# Update on SBT monitoring program in Benoa port, Bali, Indonesia 2018

## Ririk Sulistyaningsih<sup>1</sup>, Prawira Tambubolon<sup>1</sup>, Zulkarnaen Fahmi<sup>1</sup>

Prepared for the Extended Scientific Committee for the Twenty Fourth Meeting of the Scientific Committee, Cape Town, South Africa, 2 - 7 September, 2019

1) Research Institute for Tuna Fisheries, Indonesia

## **Summary**

This paper will provide update information about the SBT monitoring program in Benoa port, Bali Indonesia 2018 presented in the CCSBT-ESC 2018 (CCSBT-ESC/1708/Info 03). The sampling coverage was decreasing from 75.05% in 2017 to 53.69% in 2018. The SBT number observed were also falling in 2018 with only 1,733 individuals compare to 2017 (2,444 individuals). Conversely, the SBT size increased from 111-210 to 121-210 cmFL.

## Indonesian tuna monitoring program

SBT monitoring program commenced since 1993 through the series collaboration between Indonesia's marine fisheries research institutes<sup>2</sup> within the Ministry of Marine Affairs and Fisheries (MMAF) and Commonwealth Scientific and Industrial Research Organisation (CSIRO) (Farley et al. 2017). The development of this program occurred in mid-2002, a monitoring program in three major Ports of Indonesia Benoa (Bali), Muara Baru (Jakarta), and Cilacap (south cost Central Java) was established (Farley *et al.* 2014). The monitoring program aims to monitor the catch of all landing species and record the number of tuna longline vessel landings. Since 2011, the monitoring activities have been submitted to the Research Institute for Tuna Fisheries (RITF) as an institution that specializes in research on tuna resources in the Indian Ocean.

## Sampling methods

Sampling

<sup>&</sup>lt;sup>1</sup> Research Institute for Tuna Fisheries

<sup>&</sup>lt;sup>2</sup> Indonesian collaborating institutions, in chronological order: Central Research Institute for Fisheries Indonesia (CRIFI), Research Institute for Marine Fisheries (RIMF), Research Centre for Capture Fisheries (RCCF), Research Centre for Fisheries Management and Conservation (RCFMC), and currently Centre for Fisheries Research (CFR) in Jakarta, and Research Institute for Tuna Fisheries (RITF) in Bali.

The SBT data collection conducted in 2018 (January-December) by enumerators from RITF at

tuna fish processing company in Benoa port. In this period, there are nine companies that

routinely organize tuna fish processing. The enumeration unit applied is the number of tuna

longline vessels that perform SBT catch landings in Benoa port. The data collected, including

the number of catch, fish weight, fish length, fish destination (export/reject/ bycatch), vessel

name and company name.

The most important thing to verify is that every individual fish that represents all the fish caught

from the tuna longline vessels must be recorded. If the weight per individual of tuna cannot be

recorded, it is not allowed to make an estimate of the data itself. Registration of individual

weights for all tuna longline vessel catches, will ensure that there is no bias in terms of sorting

data by weight or by species (Jatmiko et al. 2017). Length measurements are conducted using

callipers that have a precision of up to 0.5 cm. Length sizes are shown in order of priority

according to international measurement standards. If not possible to measure the length of all

fish catches, then measuring the length of the rejected fish can already be recorded as a random

sampled (Jatmiko et al. 2017).

Statistical analysis

Estimation of total production can be calculated using formula modification from IOTC (2012):

CM = LM \* AVM

Where:

CM: Estimation of total production per month (ton)

LM: Number of landed vessels per month which landed SBT (unit)

AVM: Production from sampled vessels per month which landed SBT (ton)/number of total

vessels per month per processing plant which landed SBT (unit)

The relationship between fish length and weight was obtained using a multiplicative regression

model  $(y = ax^b)$  (King 2013).

**Registered vessels** 

The total number of longline vessels landed in Benoa port, sampled by RITF enumerator were

233 units in 2018. These vessels landed in 9 processing plants in Benoa port. In average, the

number of longline vessels landed were about 36 ships per month with the total sampling

1

coverage in 2018 is 53.69% (Appendix 1). This percentage resulted from the calculation on how many total vessels landed either one or more divide by the number of vessels that sampled.

#### **SBT** catch categories

The SBT catch of tuna longline vessels landed at Benoa port is divided into 2 categories of quality i.e. export and non-export. The enumeration program in 2018 reported that the SBT classified into the non-export category accounted for 99%, while the export SBT is 1% (Appendix 2).

## **Bycatch composition**

A total 22 species of bycatch recorded in the longline vessels monitoring program at Benoa port in 2018. The catch composition is dominated by *Prionace glauca* with 42.56%, followed by *Lampris guttatus* 28.05%. Whereas, the bycatch composition which was less than 0.1% consist of 4 species, including *Taractichthys steindachneri*, *Katsuwonus pelamis*, *Taractes rubescens* and *Lophotus capellei* (Appendix 3). The bycatch composition of tuna longline vessels based on fish number sampled provided in Appendix 4.

## SBT length frequency and length-weight relationship

The length frequency of southern blue fin tuna (SBT) landed in Benoa port, Bali in 2018 is presented in Appendix 5. A total 1,773 SBT were measured in fork length (FL), ranged from 121 - 210 cm with the domination length is between 156 and 160 cm. While the relationship between SBT length and weight, showed the strong correlation, with the high R value, 0.8489 (Appendix 6).

### References

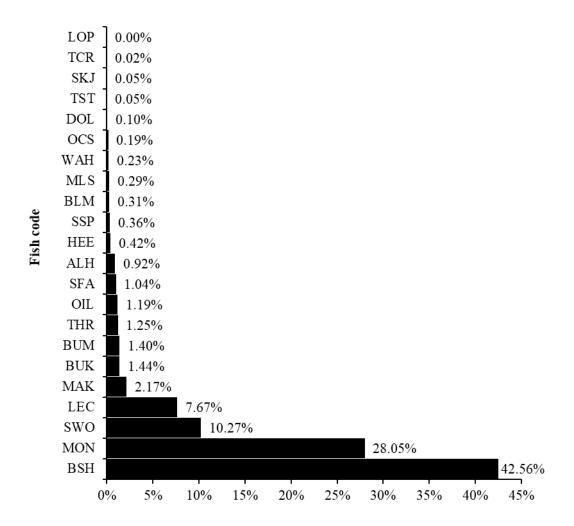
Farley, J., Nugraha, B., Proctor, C., and Preece, A. (2014) Update on the length and age distribution of SBT in the Indonesian longline catch. *CCSBT-ESC/1509/14*.

Farley, J., Sulistyaningsih, R.K., Proctor, C., Grewe, P., and Davies, C.R. (2017) Update on the length and age distribution of SBT in the Indonesian longline catch and close-kin tissue sampling and processing. *CCSBT-ESC/1708/09*.

Jatmiko, I., Zulkarnaen, F., Setyadji, B., and Rochman, F. (2017) Indonesian tuna protocol sampling, case study on catch monitoring in Benoa port, Bali, Indonesia. *CCSBT-ESC/1708/Info 03* **ESC Agenda item 4.1**.


King, M. (2013) 'Fisheries biology, assessment and management.' (John Wiley & Sons)

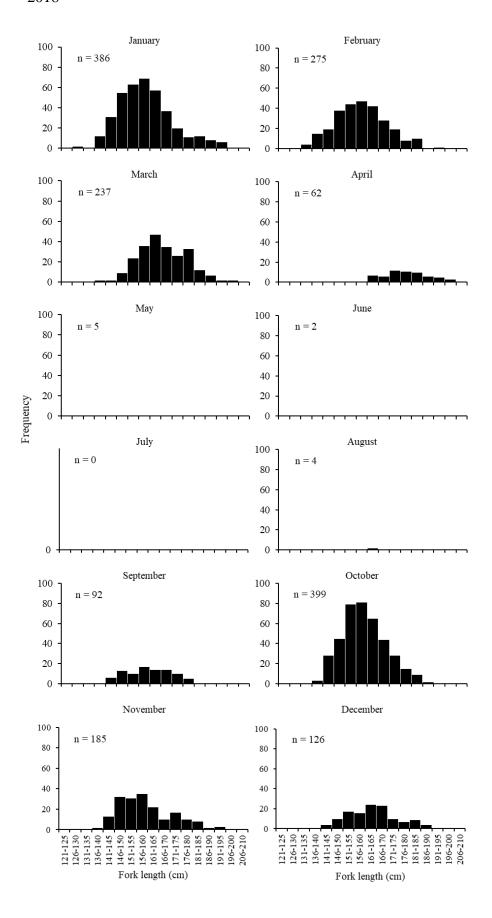
# **Appendices**


Appendix 1. Number of sampled and landed vessels and its proportion at Benoa Port in 2018

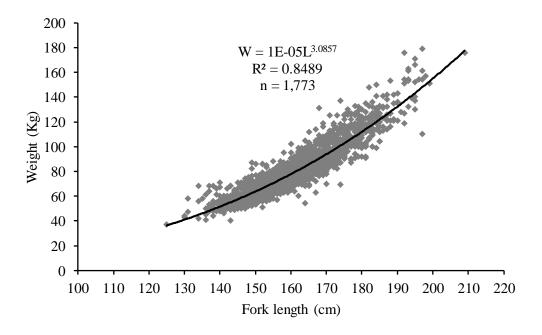
| Month     | Landed | Sampled | %      |  |  |  |
|-----------|--------|---------|--------|--|--|--|
| January   | 35     | 24      | 68.57% |  |  |  |
| February  | 33     | 20      | 60.61% |  |  |  |
| March     | 35     | 22      | 62.86% |  |  |  |
| April     | 43     | 24      | 55.81% |  |  |  |
| May       | 34     | 14      | 41.18% |  |  |  |
| June      | 35     | 10      | 28.57% |  |  |  |
| July      | 26     | 17      | 65.38% |  |  |  |
| August    | 27     | 17      | 62.96% |  |  |  |
| September | 39     | 18      | 46.15% |  |  |  |
| October   | 44     | 22      | 50.00% |  |  |  |
| November  | 40     | 22      | 55.00% |  |  |  |
| December  | 43     | 23      | 53.49% |  |  |  |

Appendix 2. Catch condition of SBT production landed in Benoa port, Bali in 2018




**Appendix 3**. Bycatch composition (%) based on fish weight percentage landed in Benoa port, Bali in 2018




**Appendix 4**. Bycatch composition of tuna longline vessels based on fish number sampled at Benoa port, Bali in 2018

| Code | Common name            | Scientific name             | Jan   | Feb | Mar   | Apr | May   | Jun | Jul   | Aug | Sept | Oct   | Nov | Des | Total  |
|------|------------------------|-----------------------------|-------|-----|-------|-----|-------|-----|-------|-----|------|-------|-----|-----|--------|
| ALH  | Slickheads nei         | Alepocephalus spp           | 6     |     | 10    | 4   | 118   |     | 200   | 64  | 122  |       | 48  | 4   | 576    |
| BLM  | Black Marlin           | Makaira indica              | 1     | 1   | 2     | 7   | 4     | 5   |       |     |      |       |     |     | 20     |
| BSH  | Blue shark             | Prionace glauca             | 2,415 | 329 | 3,106 | 213 | 1,010 |     | 812   | 699 | 752  | 1,028 | 272 | 808 | 11,444 |
| BUK  | Butterfly king fish    | Gasterochisma melampus      | 2     |     |       | 20  | 71    |     | 116   | 9   | 10   |       | 1   |     | 229    |
| BUM  | Blue marlin            | Makaira mazara              | 2     |     | 5     | 35  | 4     | 2   | 1     | 1   | 1    | 3     | 5   | 23  | 82     |
| DOL  | Common dolphinfish     | Coryphaena hippurus         |       |     | 25    | 18  | 17    |     |       | 28  |      |       |     |     | 88     |
| HEE  | Long nose chimaeras    | Harriotta spp               | 27    | 4   | 8     |     |       |     | 6     | 7   | 25   | 6     | 5   | 3   | 91     |
| LEC  | Escolar                | Lepidocybium flavobrunneum  | 351   | 95  | 506   | 657 | 772   |     | 931   | 525 | 398  | 6     | 191 | 36  | 4,468  |
| LOP  | Crestfish              | Lophotus capellei           |       |     |       |     |       |     | 2     |     |      |       |     |     | 2      |
| MAK  | Mako sharks            | Isurus spp.                 | 13    | 2   | 30    | 12  | 8     |     | 13    | 44  | 55   | 40    | 6   | 4   | 227    |
| MLS  | Striped Marlin         | Tetrapturus audax           |       |     |       | 13  | 11    |     | 4     |     | 1    |       |     | 7   | 36     |
| MON  | Moon fish              | Lampris guttatus            | 189   | 16  | 173   | 30  | 1,241 |     | 1,603 | 740 | 568  | 463   | 175 | 53  | 5,251  |
| OCS  | Oceanic whitetip shark | Carcharhinus longimanus     | 2     | 1   | 5     | 4   |       |     | 1     |     |      | 1     |     |     | 14     |
| OIL  | Oilfish                | Ruvettus pretiosus          | 102   | 18  | 58    | 11  | 52    |     | 102   | 50  | 64   |       | 48  | 7   | 512    |
| SFA  | Sailfish               | Istiophorus platypterus     | 21    | 23  | 103   | 142 | 11    |     | 15    | 3   | 3    |       | 5   |     | 326    |
| SKJ  | Skipjack tuna          | Katsuwonus pelamis          |       |     |       | 1   | 22    |     |       |     |      |       |     |     | 23     |
| SSP  | Shortbill Spearfish    | Tetrapturus angustirostris  |       | 7   | 16    | 40  | 36    |     |       | 13  | 9    | 1     |     | 3   | 125    |
| SWO  | Swordfish              | Xiphias gladius             | 81    | 29  | 141   | 286 | 126   | 1   | 144   | 100 | 83   | 110   | 81  | 39  | 1,221  |
| TCR  | Pomfret                | Taractes rubescens          | 7     |     |       |     |       |     | 1     |     |      |       |     |     | 8      |
| THR  | Thresher Shark         | Alopias spp.                | 7     | 2   | 7     | 14  |       |     |       | 4   | 6    | 7     | 9   | 7   | 63     |
| TST  | Sickle pomfret         | Taractichthys steindachneri | 14    |     | 2     |     | 3     |     |       | 18  |      |       |     | 2   | 39     |
| WAH  | Wahoo                  | Acanthocybium solandri      |       | 2   | 2     | 32  | 8     |     | 23    | 6   | 1    |       |     |     | 74     |

**Appendix 5**. Length frequency of southern blue fin tuna (SBT) landed in Benoa port, Bali in 2018



**Appendix 6**. Length-weight relationship of southern blue fin tuna (SBT) landed in Benoa port, Bali in 2018

