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SBT CLOSE-KIN MARK-RECAPTURE WITH PARENT-OFFSPRING AND

HALF-SIBLING PAIRS: UPDATE ON GENOTYPING, KIN-FINDING AND

MODEL DEVELOPMENT

MARK V. BRAVINGTON, J. PAIGE EVESON, PETER M. GREWE AND CAMPBELL R. DAVIES

Abstract. Close-kin mark-recapture (CKMR) was �rst used to estimate the absolute abundance of

adult (i.e. spawning age) SBT in 2012. The data consisted of Parent-O�spring Pairs (POPs) that were

identi�ed genetically using highly-variable microsatellites. The value of those data and of the associated

�stand-alone� CKMR model for assessment and monitoring of the spawning stock have been recognised

by the CCSBT; the CCSBT Scienti�c Research Program now incorporates the annual ongoing collection

and processing of genetic samples, as well as investing in design studies. Here we report on (i) the appli-

cation of a new method for identifying POPs and Half-Sibling Pairs (HSPs), based on Single Nucleotide

Polymorphisms (SNPs) instead of microsatellites, and genotyped with modern Next-Generation Sequenc-

ing methods, using speci�cally designed DArTcap assays; and (ii) the development of a new stand-alone

CKMR model that uses these new data in a population-dynamics framework that allows for length-, age-,

and sex-structure among adults. A total of ~17,000 tissue samples from adult (Benoa, Indonesia) and

juvenile (Port Lincoln, Australia) SBT collected over the period 2005�2015 have now been genotyped.

Using the roughly 16,000 genotypes remaining after quality-control checks, we identi�ed 77 POPs, 140

de�nite HSPs and 4 Full-Sibling Pairs; the true number of HSPs is estimated to be about 10% greater,

because of the stringent criteria required to exclude false-positives. Examination of mitochondrial DNA

indicates that about 65 of the 140 HSPs shared a mother whereas 75 shared a father, consistent with

an equal sex-ratio in adult SBT. The POP and HSP data have been incorporated into the reference set

of the CCSBT OMs for the 2017 stock assessment process. It has not been possible to �nish the new

stand-alone CKMR model in time for the ESC, due to the extremely tight schedule for the whole project,

the later-than-expected completion of genotyping, and the priority placed on completing quality control

and diagnostic analysis for the identi�ed HSP and POPs. The stand-alone CKMR model will be complete

by the end of 2017, and will be available for review at OMMP9 and consideration by the ESC in 2018. We

include here an overview of the bene�ts of the combined POP-and-HSP approach, including the challenges

for model development and initial considerations of solutions.
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1. Introduction

CKMR uses modern genetics to �nd pairs of close relatives amongst large collections of tissue samples.

It then embeds the number of pairs found, along with covariates such as their age and sex and date of

collection, in an extended mark-recapture framework, where �recaptures� are kin of an animal rather than

the animal itself. This allows direct estimation of adult abundance and other demographic parameters,

without needing to rely on CPUE or catch data. Bravington et al. (2016b) provide an overview and

details of the underlying statistical theory.

CKMR has proved very useful to CCSBT for providing �shery-independent monitoring of spawning-

stock biomass, and for establishing key biological parameters relevant to management, such as fecundity-

at-age. The initial application to SBT was based on Parent-O�spring Pairs (POPs), identi�ed using

microsatellite loci, between juveniles collected from the Great Australian Bight (GAB) and adults from

Benoa, Indonesia between 2006 and 2010; it is described in Bravington et al. (2012), Hillary et al. (2013),

Bravington et al. (2014), and Bravington et al. (2016a). From 2011 onwards, continued sample collec-

tion has been supported by CSIRO and CCSBT in anticipation of future CKMR analysis. However,

no large-scale genotyping has been done since the completion of the original study. In 2014 and 2015,

CSIRO proposed changing the genotyping technique from microsatellites to a modern Genotyping-By-

Sequencing (GBS) method here referred to as�DArTcap� (TM), which uses Single Nucleotide Polymor-

phisms (SNP) loci rather than microsatellites; see Bravington et al. (2015) for more details. There were

three independently compelling reasons for moving to SNP loci for CKMR:

(1) future-proofed

(2) cheaper

(3) able to �nd Half-Sibling Pairs (HSPs) as well as POPs

In the context of stock assessment, the last point is the most important, since having HSPs will permit

a direct estimate of adult mortality rate, without requiring untestable assumptions. With the inclusion

of HSP data, selectivity on adults can, in principle, be separated from natural (and �shing) mortality.

This is a notoriously tough problem for �sheries in general, let alone for SBT.

The proposed change of genotyping method was independently reviewed (R. Waples and E. Anderson,

in addendum to Bravington et al., 2015) ) and agreed by the Commission (CCSBT ESC, 2015), and a

design study was completed under the CCSBT Scienti�c Research Program (Bravington et al., 2015).

The CCSBT allocated funding from the SRP to sequence and genotype samples from 2014 onwards

(Anon 2014, Attachment 11. Anon 2015), CSIRO agreed to develop the new stand-alone CKMR model,

and CSIRO secured funding to sequence and genotype adult and juvenile samples from 2005-2013.

Speci�cally, the latter covered:

(1) juveniles in the original 2006�2010 samples (since their parents might still be found in post-2010

adult samples);

(2) the �back-catalogue� of as-yet-ungenotyped samples collected between 2011 and 2015.



HSP AND POP DETAILS 6

We have now completed the identi�cation of POPs and HSPs, following the steps outlined in Appendix D

of Bravington et al. (2015). The whole process has worked well, and the results are ready for use in

modeling.

1.1. From tissue samples to POPs and HSPs. The sample collection, genetic processing and iden-

ti�cation of kin involves several steps. Sampling of adults takes place in Benoa, Indonesia (during

processing of catches from the spawning ground �sheries, and at the same time as otolith collection);

sampling of juveniles takes place in Port Lincoln, Australia (from the purse seine �shery, sampled when

harvested). All samples consist of a biopsy containing ~300mg of tissue; they are stored in 2.0 mL

cryovials, frozen, and transported to the CSIRO laboratories in Hobart. Tissues are held at −80◦C
until sub-sampled for DNA extraction. For each �sh chosen for subsampling, a ~15mg slice of tissue is

weighed and placed into an extraction chamber for tissue digestion. An Eppendorf EP motion robot

completes the DNA extraction and produces two �nal plates: a sequencing plate, and a replica DNA

archive plate. Each plate contains DNA from 92 �sh, along with two blanks and two control tissue

samples whose positions on the plate allow unique identi�cation of that plate for quality control (QC)

cross-checks.

The archive plates are stored frozen at −80◦C where they remain unless required for further testing.

The sequencing plates are sent for genotyping, which again involves several steps. The �rst part is carried

out by DArT Pty Ltd (Canberra), who have developed with CSIRO a speci�c variant of Genotyping-

By-Sequencing for close-kin purposes, known as �DArTcap�. It entails: laboratory pre-processing of

the plates; analysis using a high-throughput sequencer; and bioinformatic analysis of the terabytes of

the resulting data, to produce simple data summaries for each �sh at each SNP locus of interest. The

second part of genotyping, �genotype-calling�, turns those data summaries into multi-locus genotypes

for each individual �sh� i.e., for each �sh and each locus, the pair of alleles inferred to be present.

This genotype-calling entails some quite complicated algorithms developed at CSIRO speci�cally for

DArTcap sequencing data, and also estimates the genotyping error-rates for each locus.

The �nal step prior to CKMR itself is kin-pair-�nding, which is based on the inferred genotypes and

the error-rates. For this step we have developed generic algorithms (i.e. not speci�c to DArTcap) from

basic statistical principles, which are summarized in the Appendicesand in section 5 of Bravington et al.

(2016b). Control of false-positive and false-negative rates is crucial to kin-�nding, since ~100,000,000

comparisons might be needed to �nd only ~100 true kin-pairs.

Details of DArTcap setup for SBT, including choice of loci, were determined during 2016. After

checking preliminary results, and �nalizing the funding arrangements, large-scale sequencing of around

16,000 �sh began in February 2017; the full set of sequencing-�les were received by CSIRO at the end

of March 2017. In parallel, CSIRO developed quality control (QC), genotype-calling and kin-�nding

algorithms suitable for the new type of genetic data. From April to June, these algorithms were re�ned

and applied to deliver reliable sets of POPs and HSPs suitable for use in the 2017 reconditioning of the

CCSBT OMs. The POPs were incorporated into the OM updates for OMMP8 (Hillary et al., 2017a),

with the HSPs reported separately (Bravington, 2017), as there was not time to incorporate them prior

to OMMP8. The HSP data were incorporated into the OMs subsequent to the OMMP8 (Hillary et
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Table 1. Number of samples genotyped by year and origin (after some QC checks)

Indo Port L
2006 0 1281
2007 0 1305
2008 0 1315
2009 0 1317
2010 943 1284
2011 931 938
2012 527 844
2013 933 873
2014 904 873
2015 0 922
Total 4238 10952

al. 2017b) and the results reviewed at a special webinar meeting of the OMMP Technical Group. The

OMMP agreed to include the HSP data series in the reference set of OMs for the 2017 stock assessment,

and to do an extra sensitivity run (CCSBT-ESC/0817/Report of OMMP webinar).

Table 1 summarizes the available samples from DArTcap, excluding about 700 that have been rejected

so far on QC grounds. (Also included in the sequencing results are about 5,000 replicate genotypes,

which can be used for estimating error rates.) For the sake of economy, we did not re-genotype adults

from 2006�2009, since any usable o�spring would already have been found in the original microsatellite

genotyping1 (except that 2009 adults could still have undetected 3yo o�spring caught in 2011). For

CKMR models, therefore, the new POPs and HSPs have to be combined with the old POPs from

2006�2010 samples.

2. POP results

The microsatellites used in the �rst round of SBT CKMR were adequate for �nding POPs using

Mendelian-exclusion principles; see long appendices in Bravington et al., 2014. However, a lot of statis-

tical processing and lengthy explanations were entailed to control false-positive rates and demonstrate

that false-negatives must be rare; in short, we did have enough microsatellite loci to �nd POPs reliably,

but only just enough. The DArTcap genotyping has been designed with the goal of identifying HSPs,

which is much harder than �nding POPs; consequently, �nding POPs ought to be easier and clearer

now.

As in 2012, we again identi�ed POPs using a classi�cation statistic based on Mendelian-exclusion,

but some changes to the method were required to deal with the new features of DArTcap data (see

Appendix B for details). Figure 2.1 shows part of the histogram of the modi�ed exclusion statistic,

referred to as the Weighted-PSeudo-EXclusion (WPSEX) statistic, across all DArTcapped adult-juvenile

pairs (about 66,000,000 comparisons). The POPs are visible as a small bump on the LHS. Most of the

entire histogram (to the right) has been left out here, because otherwise the true POPs are too few

1We deliberately do not check for POPs if the adult was caught in the season the juvenile was spawned; see previous
CCSBT documents for reasons.
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Figure 2.1. POPs via weighted-pseudo-exclusion (WPSEX) statistic; see Appendix B
for details. Low values indicate POPs. X-axis truncated at 0.08 to omit the gigantic peak
of UPs o� to the right.

compared to the gigantic bump of UPs whose peak is around 0.116 (exactly where theory predicts it

should be, based on allele frequencies of each locus). The giant bump drops o� very quickly to the left

of ~0.08, and the �attish tail around 0.055�0.075 will contain a number of adult/juvenile HSPs or GGPs

(Grandparent-Grando�spring Pairs), which should be somewhat rarer than true POPs on demographic

grounds.The POPs are clearly separated from non-POPs� this is much more obvious with DArTcap

data than it was with our microsatellite data. The 1500 low-information SNP loci from DArTcap are

performing better than 25 high-information microsatellite loci, at about half the cost.

As per Table 1, this uses only adults from 2010 onwards, and excludes the POPs already found

via microsatellites. However, as a check we also DArTcapped those particular pairs-of-samples already

identi�ed as POPs in 2012 study, and all of them clearly came up as POPs this time too. Interestingly,

we also DArTcapped one curious adult/juvenile pair from 2012 which was clearly not a POP according

to microsatellites but nevertheless remarkably close (just two unambiguous Mendelian exclusions in 25
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Table 2. POP breakdown (new + old). Row = Juvenile birth-year; column = adult
capture-year. From OMMP/1706/4.

loci compared). The DArTcap WPSEX statistic for this pair was around 0.06, consistent with being a

GGP or HSP.

The POPs found this time appear generally consistent with previous results; see Hillary et al., 2017a

from which Table 2 is taken. No POPs were found where the parent was caught in the same year as the

o�spring was born (such comparisons are excluded from the model anyway, and we did not check this in

2012). As in 2012, we also read the ages of all adults in POPs using otoliths collected at the same time

as genetic sampling in Indonesia. The modal age of parents (at time of o�spring's birth) was around

13 or 14. All bar one of the parents were 8yo or more at o�spring-birth, just as in 2012; this time,

though, one 7yo parent was inferred (14yo at capture, 7 years after its o�spring was born). Uncertainty

of ±1year in otolith-derived ages is not uncommon, so this may just be an age-reading error. We are

still in the process of con�rming that the parental otoliths do correspond to the genetic samples (there

is at least one clear error, where samples must have been switched).

As to the apparent skip-spawning among younger adults suggested by the 2012 data: only two of the

new POPs involve an adult caught at age 12 or less, but in both cases the number of years between

o�spring-birth and adult-capture is even, as found in 2012. Note that the occurrence of some 4yo among

our newer juveniles (section 5) will make this pattern harder to detect in future.

3. HSP results

Among 10,809 juveniles, we found 140 de�nite HSPs (and 4 FSPs). The true number of HSPs is

expected to be about 10% higher than 140, because of false-negatives� an inevitable (and expected)

consequence of the statistical criteria used to ensure exclusion of all false-positives, and something that

is easily allowed for in modelling. The HSPs and FSPs are quite clear graphically (Figure 3.1), and the

distributions of the �PLOD� test statistic match the predictions of genetic theory, indicating that our new

genotyping-and-HSP-�nding processes are working reliably. The details, which are fairly complicated,

may be found in Appendix C.



HSP AND POP DETAILS 10

Figure 3.1. HSPs. Left: log histogram to show all PLODs, for every pairwise compari-
son of juvenile SBT (about 58,000,000 PLODs in all). Green and red lines are theoretical
means for UPs and HSPs respectively. Right: actual histogram of those PLODs that are
above zero. Blue dashed line is cuto�, chosen visually to exclude false-positives.

The proportion of HSPs where both were caught in the same year is somewhat higher than would be

expected under a completely random breeding scenario. 2This is evidence of �lucky litters�, i.e. variable

survival between spawning events3 within each cohort� which is also the only way to explain the 4

FSPs4. However, SBT are overall clearly not a �sweepstake reproduction� species; the proportion of

juveniles in same-cohort HSPs is still very small (<1%), con�rming the conclusion of the 2012 CKMR

analysis that it is a reasonable approximation to treat all POP comparisons as statistically independent.

Note that same-cohort HSP comparisons are not used in our CKMR models; the HSP information comes

entirely from cross-cohort comparisons.

From analysis of mtDNA, the Maternal/Paternal proportion in the HSPs is close to 50:50 (i.e. whether

the shared parent is the Mother or the Father), both for same-cohort and cross-cohort HSPs. The mean

number of cohorts separating each HSP is very similar for Maternal vs Paternal HSPs, so that the �SSB

turnover rate� must be similar for both sexes� something which is not biologically obvious in advance.

This validates an assumption underlying the exploratory use of combined-maternal-and-paternal HSPs

in the 2017 OM, where adult sexes are not distinguished.

2In a �completely random breeding� scenario, every juvenile that we sample would have �randomly selected� its Mother
independently from the pool of potential Mothers (weighted according to their relative fecundities), and likewise its Father.
The key word is �independently� (i.e. between juveniles in our sample). This does apply to juveniles in di�erent cohorts,
but the HSP data show that is not entirely true for juveniles in the same cohort.
3Each SBT on the breeding ground spawns on many nights per year. Post-fertilization larval survival rates may well di�er
between nights.
4The chance of a female breeding twice independently with the same male is inverse to adult abundance, so cross-cohort

FSPs should be about a million times rarer than HSPs. The same applies to same-cohort FSPs, unless some spawning-
events (where one female and a small number of �courting� males all release eggs and sperm together) have higher
post-fertilization survival than others. Unsurprisingly, all 4 FSPs that we found are same-cohort.
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4. Extending CKMR models to work with HSPs as well as POPs

This section presents some of the theory behind POPs and HSPs in CKMR, in order to explain why

and how HSPs and POPs should both be used for SBT CKMR. Much of this has already appeared

in various CCSBT papers between 2012 and 2016, and a more systematic presentation is given in

(Bravington et al., 2016b). This section attempts to give a less formal explanation that highlights the

di�erent types of information that POPs and HSPs contribute. The basic points are:

• Adult mortality does not appear in the equations for POPs5, and so cannot be estimated from

POPs alone.

• Length- or age-composition data does not normally solve the problem, because those are a�ected
by selectivity as well as mortality.

� For SBT, though, there are special features of reproductive biology and the �sheries which

do permit adult mortality to be estimated just from POPs and length-compositions� but,

this relies on an untestable assumption that may not be fully valid.

• The equations for HSPs do involve mortality, so HSPs provide statistical information on average

adult mortality rate.

• HSPs alone are not enough (for teleosts) because they provide no way to estimate fecundity-size

relationship; POPs are normally not enough because they provide no way to estimate mortality,

even with length- or age-composition data. Together, POPs, HSPs and length/age-compositions

provide enough information to estimate all the important parameters of adult population dy-

namics.

Note that some of the above points do not apply to species where fecundity is fairly constant throughout

adults, e.g. most mammals and some sharks� for such species, it is sometimes �ne to use just POPs

or even just HSPs. However, the concluding dot-point is generally true for teleost �sh.

Bravington et al. (2016b) sets out a general mathematical framework for reliably using CKMR, both

for POPs and HSPs. In principle, every possible pair of �sh is compared for each kin-type67.The

demographic probability of each particular pairwise comparison giving a �yes, these two �sh are a

kin-pair!� can be computed from formulae using (i) the known covariates for the pair of �sh (age,

year of sampling, etc) and (ii) working values of demographic parameters (e.g. abundance-at-age in

the �rst year of the model, etc). In order to compute each of the pairwise probabilities (for maybe

100,000,000 comparisons, though the number of distinct types of comparison is much lower, because

there are only a few covariates (age/year/sex etc)), the demographic parameters are �rst used to �ll

out a population dynamics model through time, just as in a standard stock assessment, as well as to

5Except if live-releases are used.
6In practice, some comparisons are a priori not worth making, either because they cannot occur (e.g. POPs between
lethally-sampled juveniles) or because they are so unlikely to yield a kin-pair that they have very little informative power,
and it is not worth the e�ort to extend the model to deal with them (e.g. POPs purely among adult SBT, which are fairly
rare and would require extending the demographic model several decades into the past).
7An underlying assumption is that kin-�nding from genetics is working accurately, or at least with no false-positives
and predictable false-negative rate. The main point of this paper is to demonstrate that we have been able to do that
successfully for SBT.
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compute other necessaries such as growth curves and fecundity-at-size curves. The actual result of each

comparison (yes or no, as determined by the genotypes) is then used to compute the log-likelihood

for those particular working values of demographic parameters, treating each comparison as a single-

sample Binomial random variable. This constitutes the CKMR log-likelihood. To this are added any

other likelihood terms that also depend on the demographic parameters (such as from length- and age-

composition samples, in the SBT stand-alone CKMR model), plus log-priors (�penalties�) on random-

e�ect-parameters such as annual recruitment deviations, plus any full-Bayes log-priors if desired. This

forms the overall �objective function� in a maximum-likelihood/REML/Bayesian estimation framework,

from which all the demographic parameters may be estimated in standard fashion.

The pairwise probability formulae in section 3 of (Bravington et al., 2016b) can be implemented, in a

species-speci�c way, by considering ERRO (Expected Relative Reproductive Output). For example: in

a given pair that might be a Mother and O�spring, the ERRO is:

how many o�spring the potential Mother might have had relative to the total production

from other female adults, at the time that the potential O�spring was born.

This depends on individual-level covariates, such as when the potential-O�spring j was caught and how

old it was then (since that determines when j was born). Clearly, too, i cannot be j's Mother unless

she was alive and mature when j was born. In the simplest case of a species where all adults (of given

sex) have similar fecundity after reaching maturity� e.g. most whales� the ERRO in words translates

to the following formula in symbols:

P [Kij = MO|zi, zj] =
I [yi + α 6 yj < ti]

N♀yj
(4.1)

where I [·] is the indicator function, t is year of capture, y is year-of-birth, and α is age-at-maturity. The

notation perhaps makes the equation look more complicated than it really is. Importantly, mortality

does not appear directly in this formula; we return to this below.

When fecundity β (·) varies with length `, as it does for SBT, then (4.1) is a little more complicated,

because not all adults have the same expected reproductive output (so the denominator of the ERRO is

not just proportional to the number of adults, but also depends on their age composition), and because

�sh grow throughout adulthood (so i's length at capture will be di�erent to her length at j's birth). The

formula is (3.6) in (Bravington et al., 2016b); it is reproduced here, omitting the lengthy description of

notation. There is some computational awkwardness in predicting i's fecundity back at j's birth based

i's length when she was caught (and her age, if known), because �sh have individual growth curves, and

do not all follow the cohort average. However, the concept is simple.

P [Kij = MO|zi, zj] =
I [yi + α 6 yj < ti]× β (`i (yj))∑

a>αN♀ayj
∫
β (`) f (`|a, yj) d`

(4.2)

Equation (4.2) was the basis of the 2012 and 2013 CCSBT reports ((Bravington et al., 2012; Braving-

ton et al., 2013)), and the SBT OM uses a similar age-based formula (also aggregating male and female
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parents). Fecundity-at-size β (`) can basically be estimated in a �model-free� way, by checking how the

proportion of sampled adults that are parents changes with adult body size. Comparisons involving

larger adults generate POPs more often than comparisons involving smaller adults. Again, though, the

mortality rate z does not appear explicitly in (4.2).

The absence of z has both good and bad implications. On the plus side, since POP data can be

organized as a time-series (using juvenile birth-year as the index), it would be possible to track relative

changes in the population's total reproductive output� the denominator of (4.2)� in a �model-free�

way without knowing or estimating z, by looking at how the proportion of POPs changes over time.

However, the POPs themselves do not provide any information on z, so the latter cannot be estimated

from POP-based CKMR alone. And the total reproductive output on the denominator depends not

just on the number of adults, but also on the true population-level length- or age-composition, which is

of course a�ected by z; so absolute N cannot be estimated either when fecundity depends on size. To

resolve this, it is necessary to somehow estimate the adult age composition by bringing in other data8.

The obvious source is age-composition data from a �shery. But, if selectivity is age-dependent, the

sampled age-composition may be quite di�erent to the real one. The slope of the true age-composition is

basically set by the adult mortality rate (plus any trends in cohort strength measured at maturity, which

generally does not have a strong e�ect), but the slope of the sampled age-composition is also a�ected

by selectivity. Since selectivity is not known a priori, length/age-composition data on its own does not

help. Appendix A of (Bravington, 2014) uses a simpli�ed example to show exactly what the issue is; in

every aspect of the data, the slope of selectivity-at-age and the adult mortality rate are always added

together, so there is no information to separate them.

This z-versus-selectivity di�culty is in fact widespread in �sh stock assessment; if total catches are

known, then it manifests itself as �m cannot be estimated�, often leading to unsatisfactory workarounds.

Although there are situations where some information is available� e.g. strong contrasts in catch,

strong contrast in cohorts� it is highly desirable to have an independent way to estimate at least the

aggregate.

4.1. Why was POP-only CKMR possible for SBT?. In the absence of SBT CKMR, it has been

necessary to assume that Indonesian selectivity (within sex) is directly proportional to residence time on

the spawning grounds, i.e. that catchability-per-day is independent of length (within sex). By making

this assumption, and combining it with external data on daily spawning output as a function of (female)

size, we enforce a "hard link" between selectivity and fecundity. Since fecundity-at-size can in principle

be estimated directly from POP data without needing to know mortality, as above, it becomes possible

to estimate Indonesian selectivity indirectly. Then the e�ect of selectivity can be �subtracted� from the

Indonesian age/length-composition curves; the remaining slope is the mortality rate. Of course, all this

is actually embedded in a proper likelihood-based statistical estimation framework where parameters

are estimated simultaneously, but the conceptual information �ow is as just described.

While it is hard to argue with the notion that residence time on the spawning grounds must be a

primary driver of selectivity for SBT caught on the spawning grounds, it is also hard to argue that it

8If fecundity does not depend on size, the adult age composition does not matter, and N can be estimated more directly.
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must be the only important driver. In fact, there is evidence that there are other factors which can

a�ect Indonesian selectivity, at least to some extent:

• strong year-to-year shifts in the Indonesian length-composition in some years. Residence time is

presumably biologically-driven, so would not shift in this way.

• di�erences in SBT length-composition according to depth-of-hook-setting in Indonesian long-

lines(Farley et al., 2015); again, this suggests some length-driven behavioural e�ect that could

a�ect selectivity.

There is one additional independent piece of information on SBT adult z: the long-term slope of numbers-

at-age for �sh above 30 (CCSBT-OMMP2). By age 30, SBT growth has largely stopped, so length-based

selectivity should not a�ect the age-slope for old �sh9. However, one of the main conclusions from that

data is that m must by higher for old �senescent� �sh than for younger adults, so by de�nition the

dataset is not quantitatively helpful in setting the level of m (or z) in younger adults.

4.2. HSP principles. HSPs in CKMR are handled using exactly the same idea as POPs: at birth,

every O�spring had precisely one Mother and one Father. Consider calculating the probability that two

juveniles, �Lucy� and �Peter�, are Half-Siblings, and for de�niteness assume that Lucy is born two years

before Peter. The chance that any particular female, �Mary� say, is Lucy's mother is given by Mary's

ERRO when Lucy was born, i.e.:

how many o�spring Mary might have had relative to the total production from other

female adults, when Lucy was born.

In order for Mary to also be the Mother of Peter, Mary has to survive the next two years� this is why

mortality appears directly in the HSP equations. If Mary does survive, then she will also have grown,

and so she will be more fecund. Out of all the available mothers for Peter, the chance that Mary will

be the one is

how many o�spring Mary might have had two years later when Peter was born, relative

to the total from other female adults then.

Mary's ERRO at Peter's birth involves two random components (given her size etc at Lucy's birth):

survival, and reproductive output conditional on being alive.

The only complication in the equation is that �Mary� could have been any of the females alive at

Lucy's birth� we don't know which one. So, unlike for POPs, the probability that Lucy and Peter

are (maternal) HSPs has to be summed over all possible females. The general and formal version is

equation (3.9) in (Bravington et al., 2016b):

P [Kij = MHS|yi, yj, R] =
∑
d∈Fi

{
Rd (yi)

R+ (yi)
× Rd (yj)

R+ (yj)

}
(4.3)

See that reference for notational details, but it is worth pointing out that Rd (y) is a random variable

meaning �actual reproductive output� of a particular animal in year y, which will be zero if the animal

9For no particular reason, this dataset was actually not used in (Bravington et al., 2012; Bravington et al., 2013). However,
it is included in the OM version of (Hillary et al., 2013) and subsequently.
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is not alive at y. If Lucy and Peter are born in di�erent years, then Rd (yLucy) and Rd (yPeter) refer to

di�erent random events, and will be statistically independent provided that the equation is correctly

speci�ed to include all important covariates of potential mothers, such as age and length. Consequently,

the expected value of their product is the product of their expected values, which makes the equation

computable. But if Lucy and Peter are born in the same year, then the two Rd's refer to the same event,

so that the overall probability is a�ected by variance as well as mean. To handle that explicitly, extra

unknown parameters would be needed, so same-cohort juvenile comparisons carry no useful demographic

information; if juvenile ages are known accurately, the simplest solution is just to omit such comparisons

from a CKMR model10.

The speci�c version of (4.3) for SBT, taking account of length-based fecundity as well as age, contains

so many symbols that including it would confuse more than clarify. However, it is based entirely on

the principles above, and the computation is not hard� most of the quantities required are already

computed for the POP probabilities. The main practical di�erence in a full implementation is that, for

HSPs, individual fecundity needs to be projected forward in time (from Lucy's birth to Peter's), whereas

for POPs, fecundity is projected backwards in time (from Mary's capture backwards to Lucy/Peter's

birth). There are two qualitative points to note:

• The per-comparison probability of �nding an HSP, as a function of the birth-interval between

the juveniles, declines because of mortality, but this is partly mitigated by individual growth of

parents that do survive. Thus, the rate of decline in HSP probability with gap-length is a measure

not of mortality directly, but rather of SSB turnover rate. In combination with fecundity-at-age

from POPs, and length/age-composition data, there is enough information to disentangle the

main e�ects of fecundity, mortality, and selectivity.

• HSPs only provide information on average adult z across all cohorts, weighted by fecundity-at-

age; there is no intrinsic information on age-speci�c z.

• As for POPs, the overall trend over time in HSP-�nding rate will change inversely to the trend

in SSB (from the total reproductive output term R+ in the denominator of (4.3)).

4.3. Absolute abundance and HSPs. Like POPs, HSPs also carry information about absolute adult

abundance. However, slightly more assumptions are required with HSPs for the absolute estimates to

be unbiased; for example, perpetually infertile adults would be invisible to an HSP analysis even if they

turn up on the spawning ground (and if they don't even turn up on the spawning ground, then they

are also invisible to POPs and to the �shery and to demography in general). One possible example for

SBT could be if some adults persistently produce o�spring that never go to the GAB. Appendix A2 of

(Bravington et al., 2015) explains further, and also describes how to make a CKMR model robust against

this kind of phenomenon. Basically, since POPs alone can provide perfectly good absolute estimates

(once the e�ects of age, fecundity, mortality are accounted for by bringing together POPs, HSPs, and

age/length-composition data), a safe starting point is to introduce an extra free parameter qHSP that

acts as a �xed multiplier on all HSP probabilities; thus, only relative changes in HSP-rate are used. If

10However, within-year HSPs can be useful for checking that there is no strong excess of siblings that would mess up the
independence assumption for POP comparisons.
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the estimate q̂HSP turns out close to 1, then there is no evidence of any hidden peculiarities in the adults.

This is the approach taken in **OM2017

4.4. Including enough covariates. An important principle of CKMR is that, to avoid bias, it is neces-

sary to include all �relevant� individual-level covariates when computing the kinship probabilities� and

if a covariate measurement is missing for some individuals, to integrate over its possible values. Failing

to do this will lead to biased abundance estimates. The extent of any bias will depend on circumstances;

the most extreme mistake would be to misapply the �cartoon� estimator 2 × #comps/#POPs to a

multi-year multi-cohort teleost-like setting, in which case the bias can be as large as you want. The

solution is to split the probability calculations into di�erent cases, according to the individual covariates.

(Bravington et al., 2016b) section 3 gives a more precise description of what �relevant� might mean.

For POPs, one way to think about this is that there should be no�unmodelled� correlation between

sampling-probability of an adult and that adult's reproductive output. For SBT (and presumably most

teleosts), this means that length as well as age is important: bigger-than-average SBT within a cohort

will tend to generate more o�spring (so they will receive more �tags� from their o�spring), and are also

more likely to be caught (at any given age) because of length-based selectivity.

Similar considerations apply to HSPs, except that the unmodelled correlation to be avoided is between

separate reproductive events from the same individual (i.e. the shared, but hidden, parent), rather than

between one reproductive event and one capture event. The comments in section 4.3 can in fact be

seen as a special case of this, whereby a �GABby/non-GABby� binary covariate may apply to some

adults; the covariate cannot be measured directly, but parameter qHSP can be seen as an estimate of the

frequency of �GABby� adults. (Having said that, qHSP could encompass several types of unmeasurable

peculiarity, so it would be over-interpretation to infer too much about GABbiness per se based just on

q̂HSP.)

The stand-alone CKMR in (Bravington et al., 2012; Bravington et al., 2013) uses a full length- and

sex- and age-structured model for adults, so as to ensure that all relevant covariates are being captured

in the model. (It can a�ord that level of complexity because it does not have to deal with the complica-

tions of ages below 8yo or of other datasets apart from Indonesian length/age-compositions.) The OM

version in (Hillary et al., 2013) and subsequent iterations uses only an age-based formulation. This is a

source of positive bias in the OM abundance estimates (at least from CKMR sources). Speci�cally, the

probability that an adult of given age will feature in a POP is the mean-of-the-product (i.e. mean taken

across lengths) of adult sampling-probability and expected reproductive output. This is mathematically

guaranteed greater than the product-of-the-means because both sampling-prob and o�spring-output are

correlated in the same direction with length. The age-only CKMR equations in the OM implicitly calcu-

late the product-of-the-means, so its computed POP probabilities are biased downwards; consequently,

this is a source of positive bias in estimates of N . The bias is presumably not enormous, since the

stand-alone and OM estimates of N were fairly similar, but will need to be addressed at some point.

Aggregation of sexes in the OM runs into similar issues, although the direction of bias if any is not

obvious.
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Once the results of a POP-and-HSP stand-alone CKMR model become available, then it should

be possible to compensate for it in simpler models. For example, we could estimate the discrepancies

between mean-product and product-mean based on the stand-alone results, and use them as �xed inputs

to a purely-age-based OM-style model that re-estimates everything else but has e�ectively discarded the

adult length data (so that data is not being used twice).

5. Next steps for SBT

The new POP and HSP data from 2006�2015 have only been available for a very short period� the

project schedule was extremely tight, the genotyping took a little longer than expected, and we placed

a high priority on thorough QC and diagnostics, which are time-consuming steps. Although it has been

already been possible to update the OM to handle HSPs(Hillary et al., 2017b), we have not yet had

enough time to �nish a stand-alone POP-and-HSP CKMR model. However, the stand-alone CKMR

model will be complete by the end of 2017, and will be available for review at OMMP9 and consideration

by the ESC in 2018.

By �stand-alone CKMR model�, we mean a model that:

• uses a detailed population dynamics framework for adults, involving length and sex as well as

age (the OM currently uses age alone);

• uses Indonesian length- and age-composition data in addition to the POP and HSP information

• but uses no other data (e.g. no GAB indices, no CPUE, no total catch)

While the OM version is of course critically important to CCSBT, the stand-alone model also plays a

key role because it is focused on the Commission's primary objective of rebuilding the SBT spawning

stock. As explained in section 4.4, the detailed population dynamics model is the only way to be sure of

avoiding bias in CKMR, and thus of fully checking the reliability of a simpler CKMR formulation such

as the current OM.

There are three main tasks for the year ahead:

• Completion of the stand-alone CKMR model, extending (Bravington et al., 2012; Bravington

et al., 2013) to include HSPs, plus a few other details mentioned below.

• Contingent on the stand-alone results, an update to the OM that can take into account qualitative

and quantitative results from the stand-alone model.

• Based on the new data and models, a review of ongoing CKMR sample size requirements needed

to deliver:

(1) good precision for OM and stand-alone estimates;

(2) reliable performance from a future MP.

5.1. Modelling tasks for updated stand-alone CKMR with HSPs and POPs. This is a brief

checklist of the speci�c issues requiring attention. The model structure will be largely the same as

(Bravington et al., 2013), except as noted below. The extra HSP terms explained in previous sections

do not entail any change to the basic structure used for POPs� the key quantity for HSP probabilities

is again ERRO (Expected Relative Reproductive Output(Bravington et al., 2016b)) and the calculations
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are very similar for HSPs as for POPs. Changes to the other parts of the model, in order of decreasing

importance, are:

• De-couple fecundity-at-size from selectivity-at-size in the model (these phenomena were previ-

ously hard-linked for females, as described in section 4.1). Some experimentation with functional

forms will be needed.

� Also, allow for changes in Indonesian selectivity from year-to-year. Modern developments

in random-e�ect modelling suggest a straightforward way to do this.

• It has become clear that not all our juvenile CKMR samples are 3yo, based on inspection of

length frequencies. In the �rst few years of CKMR up to about 2010, we were in the fortunate

position of sampling close to a clear length-mode of 3yo, but in some subsequent years the modes

have moved and show substantial overlap between cohorts. Since juvenile birth-year is especially

important for HSPs (e.g. in excluding or allowing for same-cohort comparisons), we will need

to address this properly. We are looking into ways to monitor the age-composition better in

future; from a modelling perspective, it can be accommodated thru a random-e�ect term on

ppn-3yo-by-year, but there is some cost in lost information.

• Increase the plus-group age to 30yo, for consistency with OM

� and for 30+yo �sh� which have almost stopped growing, so that age per se has little e�ect

on selectivity above 30yo� incorporate a Z-estimate taken directly from long-term age

compositions.
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Appendix A. Genetic summary

Bravington et al., 2015 suggested that 1500 loci (of similar quality to the preliminary set of around

700 �focused� SNPs that we had tested at that point) should be adequate for HSP-�nding in SBT. The

sequencing datasets from DArTcap that we received in 2017 actually comprised nearly 2400 loci, but we

discarded hundreds either because they were uselessly uninformative (one very-dominant allele) or on

QC grounds, e.g. possibility of paralogs� �better safe than sorry�. This left us with 1541 loci that work
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as they should� close to our original plans. While people usually think of �SNP loci� as being purely

biallelic, our loci are actually sequences of ~75-base-pairs, and many of the loci have several mutation

sites within that sequence. To keep computations feasible, though, we chose only two �allowed alleles�

(sequence variants, arbitrarily labelled A and B� also sometimes called �haplotypes�) at each locus.

Null alleles11 are very common in the SBT genome, and this would normally reduce the power to

detect kin-pairs since homozygotes (XX) are con�ated with single-null (XO) genotypes. However, read-

depths are so high with DArTcap (typically several hundred reads per locus) that XO can usually be

distinguished from XX based on the total reads of allele X for that sample-and-locus. This means that

the nulls are serving as a 3rd allele, actually increasing the power to detect kin. Given the large number

of samples needed for SBT CKMR, we would need considerably more loci (and expense) without this

re�nement. The idea is explained at greater length in Bravington et al., 2015.

Of the 1541 loci, we are using 1484 genotyped as just described to 6-way level (AB/AA/AO/BB/BO/OO).

For the other 57 loci, the XX/XO separation did not work reliably enough, so we genotyped only to

4-way level, i.e. AB/AAO/BBO/OO where XXO means �either XX or XO�. Examination of replicates

indicates that error rates among the 4-way categories are very low� well under 1%. For simplicity, the

POP-�nding step uses only the 4-way genotypes. The HSP-�nding step requires the extra information

in the 6-way genotypes (for those loci where it is possible); the locus-speci�c error rates for XO/XX are

substantially higher (10% is common), and due allowance needs to be made for the possibility of such

errors.

Appendix B. POPs: a modified exclusion criterion for DartCap SNP data

O�spring inherit one allele from each parent at each locus; thus, a POP should share an allele at every

locus. �Mendelian exclusion� uses this to test for POPs; in principle, failing to share an allele at any

locus (here 1500 of them) means that a pair cannot be a POP. In practice, this needs softening a bit,

because of null alleles, the possibility of genotyping errors and (with 1500 loci) even perhaps a mutation

or two, all of which could lead to apparent exclusions even in genuine POPs.

The exclusion criterion we have used for the SNP loci in DArTcap is slightly di�erent to that used for

microsatellite loci in our original study, because SNP loci have only two �normal� alleles (alwass called A

& B) and because null-alleles (called O) are very common in SBT. To explain further, section A provides

background. Although a key part of DArTcap's lustre is the ability to resolve each genotype into the

6 possible cases AB/AA/AO/BB/BO/OO, for POP-�nding we have used a simpler 4-way classi�cation

where AA/AO are merged (called �AAO�) and similarly for BB/BO. Analysis of replicates shows that

error rates within these 4 categories are very low� about 0.1% for most loci� and not having to worry

about errors simpli�es the calculations markedly.

11Some of the nulls in our �nal set of genotypes arise from our targeting only two variants at a locus, even if there are
sequenceable 3rd, 4th, ... variants. Such �nulls� are easy to detect because the extra untargeted variants are visible in
the dataset we receive from DArT Pty. However, most nulls in SBT are �genuine nulls�� particular sequence variant(s)
that do not get sequenced at all. These are repeatable and heritable, and are presumably due to e.g. mutations in the
restriction-sites targeted by ddRAD. Such nulls are not merely failures-to-observe a �normal� allele resulting from low
read-depths, which can happen with some GBS methods.
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If a locus has very few nulls, then �nding that one �sh is AAO means it is probably AA. If another �sh

is BBO, then it is likewise probably BB; so those two �sh probably do have an exclusion at that locus.

This is not de�nitive, because the �rst �sh could be AO and the second could be BO and the O might

then be co-inherited. Nevertheless, adding up the number of these �pseudo-exclusions� is an intuitively

powerful way to separate POPs from UPs. It turns out that one re�nement is necessary; pseudo-

exclusions are more informative at some loci than others (depending on the frequency of nulls at each

locus, and to some extent also on the frequency of A vs B alleles), and a weighted version is statistically

much more powerful. In other words, an AAO/BBO pseudo-exclusion at locus ` receives weight w` (or

0 if no pseudo-exclusion), and for any pair of �sh the Weighted-PSeudo-EXclusion (WPSEX) statistic

is the sum of all w`. The weights are chosen to minimize the false-positive probability.

If there were more than two alleles, then other types of de�nite exclusion could be considered (e.g.

AB vs CCO or AB vs CD), which is how we handled the microsatellite data� but this is by de�nition

not an option for biallelic SNP data.

As noted in the main document, the POPs are clearly identi�able with this WPSEX statistic (Fig-

ure B.1).

It is also possible to �nd exclusions where one �sh is AB and the other is OO. These are comparatively

rare because we deliberately avoided loci with very high null-allele frequency, so on its own the number

of AB-OO is not a good single criterion for POP-�nding. Nevertheless, the results from n-AB-OO do

nicely (and independently) back up the results from the preferred WPSEX statistic, in that POPs have

many fewer n-AB-OOs (not shown). Although genotyping errors are rare overall, there are enough to

generate a few AB-OO exclusions even among true POPs.

Many authors (including Bravington et al., 2016b) propose likelihood-based criterion for POP-�nding,

instead of exclusion. In principle, a likelihood-based criterion is more powerful (optimal, in fact) because

it uses more information, even for loci where no exclusion is present; if, say, allele B is rare at one locus,

then �nding B in both animals of a pair increases the evidence in favour of their kinship, which is re�ected

in the log-likelihood but not an exclusion-based criterion. However, the problem with likelihood-based

parentage is that in a perfect world exclusions should never happen, so even a single apparently-excluding

locus will send the log-likelihood logP [g1g2|K12 = POP] to minus-in�nity. In practice, though, apparent

exclusions do occur occasionally because of genotyping errors and even mutation, and with 1500 loci the

chance of this happening at least once per true POP is appreciable, so that there may be an unacceptably

high chance of false-negatives in unadjusted likelihood-based parentage. Dealing with this would require

special attention to allow for individually-rare errors, whose frequency may be hard to estimate a priori

because they are rare. (Note that this problem does not apply to HSPs, where any combination of

genotypes is possible at any locus, so that an error has far less impact on logP [g1g2|K12 = HSP].) On

balance, we have preferred to stick with an exclusion-based criterion for SBT, for several reasons:

• simplicity;
• plenty of loci, so no need to produce an optimal method (unlike for HSPs, where every bit of

data helps);

• no need to rely on estimated rates of rare errors.
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Figure B.1. POPs via weighted-pseudo-exclusion (WPSEX). Low values indicate POPs.
X-axis truncated to omit gigantic peak of UPs.

Appendix C. HSP details

Finding HSPs is more di�cult than �nding POPs, because the degree of kinship is weaker. In

general, it is not possible to expect truly 100% reliable ID of HSPs, because the degree-of-relatedness

varies randomly between di�erent HSPs, and some pairs may be chance only be weakly related� so, no

matter how thorough the genotyping, some overlap with UPs or weaker kin such as �rst-half-cousin-pairs

(one shared grandparent) may be unavoidable. HSPs will be selected based on a statistic computed for

each pair (called the PLOD; see box), with an UP likely to give a low value and an HSP likely to give

a high value. What is important is to choose a cuto� value for the statistic, making it high enough to

ensure that false-positives from UPs and from other weaker relatives are statistically negligible. Then,

provided that the cuto� is well below the mean value expected for a true HSP, it is possible to allow

for false-negatives in an unbiased way. The process follows our original plan in Bravington et al., 2015,

Appendix C2; see also Bravington et al., 2016b section 5, and Bravington et al., 2017.
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PLOD statistics for finding kin-pairs

Consider the genotypes g1`, g2` of a pair of �sh at just a single locus `. The �LOD�, or log-odds-ratio,
measures the relative probability of those genotypes under two hypothetical kinships that the pair

might have. In our study, the two kinships of interest are HSP and UP, and the LOD is

LOD`ij = log (P [g`i, g`j|HSP] /P [g`i, g`j|UP])(C.1)

The probabilities can be calculated from allele frequencies, under the assumption of Hardy-Weinberg
Equilibrium (which we check using the entire sample of �sh). If genotyping errors need to allowed for�
which is certainly the case with the 6-way genotyping we need to get adequate HSP-�nding power in
SBT� see section A)� then the formula should be modi�ed so that the g's are observed genotypes,

rather than true genotypes. This modi�cation obviously requires estimates of the error rates.
The PLOD (�Pseudo LOD�) for the two �sh is obtained summing all the per-locus LODs:

PLODij =
∑
`

LOD`ij

Each LOD is statistically optimal for discriminating between the hypothesized kinships, using only the
genotypes at that locus. If the loci were independent, the PLOD would in fact be a true overall LOD;
however, loci are only independent when the pair is Unrelated because of genetic linkage (Bravington

et al., 2016b section 5, or Wikipedia), so in general the �Pseudo� is needed. The extent of
non-independence cannot be foretold, which is why the spread of the HSP bump cannot be predicted,

although its location can be. For the UP bump, both the spread and location can be predicted.
In almost all of this paper, we focus on the two kinships �HSP or UP�, and the term �PLOD� on its
own speci�cally refers to that case. However, for other kinship discriminations, other versions of the
PLOD can be de�ned accordingly, and will have better performance. In particular, we also use a

�tuned PLOD� to help separate FSPs from HSPs (Figure C.2).
Note that the term �LOD score� is widespread in genetics, but often carries a more specialized

meaning connected with the degree of genetic linkage between two loci. Here, we are just using the
term �LOD� in its pure statistical sense.

In 2015 and 2016, we successfully implemented the approach at CSIRO for several shark species with

very low abundances and a more basic version of GBS genotyping. However, to get things to work for

SBT where ~100,000,000 juvenile-juvenile comparisons will eventually be made and false-positives from

�lucky� UPs are thus much more of a potential risk, it is necessary to have high-precision genotyping

(the 6-way null-scoring classi�cation in section A) and a �sensitive� de�nition of the PLOD that allows

for genotyping error. It also turns out that low-quality samples (contaminated and/or degraded DNA)

can become a real problem for spurious HSPs with huge datasets, so extra care has been needed to

�lter them out. We are still re�ning that process, but have already managed to eliminated the problem

in practical terms. To cut to the chase, Figure C.1 presents the PLOD statistic across all pairwise

comparisons of 10,809 juveniles. Bigger PLOD values mean more relatedness; the HSP bump on the

right is clearly visible, and pretty well separated from the morass of unrelateds on the left. For both

bumps, the means/centres are very close to the theoretical predictions (red and green lines).

The four pairs on the far right of the RHS of Figure C.1 are Full-Sibs. In each case, both animals

were caught in the same year and are thus likely to be from the same cohort; see also section C.1 for
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Figure C.1. HSPs. Left: log histogram to show all PLODs. Green and red lines are
theoretical means for UPs and HSPs respectively. Right: actual histogram of the PLODs
that are above zero. Blue dashed line is cuto�, chosen visually to exclude false-positives.

Figure C.2. FSPs distinguished from HSPs, using a tuned PLOD

mitochondrial evidence. Although they stand out quite clearly just using this particular PLOD statistic,

which is actually optimized for distinguishing HSPs from UPs, it is also possible to develop a tuned-

PLOD speci�cally for distinguishing FSPs from HSPs, as in Figure C.2 which shows the four FSPs

very clearly. This tuned-PLOD would take the value 0 for a pair whose genotype had equal probability

whether the pair was HSP or FSP. Thus, tuned-PLODs above zero are evidence in favour of FSPs, and

values below zero are in favour of HSPs. Since the a priori proportion of HSPs is much higher, it would

not be appropriate� in view of Bayes' theorem� to mindlessly take zero as a threshold. Nevertheless,

zero does have a real meaning for tuned-PLODs, and the HSP/FSP distinction is clear. Note that

this particular tuned-PLOD was actually calculated just using 4-way genotypes (whereas the HSP/UP

PLOD uses 6-way genotypes), in order to save the coding time needed to allow for genotyping errors;

hence, its discrimination power could be improved in future.
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Returning to Figure C.1, the theoretical and empirical distributions of PLODs match very well. For

UPs, both the theoretical mean and variance can be calculated, and match the data closely (this is

obvious for the means). There is still a bump around PLOD~=0 which comes from remaining lower-

quality samples (the bump at 0 was much more prominent before applying the current bad-sample

�lters) and/or from less-closely-related kin-pairs. At any rate, that bump has clearly fallen away by

three-quarters of the way to PLOD=50, at say PLOD=37. This might be used as a safe cuto� for

false-positives. Using this choice of cuto�, the consequent false-negative probability can be estimated

based on the theoretical mean (70.6, the red line) and the empirical variance of HSPs that are above

the mean (see Bravington et al., 2016b, section 5; simulations show that the PLOD for true HSPs is

quite close to a Gaussian distribution). This yields a false-negative estimate of 10.5% for a cuto� of

PLOD=37. Actually, the false-negative rate is not critically important to inference for SBT, because

the number of HSPs will likely not be used directly for abundance anyway (see Bravington et al., 2015

for explanation).

Using PLOD=37 as a cut-o� for true HSPs, the following summary applies:

• 140 HSPs (possibly including one or two FSPs around PLOD=140, not yet checked).

• False-negative rate of 10.5%, so the true number of HSPs is probably12 around 150�160. Note

that simulations in Bravington, 2014 predicted about twice as many HSPs as POPs for SBT

(in the short term), and there are a total of 84 POPs. The overall ratio depends on the num-

bers of juvenile and adult samples, which in practice were di�erent to all scenarios of the 2014

simulations, for logistic and �nancial reasons.

• All pairs are distinct, except for three triads. In two of those triads, all the three animals are

HSPs, i.e. they share the same parent; For one triad only, all three animals were caught in the

same year. The third triad very clearly consists just of two pairs A-B and A-C (i.e. B and C are

de�nitely not HSPs), so that e.g. A and B share a Mother, but A and C share a Father.

Note that a couple of �accidental triads� are to be expected. About 280 of 10,000 juveniles are

involved in HSPs, i.e. 2.8% of animals are in a pair; so, in about 2.8% of the 140 pairs found,

the 2nd �sh is actually likely to be from one of the other pairs� i.e. will form part of a triad.

• The pairwise tabulation of years (Table 3) shows no obvious pattern. Taking into account the

number of comparisons (Table 4), though, it does look like there is a higher rate for same-year

(i.e. same-cohort, mostly) HSPs than for cross-cohort HSPs, suggesting a small litter-e�ect

whereby larvae from the same spawning-event may sometimes continue to associate through to

the point of capture 3 years later. Overall, though, the proportion of juveniles involved is very

small. This is compatible with the microsatellite results, which ruled out a strong litter-e�ect

(i.e. it could not be big enough to have much impact on POP variance) but were not sensitive

enough to estimate a low rate directly.

Table 4 is the raw material for estimating adult mortality, based on changing rates of HSP-�nding

as the gap in years increases. However, it would be utterly wrong to do this �by eye� or even by

12This �likely true number� is purely for information; CKMR models actually use the actual observed number (140)
together with the estimated false-negative rate, rather than guessing the true number.
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Table 3. HSPs by years

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
2006 2 4 4 4 . 2 . 1 2
2007 . 6 3 6 2 2 2 . . 2
2008 . . 4 3 3 3 . 5 1 1
2009 . . . 8 6 1 3 7 4 .
2010 . . . . 3 5 3 3 1 3
2011 . . . . . 6 1 1 2 3
2012 . . . . . . 1 2 . .
2013 . . . . . . . 2 1 2
2014 . . . . . . . . 3 3
2015 . . . . . . . . . 3

Table 4. HSP rate per 107 comparisons (rounded, and based on small numbers)

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
2006 25 24 25 24 0 17 10 0 9 17
2007 72 18 36 12 17 19 0 0 17
2008 49 18 18 25 0 45 9 9
2009 94 36 8 28 62 36 0
2010 37 42 29 27 9 26
2011 141 13 12 25 35
2012 30 28 0 0
2013 53 13 25
2014 81 38
2015 72

spreadsheet; what the gaps actually show is not the mortality rate, but rather the turnover rate

in SSB, since if Your parent does not die, it will grow instead and thereby become more fecund

and more likely to generate a Sibling for You. While this can be accounted for conceptually

using the information from POPs on fecundity-at-age and the length compositions, there is no

reliable way to guess the results. The only thing to do is to build and �t a proper CKMR model.

C.1. mtDNA in HSPs. Male and female reproductive population dynamics may be di�erent; in par-

ticular, the two sexes may di�er in how fecundity changes with body size (and note that there are also

growth di�erences between the sexes in SBT). Even if male and female adults are equally abundant,

there is no guarantee that the �reproductive concentration� is the same between the sexes (consider e.g.

sea-lions, where almost all females produce o�spring per cycle, whereas reproduction is concentrated

onto a small proportion of males). This a�ects the probabilities of HSPs, and the total number oc-

curring. Hence it is essential to look not just at HSPs overall, but also to disaggregate according to

Maternal or Paternal descent: i.e., does the pair share a Mother or a Father? (Full-sib pairs share both,

of course.)

This can studied by genotyping not just the nuclear DNA required to establish kinship, but also the

mitochondrial DNA (mtDNA) which is inherited from the Mother only. Unlike nuclear DNA which is
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summarized via genotypes at many loci, mtDNA yields a single �haplotype� for each individual. Thus, if

the two individuals in an HSP have di�erent mtDNA haplotypes, then they must have di�erent Mothers,

so they must share a Father. If they have the same haplotype, then they probably share a Mother, but it

could also be that they come from two di�erent mothers who just happened to have the same haplotype.

By checking the frequency of haplotypes in the population at large, the �probably-but-not-de�nitely-

shared-Mother� for same-haplotype pairs can be accommodated explicitly via a mixing-term in the

CKMR probabilities, without needing to estimate extra parameters or to make guesses about ancestry;

see Bravington et al., 2016b.

To look at Maternal/Paternal descent in HSPs among SBT, we took 325 juveniles (all the de�nite

HSPs and FSPs, i.e. with PLOD > 37, plus 13 control samples and some borderline-PLOD possible

HSPs). These were genotyped over an 875-base-pair13 fragment encompassing the control region or d-

Loop of the SBT mitochondrial genome. Sequencing was done using ABI Big DYE version 3 chemitstry

(Applied Biosystems) with each amplicon sequenced using two primers anchored in the tRNA regions

(Proline and Phenylalanine, forward and reverse primers respectively) which �ank the d-Loop. In all,

we found 201 variable sites across the fragment, leading to 247 distinct haplotypes, with 172 occurring

in just one �sh, 72 in two �sh, and 3 in three �sh. Genotyping was �blind�, i.e. the genotypers did not

known the sib-pairings among the 325 �sh.

There was little ambiguity in assigning unhaplotypes, but small discrepancies evidently do happen

occasionally (see below). The very high frequency of unique SBT haplotypes14 (in this small sample)

means that there is little error in assigning Maternal-vs-Paternal descent purely based on same-vs-

di�erent haplotype, without needing the complexity of a mixing-term for now; the probability that two

SBT mothers will share a haplotype by chance is low enough (~1% or less) to be safely ignored in a

preliminary model.

The de�nition of �mtDNA haplotype� depends on which sites are examined. In our case, where we

examined over 200 variable sites within the d-Loop, each haplotype corresponds to a unique combination

of DNA bases at those sites. On average, two of the haplotypes chosen at random will di�er at around

20 of these sites, but there are some groups of haplotypes which di�er at just one or two sites. Even if

two individuals really do have the same Mother, it is still possible that their recorded haplotypes will

be (slightly) di�erent. Such discrepancies can occur for three partly-overlapping reasons:

• heteroplasmy, whereby the original egg-cell has more than one haplotype present (all cells have

many copies of the mitogenome); the most common variant is likely to be the one recorded, but

which variant is most common can change between Mother and O�spring;

• genotyping error, including the possibility of recording a less-common variant when there is

heteroplasmy;

• single-generation mutation.

13Approximately 875BP, because some �sh had insertions or deletions.
14There are far fewer haplotypes in the four or �ve shark species we have examined, where in one (extreme) case only two
haplotypes were present in an entire subpopulation, even though we examined a much higher portion of the mitogenome
for sharks than for SBT.
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Table 5. mtDNA comparisons among de�nite HSPs and FSPs

#Di�ering sites 0 1 3 7 11 13 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
#FSPs/HSPs 65 2 1 1 1 1 2 1 1 1 1 3 3 2 5 5 1 7 4 5 4 7 2 7 4 1 2 1

Of 140 de�nite HSPs and FSPs that were genotyped for mtDNA, 65�67 have identical haplotypes (i.e.

~47% Maternal) and 75�73 have di�erent (Paternal); the ranges re�ect possible discrepancies in just two

cases, as explained below. The Maternal/Paternal ratio is very close to 50/50, consistent with no strong

sex-di�erence in �reproductive concentration�. Restricting comparisons to the 42 same-cohort (actually,

same-capture-year; see ??) HSPs/FSPs yields similar results (52% Maternal). For the 98 cross-cohort

HSPs� the ones that are really of interest� the average recapture interval is 3.12 years for Maternal

HSPs, compared with 3.06 years for Paternal HSPs� a remarkably similar �gure, indicating that the

rate of SSB turnover in SBT is (currently) very similar between the sexes.

Overall, there is certainly no reason to be concerned about strong bias arising from using HSPs in a

simpli�ed single-sex model (e.g. in the 2017 OM), although a full check must await a detailed sex-speci�c

CKMR analysis..

C.1.1. Consistency checks. As a �nal detail, there are some interesting (and consistent) mtDNA results

among the 4 FSPs and 3 HSP-triads mentioned earlier. All the FSPs have the same within-pair mtDNA

haplotype, except for one FSP where the two haplotypes di�er at just 1 site; on subsequent inspection,

this looks like heteroplasmy, whereby one of the two animals seems to carry two versions of the haplotype

(, di�ering at just one site. Among the 3 triads of HSPs, in two cases all 3 �sh are HSPs (so they either

all share the same Mother, or all share the same Father). And in one of those two triads, all 3 �sh do

have the same mtDNA (i.e. Mother) whereas in the other, all 3 have di�erent mtDNA (i.e. Father). In

the third HSP triad, the PLODs show that A & B are HSPs and A & C are HSPs, but B & C are clearly

not; so the shared-parent must be Mother in one case and Father in the other. And indeed, precisely

two of A/B/C do have the same haplotype.

All this demonstrates that mtDNA discrepancies are not common (observed for sure at just one site in

one FSP), but do occur occasionally. The ranges shown above for Maternal/Paternal proportion re�ect

the possibility of discrepancies, which are only plausible in one FSP and one sib-pair (Table 5) where

the haplotypes di�er at just one site. On re-examination, the HSP with a 3-site di�erence clearly has

di�erent haplotypes. The HSP with a one-site di�erence is unclear (genuine or discrepancy), but its

potential impact on Maternal/Paternal proportions can only be small in any case.

C.1.2. Implications of haplotype diversity and discrepancy rates for detailed CKMR modelling. Most

HSPs are not in triads, so that mtDNA genotyping discrepancies cannot be checked directly; but when

discrepancies do occur, then they will lead to a Maternal HSP being misidenti�ed as Paternal (it is un-

likely we will ever have enough data to directly estimate and allow for error rates in mtDNA haplotypes).

In a comprehensive CKMR analysis, that (small) possibility of misidenti�cation can be eliminated by

pooling similar haplotypes, e.g. those with just 1- or 2-site di�erences. The mixing-term treatment of

mtDNA haplotypes in CKMR already allows for the possibility that two haplotypes will be identical

by chance (which happens often in species where mtDNA diversity is lower), so the only theoretical
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downside from pooling is a minor loss of statistical information; but this is trivially small in an organism

with such large haplotypic diversity as SBT. In other words, there will be no great di�culty in setting

the HSP treatment up correctly in a stand-alone CKMR model, but even an approximate model that

just says �same haplotype means same Mother� would work well.




