼 and scale parameter	𝛽. We denote it by 𝜆& ∼ 𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽) and the gamma probability density 
function can be expressed as Equation (1). The mean of a gamma distribution is  .

/
 . 

 
𝜋(𝜆&) =

𝛽.𝜆&
.23𝑒2/56
𝛤(𝛼) , 𝛼 > 0, 𝛽 > 0, 𝜆& > 0. 

(1) 

We later update the prior for each vessel to estimate its interaction rate. The updating process can 
be done quickly as the posterior of gamma distribution remains in the gamma family, and we only 
need to update the shape and scale parameters. Assume we observed 
𝑛< species interactions for 𝐸< units of effort. The Bayes Theorem implies that the posterior 
distribution is of the form of Equation (2). 

 
𝜋(𝜆|𝑛<, 𝐸<) =

(𝛽 + 𝐸<).𝜆.@AB23𝑒2(/@CB)5

𝛤(𝛼 + 𝑛<)
, 𝛼, 𝛽, 𝜆, 𝐸< > 0, 𝑛< = 0,1,2,3,… 

(2) 

 

Assuming the actual interaction rate 𝛬& = 𝜆& for vessel 𝑖 and it is constant for given 𝐸& units of 
effort, then we can model the aleatory uncertainty in the interaction rate by a Poisson probability 
distribution expressed in Equation (3). 

 
𝑃(𝑁& = 𝑛&|𝛬& = 𝜆&) =

(𝜆&𝐸)A6𝑒256C6
𝑛! , 𝐸& > 0, 𝜆& > 0, 𝑛& = 0,1,2, . . .	 

(3) 

Since we do not know the true 𝛬& for vessel	𝑖, we average the Poisson distributions, weighted 
against the prior distribution as Equation (4). This provides the probability distribution of the 
number of bycatch interactions that will interact with vessel	𝑖, based only on our knowledge of the 
pool, i.e. the prior distribution. 

 
𝑃(𝑁& = 𝑛&) = L

(𝜆&𝐸&)A6𝑒256C6
𝑛&!

𝛽.𝜆&
.23𝑒2/56
𝛤(𝛼) 𝑑𝜆

N

<

, 𝛼 > 0, 	𝛽 > 0,	𝑛& = 0,1,2,… 
(4) 

Greenwood and Yule (2010) proved that the distribution of 𝑁& is Negative Binomial as shown in 
Equation  (5). 
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𝑃(𝑁& = 𝑛&) =

𝛤(𝑛& + 𝛼)
𝛤(𝛼)𝑛&!

P
𝛽

𝛽 + 𝐸&
Q
.

P
𝐸&

𝛽 + 𝐸&
Q
A6
, 𝛼 > 0, 	𝛽 > 0,	𝑛& = 0,1,2,… 

 (5) 

To estimate the parameters of prior	(𝛼, 𝛽), we can either use expert judgment or only the data. Our 
approach is to use the data (empirical approach).  We pool all data and assume they are generated 
from the Negative Binomial distribution of Equation (5). We use the Maximum Likelihood 
Estimates (MLE) of pooled data as the parameters of prior. We can also construct a joint 
confidence region for the prior parameters using likelihood theory (Lawless, 2011). Let �̂� and �̂� 
be the estimated values of prior parameters and vessel 𝑖 interacted with 𝑛& bycatch species when 
𝐸& units of effort have been deployed. Then, we can estimate the average interaction rate of vessel 
𝑖 as follows: 

 
𝐸(𝜆&|𝑁& = 𝑛&) = L 𝜆&

N

<

𝜋(𝜆&|𝑁& = 𝑛&, �̂� , �̂�)𝑑𝜆& =
�̂� + 𝑛&
�̂� + 𝐸&

=
�̂�

�̂�
(1 − 𝑧) +

𝑛&
𝐸&
𝑧, 

(6) 

where	𝑧 = C6
/̂@C6

.  

The estimated rate can be interpreted as a weighted average of the pool mean (�̂� / �̂�) and the 
standard rate (𝑛&/𝐸&). Equation (6) also implies that when we have more experience with a vessel 
(higher	E), more weight will be allocated to the standard rate, while for a vessel with less effort, 
more weight will be allocated to the pool mean. 

Australian seabird interaction case study 
We apply this method to vessels in the SBT sub-fishery of the Australian Eastern Tuna and Billfish 
Fishery (ETBF) to illustrate how the method can provide fishery managers with insights on fleet-
wide bycatch mitigation performance and identify non-performing vessels for targeted compliance 
intervention. The ETBF is a pelagic longline fishery that operates within the Australian Exclusive 
Economic Zone (EEZ) and adjacent high seas waters targeting yellowfin tuna (Thunnus albacares), 
bigeye tuna (Thunnus obesus), albacore tuna (Thunnus alulunga), broadbill swordfish (Xiphias 
gladius) and striped marlin (Tetrapturus audux). The ETBF operates from Cape York, east and 
south to the Victorian – South Australian border, including waters around Tasmania and the high 
seas of the Pacific Ocean. In 2017, there were a total of 39 longline and two minor line vessels 
active in the ETBF (Patterson et al., 2018). In the ETBF, vessels that have fished more than 30 
days in the previous or current fishing season must have operational EM technology installed. For 
the purposes of our study, the SBT sub-fishery comprises all sets where SBT was the dominant 
catch (see Parsa et al, unpub. data). Consequently, the SBT sub-fishery is defined as the collection 
of all SBT sets in the fishery. We limit our analysis of the SBT sub-fishery to the years 2016 and 
2017 when EM technologies were installed on full-time ETBF vessels because recent studies have 
indicated that fishers have improved their logbook reporting of bycatch and protected species, and 
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there is high congruence between logbook and EM analyst reported seabird interactions (Larcombe 
et al., 2016; Emery et al., 2019a; Emery et al., 2019b). 

Results 
There was high heterogeneity in the effort data for the 17 ETBF vessels operating in the SBT sub-
fishery from 2016 and 2017, with one vessel setting nearly 150,000 hooks and another less than 
10,000 hooks (Figure 1). Furthermore, the number of interactions with seabirds varied among 
vessels with similar effort. For example, Vessel_ID 2, and 8 expended a similar amount of effort 
(30-40,000 hooks) in the sub-fishery during 2016 and 2017 but the number of recorded seabird 
interactions was different. The difference could be due to efficient implementation of seabird 
mitigation strategies.  

 
Figure 1: Total seabird interaction and total effort of 17 vessels in SBT sub-fishery of ETBF for the years 2016-
2017. 

Further exploration of the large amount of effort by Vessel_ID 1 in 2016 and 2017 revealed 
significant annual and seasonal variation in fishing effort (Figure 2). For example, the vessel was 
not active in the fishery during January to March 2016 and the effort in April to June 2016 is less 
than half of the effort from the same season in 2017. Moreover, even with a similar amount of 
effort in October to December in both years, the number of seabird interactions are different 
(aleatory uncertainty). 

There was a strong positive linear correlation (Pearson’s r = 0.82) between the number of seabird 
interactions and the effort for each vessel (Figure 3). This suggests that considering the number of 
interactions proportional to the amount of effort in SBT sub-fishery of the ETBF is a valid 
assumption.  

To estimate the seabird interaction rates in the SBT sub-fishery of the ETBF, we assume that the 
interaction rate of each vessel is constant during 2016 and 2017 but we expect some variations in 
the number of interactions with a similar amount of effort (aleatory uncertainty). As suggested in 
the model, we calculated the pool estimates (𝛼W, 𝛽X) in Equation (5) using MLE method as 𝛼W = 	0.31 
and 𝛽X= 9773.  We use the estimates to calculate the fishery mean interaction rate (0.31/9773*1000 
= 0.031) as well as each vessel mean interaction rate using Equation (6)   As model suggested we 
observed that the estimated revised interaction rates of vessels with low fishing effort are closer to 
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the average of the sub-fishery while these revised interaction rates are similar to standard rates for 
vessels with high fishing effort (see Figure 4).  

 

 
Figure 2 Total effort and total seabird interactions of vessel 1 during 2016-2017 across different seasons. 

 
 Figure 3  The number of seabird interactions against the total effort of 17 vessels in SBT. The black line is the 
trend line. 

 
Figure 4 Estimated interaction rates against standard interaction rate of vessels. The size of each point represents 
total effort of each vessel in 1000 hooks. The red line is the identity line and the blue line is fishery average rate.    



	 8	

We can then construct the posterior distribution of the average seabird interaction rate of each 
vessel.  For example, as illustrated in Figure 5, Vessel_ID6 has the greatest number of interaction 
rates below 0.02 while Vessel_ID 17 has the greatest number above 0.03. This suggests that 
considering uncertainties the Vessel_ID 6 outperforms Vessel_ID 17.    The mean model estimated 
interaction rate of Vessel_ID 17 is closer to the fishery average but with a tighter distribution. 

 

Figure 5 Posterior distributions for the Vessel_ID 6 (red) and Vessel_ID 17 (green) on their mean interaction 
rates and distribution of fishery average interaction rate (blue).  

Finally, we present the summary of estimated interaction rates of 17 vessels in the SBT sub-fishery 
of the ETBF and the associated uncertainty with each estimation, which shows that the SBT sub-
fishery average interaction rate is below the maximum permissible bycatch rate of 0.05 
recommended in the Australian Seabird Threat Abatement Plan (TAP) (Commonwealth of 
Australia, 2018). (Figure 5).  

The results of the model can be communicated in risk language. Here we propose a simple risk 
ranking framework using the outcome of the model. We also propose some examples of 
management intervention actions based on different levels of risk.  We can define three risk levels 
based on the estimated interaction rates, uncertainty associated with estimation and management 
goals. Group one (high-risk elements) includes elements (e.g. vessel/fleet/fishery) with high 
interaction rates and tight confidence intervals for the estimated rates. A high interaction rate can 
either be defined relative to the target interaction rate of the fishery (e.g. TAP reference point) or 
the average interaction rate of the fishery. For example, Vessel_ID 1 and Vessel_ID 12 can be 
labelled as high-risk vessels since their interaction rates are above the fishery average and also 
TAP reference point (Figure 6.). Group two (low-risk elements) contains elements with low 
interaction rates and tight confidence intervals for the interaction rates. Vessel_ID 3 and Vessel_ID 
5 can be considered as low-risk elements (Figure 6). Group three (uncertain-risk elements) 
comprises elements where there is high uncertainty associated with the estimated rates. For 
example, Vessel_ID 4 can be considered as an uncertain-risk element since the confidence interval 
for the average estimated rate is relativity large even though the estimated interaction rate is close 
to the fishery average. Fishery managers can intervene by defining trigger actions based on 
different levels of risk. For example, the low-risk elements can be promoted as the best practices 
in the fishery, while the high-risk items might be considered for immediate corrective actions. For 
uncertain-risk elements, managers may consider different actions such as a wait and see strategy 
to monitor the longer-term performance of the element or invest in buying down the uncertainty 
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by allocating more resources in terms of observer coverage or reviewing the substantial proportion 
of recorded videos of sets when electronic monitoring is in place. 

 
Figure 6 Seabird interaction rates of 17 SBT vessels. The red line represents TAP recommended reference point, 
and the blue line represents SBT average interaction rate. 

Conclusion 
We developed a method to estimate the interaction rate at a vessel/fleet level to overcome some of 
the shortcomings of standard rate estimation. The model has strengths, including that it requires 
minimal data and the results can be immediately translated into management actions to manage 
bycatch. The average interaction rates of the fleet/fishery estimated by the model can be used to 
define the fishery bycatch management target or bycatch quota per vessel when there is no bycatch 
target reference point, similar to the seabird TAP reference point, for the species of interest in the 
fleet/fishery.  
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