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Abstract

The SBT operating models (OMs) are being reconditioned this year for MSE testing of
candidate MPs. In addition to updating existing data, we also have gene tagging estimates
of abundance of 2 year olds for 2016 and 2017 to include for the first time. This paper details
the technical specifications of how the gene-tagging data are included in the SBT OM, and
the relevant settings and fixed parameters required in the various OM configuration files. It
also explores the fits to the data sources for the reconditioned OM. Finally, we explore the
LL1 size data as used in the OM for evidence of the strength of the large estimated 2013
year-class.

1 Background
This year the OMMP and ESC have resumed the MSE work begun in 2018 to develop a new MP
for the CCSBT. A reconditioning update of the OM is required in 2019. This update will include
two gene tagging data points, one for for 2016 and for 2017, in the conditioning code. These
data have already been included in projection code [1, 2] and the same assumptions about the
generation of these data in the projections are mirrored in the conditioning part of the OM.

2 Gene tagging process & likelihood
The gene tagging data collection process is as follows:

1. In year y, Ty (assumed to be) 2 year old fish are tissue-sampled and re-released in the
Great Australian Bight, South Australia after the surface fishery has caught all its TAC

2. In year y + 1, Sy+1 (assumed to be) 3 year old fish are tissue-sampled in the processing
facilities in Port Lincoln through-out the harvest period

3. In year y+ 2, Ry+2 recaptures are detected and data are available for inclusion in models

We don’t go into specifics about the length distribution of tagging and resampling, here, save
that we do this to ensure the maximum chance of tagging 2 year old and resampling 3 year old
fish [3, 4] . In the MP work, we use the simple Petersen estimator for the age 2 abundance in
year y, N̂y,2:

N̂y,2 =
TySy+1

Ry+2

,

with the Poisson approximation to the variance where the CV in abundance is assumed to be
approximated by 1/

√
Ry+2. For the conditioning of the OM we assume a more flexible distribu-

tion: the beta-binomial distribution. The underlying probability of recapturing a biopsied fish is
as follows:

πr
y+2 =

Ty
qgtNy,2

,

where qgt represents the fraction of age 2 juveniles available to be tagged in the GAB (default
is 1). The other key parameter for the gene tagging likelihood is the over-dispersion coefficient,
ϕgt: the degree to which the variance in the recaptures exceeds that assumed in the vanilla
binomial distribution (i.e ϕgt ≥ 1). With the binomial (ϕgt ≡ 1), we have the following likelihood:

Λgt
(
Ry+2 |Sy+1, π

r
y+2

)
∝
(
πr
y+2

)Ry+2
(
1− πr

y+2

)Sy+1−Ry+2
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For the over-dispersed case, ϕgt > 1, the likelihood is as follows:

αgt =
(Sy+1 − ϕgt) πr

y+2(
1− πr

y+2

) (
πr
y+2 +

(
1− πr

y+2

)
(ϕgt − 1)

)
βgt =

(Sy+1 − ϕgt) πr
y+2

πr
y+2 +

(
1− πr

y+2

)
(ϕgt − 1)

Λgt
(
Ry+2 |Sy+1, α

gt, βgt
)
∝ Γ (Ry+2 + αgt) Γ (Sy+1 −Ry+2 + βgt) Γ (αgt + βgt)

Γ (Sy + αgt + βgt) Γ (αgt) Γ (βgt)

and Γ() is the gamma function.

3 Settings required in OM configuration files
The data are included as follows in the sbtdata2018.dat file as a table with the following
columns: year of release, age of release, year of recapture, number of releases, number of
resamples, number of matches. Table 4.1 shows the current data set.

Year of rel. Age of rel. Year of recap. T S R
2016 2 2017 2,952 15,389 20
2017 2 2018 6,480 11,932 67

Table 3.1: Summary of current gene tagging data.

The remaining control parameters are located in the sqrt.dat file:

• qgt (qgt): default is set to 1 (and assumed that qgt ≤ 1)

• gtOD (ϕgt): default is set to 1 (and ϕgt ≥ 1)

• gtsw: 0/1 switch flag to turn GT data off/on (default set to 1)

4 Abundance fits given reconditioned reference set of OMs
The following updated and new sources of data have been included in the 2019 reconditioning:

• Catch biomass, composition and Japanese longline CPUE up to and including 2018

• CKMR POP and HSP data up to and including sampling year 2017, which would observe
the adult population up to and including 2014

• The two gene tagging estimates of age 2 abundance in 2016 and 2017

A full diagnostic check of the fits for all updated data sets will be undertaken for the stock as-
sessment scheduled for 2020. However, given this is the first time the gene tagging data have
been included in the OM, we do summarise how the reconditioned OM fits to these data. The
approach taken in the past few years [5] is to simulate a particular data set from its predictive
distribution (simulate from the likelihood while integrating across the model ensemble included
in the reference set). If the reference set of OMs was a true posterior, this would be the posterior
predictive distribution; given we use the reference set as a proxy for the posterior we refer to it
as the predictive distribution.
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Figure 4.1: Observed (blue) and predictive median and 95% credible interval (magenta) for the
2016 and 2017 gene tagging recaptures.

Figure 5.1 shows the observed and predictive distribution of (in terms of median and 95% cred-
ible interval) matches in the 2016 and 2017 gene tagging data (year is denoted as year of re-
lease/year of abundance estimate). In both cases the median number of matches is slightly
below the observed number, indicating a slight preference for lower age 2 abundance in the
gene tagging data, but the credible interval easily encapsulates the data in both cases.

It might seem odd that these data are not fitted effectively perfectly, given no other data sets in the
OMs observe these year-classes at the present time. There is, however, a reasonably informative
prior on the year-class strength deviations in the OM, and with auto-correlation built in. The
estimates of recruitment prior to 2016 were well above average (especially age 2 abundance in
2015), so built in to the recruitment deviation prior in 2016 and 2017 is a preference for above-
average recruitment deviations. This is why the effect lis more apparent for 2016 (which follows
the highest recruitment estimate for decades) than for 2017 (as the 2016 age 2 abundance was
estimated closer to the expected level). In summary:

• The conditioning part of the OM has been modified to incorporate the gene tagging data
using a flexible beta-binomial likelihood and is implemented in the same manner as the
data are simulated in projection part of the OM

• The data from 2016 and 2017 are fitted well in the reconditioned OM, but suggest slightly
lower 2016 and 2017 estimates of age 2 abundance than those coming from the previous
OM and the recruitment deviation prior

• The 2017 gene tagging estimate is below the previous run of above-average recruitment.

The grid configuration agreed to in 2017 for MP testing is detailed in Table 3.1 and, in line
with previous reconditionings, we sample 2,000 times from the current suite of 432 using the
resampling scheme outlined in Table 3.1. We summarise the base18UAM1 grid of operating
models, given this is our current reference case for the MSE work. For the best fitting grid
element, the fits to the abundance data (CPUE, aerial survey and gene-tagging) are shown
in Figure 3.1. The fits to the conventional tagging data are provided in Figure 3.2; and the
aggregated fits to the CKMR POP and HSP data (as per [5]) are detailed in Figure 3.3.

CCSBT-ESC/1909/17 | 3



●
●

● ●

●
●

●

●

●

●

●

●
●

● ● ●

●

● ●

● ●
●

●
●

●

●
●

●
● ● ● ●

●

●

● ●

●

●
●

●

●
● ●

●
●

●
● ● ●

●

1970 1980 1990 2000 2010

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

year

C
P

U
E

●

●

●
●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

1995 2000 2005 2010 2015

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

year
A

er
ia

l S
ur

ve
y

Figure 4.2: Observed (magenta) and predicted median and 95% CI (blue) for the Japanese
longline CPUE (left) and aerial survey (right) indices.
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Figure 4.3: Disaggregated (left) and pooled (right) 1990s tagging data fitting summaries.
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Figure 4.4: Observed (magenta) and predicted median and 95% CI (blue) for fits to the POP
data aggregated to the cohort (top left) and adult capture age (top right) levels, and the HSP
data aggregated to the initial comparison cohort level (bottom).
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Parameter Values Prior Resampling CumulN
Steepness {0.6, 0.7, 0.8} Uniform Prior 3

M0 {0.35, 0.4, 0.45, 0.5} Uniform Objf 12
M10 {0.0.5, 0.085, 0.12} Uniform Objf 36
ω {1} Uniform Prior 36

CPUE ind. {2, 3} Uniform Prior 72
CPUE ages {4, 18} & {8, 12} {0.67, 0.33} Prior 144

ψ {1.5, 1.75, 2} {0.25, 0.5, 0.25} Prior 432

Table 4.1: Summary of the agreed grid configuration for the 2019 reconditioning

The fits to the CPUE are similar to previous years, and the notable increase in CPUE in 2018 is
fitted well (driven by the already large estimate of recruitment in 2013 driven by the 2016 aerial
survey). The fits to the aerial survey haven’t changed since the previous assessment [5] and
the fit to conventional tagging data are also similar to previous years. The fits to the aggregated
POP data are similar to previous years but there is a slight trend in number of POPs for the most
recent juvenile birth years (2012–2014) being over-estimated. Apart from the last point which is
just outside the bounds, there is no clear significant misfit, and the data for these cohorts will be
not be static - in the coming years we will compare new adults to juveniles born in these years
and so could detect more matches which will change this trend. The fits to the adult capture age
lof the POPs is good as are the HSP fits when aggregated to the initial cohort level. It is also
worth noting the sample sizes for the CKMR monitoring are based on previous OMs. Given the
updated estimates of status and population dynamics since the original design study and the
use of CKMR for stock assessment, monitoring the rebuilding plan and input to candidate MPs,
a review of this monitoring program and associated sample sizes should be a priority to ensure
appropriate samples sizes in the future.

Variable TRO depletion B10+ depletion F/Fmsy B/Bmsy Bmsy/B0

Summary 0.17 (0.15–0.21) 0.14 (0.12–0.17) 0.55 (0.41–0.74) 0.64 (0.47–0.91) 0.27 (0.22–0.32)

Table 4.2: Population dynamic summaries (median and 90% CI) for the reconditioned OM.

The main population dynamic summaries can be found in Table 3.2 (for the reference set which
includes the UAM1 scenario). Current TRO depletion has a median (and 90% CI) of 0.17 (0.15–
0.21) so higher than the 0.13 estimate of 2017 [5] but consistent with the projections done in both
2017 and 2018. Current estimates of F are just above half of Fmsy with a very low probability
of exceeding it. The ratio of the adult biomass at MSY relative to the unfished level is also
consistent with previous estimates: 0.27 (0.22–0.32).

5 Effect of large 2013 recruitment on LL1 OM data
An issue that arose at the OMMP meeting was that the recent run of good recruitment - and in
particular the 2013 year class - seemed consistent with the signals in both the aerial survey data
and the Japanese long-line CPUE abundance index [6] but was seemingly not apparent in the
LL1 size frequency or, specifically, the Japanese long-line data [7]. In this section we explore
whether it is reasonable to expect the LL1 (or Japanese) size data to show consistent tracking
of an individual strong year class, given the large variation in length at age for SBT.

It is true for almost all teleost fish that length tends to become a poor indicator of individual,
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age as the overall growth of the fish slows down and the variability in individual length given
age increases. In the case of SBT, after age 3 it becomes increasingly difficult to define a size
range that would be expected to include only one age-class. So, either visually inspecting length
data or cohort-slicing the length data to obtain estimates of the underlying age distribution will
become increasingly uninformative as the size of the animals increases. Only by collecting direct
age data can one get a sense of the actual age distribution within a given set of length data above
around 100cm - which is where the vast majority of the LL1 data are reported to be.
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Figure 5.1: On the left the observed (magenta points) and predicted (blue lines) LL1 size fre-
quency from 2009 to 2019. On the right violin plot summaries of the predicted age distribution in
the long-line size data for the same years for ages 3–15.

To make this point quantitatively, Figure 5.1 shows the observed and predicted LL1 data from
2009 to 2018. It also shows the predicted age distribution within the LL1 size data across all grid
runs: the distribution-at-age derived from multiplying the true numbers-at-age in the population
by the LL1 selectivity-at-age. The effect can be seen across several different years, but focussing
on 2017 and 2018 when the 2013 age class would be 4 and 5 years old, respectively, and
approaching full selectivity in the LL1 data. In the observed and - importantly - predicted length
data there are no obvious peaks around 117cm and 127cm - the mean lengths at age 4 and 5,
respectively. Looking at the predicted age distribution, however, it is apparent that the 2013 year
class in 2017 makes up over 10% of the LL1 catch-at-age and in 2018 that increases to almost
25% of the LL1 catch-at-age.

The OM clearly estimates a large year-class for 2013 - with or without the 2016 aerial survey
and the 2018 CPUE index. When both are included it is by far the largest estimate of recruitment
seen over the last 4 decades. Yet, in the predicted length data there is no obvious peak centred
around the mean length of this age-class - the argument essentially being made in [7] in terms
of questioning why this year-class doesn’t appear to be obvious in the observed size data. The
point is really that we would not expect to see such a peak, given the variability in length-at-
age for the ages likely being currently exploited by the LL1 fleet. Only by collecting direct age
data representative (spatiotemporally) of the LL1 catch would we be able to make some kind of
statement on the size of the 2013 recruitment using the LL1 size data. So, we don’t think we can
conclude that the LL1 size data do not appear to confirm the large estimated 2013 year-class. At
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most, the data are compatible with the large estimate as there are no obvious issues with the fits
to the 2017 and 2018 LL1 size data. The important point is that we would not expect these data
to be informative for specific individual year-class strength. Where they have been informative,
for example, was in the extreme case of the run of very low year-classes from 1999–2002, as
they were quite clearly seen to be absent for a number of years in the left-hand side of the LL1
length frequency data.

6 Discussion
The CCSBT OM has been reconditioned for data up to and including 2018 as well as the first in-
clusion of the two gene tagging data points. The new likelihood function for the gene tagging data
was described - with the current default being a binomial distribution. We have, however, pro-
grammed in the option for the more flexible beta-binomial distribution to allow for over-dispersion
in these data, very similar to how this is done for the 1990s tagging data. It will take a number
of years, however, before we can in-principle estimate of the potential over-dispersion factor as
with only two data points the estimate would be highly uncertain. In any case the two data points
are fitted very well, given little else in the data sets observes those year-classes currently, so it
would be not just uncertain but effectively zero (i.e. reduced to a binomial anyway). The base
grid agreed at the previous ESC (and subsequently confirmed at the 2019 OMMP) was used and
the UAM1 unaccounted mortality scenario was used to create the reference set of OMs used in
the MSE work. The data were generally fitted well - including the new gene tagging data - and
there were no obvious issues with the resulting OM that would suggest it could not be used in
the MP testing work this year.

One issue relating to the large estimated 2013 year-class, largely driven by first the 2016 aerial
survey index and then the 2018 LL1 CPUE index, is why it does not appear to give a strong
signal in the LL1 (and Japanese) length frequency data [7]. We demonstrated that even the
model predicted size frequency data do not show obvious peaks centered around the mean
length of this 2013 year class in both 2017 and 2018 (when it would be 4 and 5 years old,
respectively) yet the year-class is the largest one estimated for over 4 decades. What is very
apparent is that the model predicted age distribution in the LL1 data show this year class as fairly
strong at age 4 (more than 10% of the total catch) and very strong at age 5 (almost a quarter of
the total catch).The variability in size-at-age at the sizes caught in the LL1 and Japanese fleets
means that length frequency data are essentially uninformative on individual year-class strength
- clearly so even for very large estimated recruitments. So we do not think it is appropriate to say
that the LL1 and Japanese size frequency data do not appear to confirm the presence of a large
2013 year-class. The data are consistent with the model estimated 2013 year-class - the data
are fitted fine in both 2017 and 2018 - but could not be expected to be informative on a single
year-class.
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