
 

 

Investigation of potential CPUE 
model improvements for the 
primary index of Southern 
Bluefin Tuna abundance 
 
 
New Zealand Fisheries Assessment Report 2020/## 
 
 S.D. Hoyle 
  
 
ISSN 1179-5352 (online) 
ISBN XXXX (online) 
 
July 2020

CCSBT-ESC/2008/29
(ESC Agenda item  8)



 
Requests for further copies should be directed to: 
 
Publications Logistics Officer 
Ministry for Primary Industries 
PO Box 2526 
WELLINGTON 6140 
 
Email: brand@mpi.govt.nz 
Telephone: 0800 00 83 33 
Facsimile: 04-894 0300 
 
This publication is also available on the Ministry for Primary Industries websites at: 
http://www.mpi.govt.nz/news-and-resources/publications 
http://fs.fish.govt.nz go to Document library/Research reports 
 
 
© Crown Copyright – Fisheries New Zealand 
 



 

 

TABLE OF CONTENTS 

 

EXECUTIVE SUMMARY 1 

1. INTRODUCTION 2 

2. METHODS 2 

2.1 Data preparation 2 

2.2 Characterise data 3 

2.3 Data coverage and Base model estimates 3 

2.4 Check relevance of inference from available dataset 4 

2.5 Changes to the Base model 4 

2.6 Spatio-temporal smoothers 4 

2.7 Extreme prediction diagnostic 7 

3. RESULTS 7 

3.1 Data characterisation 7 

3.2 Data coverage and Base model estimates 10 

3.3 Changes to the simplified Base model 13 

3.4 Spatio-temporal smoothers 14 

4. DISCUSSION 23 

5. ACKNOWLEDGMENTS 25 

6. REFERENCES 25 

7. APPENDIX 27 

 



 
 
 

Fisheries New Zealand Southern bluefin tuna CPUE model improvements • 1 

 
 

EXECUTIVE SUMMARY 

 
Hoyle, S.D. (2020). Investigation of potential CPUE model improvements for the primary index 
of Southern Bluefin Tuna abundance. 
 
Draft New Zealand Fisheries Assessment Report 2020/##. 33 p. 
 
Indices of southern bluefin tuna abundance are used by the Commission for the Conservation of 
Southern Bluefin Tuna in both the stock assessment and the management procedure. In 2019, the Base 
CPUE model produced an index value for 2018 that was identified as anomalous. This research 
explored reasons for the high estimate and found that increasing effort concentration produced 
increasingly sparse coverage in the catch and effort dataset. This sparse coverage led to unstable 
predictions from the ‘Base’ GLM model in strata without observed CPUE. A new prediction 
diagnostic was developed based on the number of extreme values predicted by the model, and a set of 
new standardisation models was developed. Spatio-temporal smoothing in a generalised additive 
model using the R package mgcv provided more stable predictions for areas with sparse data and 
fitted the data better as measured by the AIC. A model was recommended for the purposes of the 11th 
Operating Model and Management Procedure Technical Meeting. Further work to develop the model 
was recommended. 
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1. INTRODUCTION 

Indices of southern bluefin tuna (Thunnus maccoyii) (SBT) abundance are used by the Commission 
for the Conservation of Southern Bluefin Tuna (CCSBT) in both the stock assessment (Butterworth et 
al. 2003) and the management procedure (CCSBT26-2019). To develop the primary indices used for 
both purposes, data are fitted using the ‘Base’ standardisation model. Next, two indices are derived 
from this model using prediction under two alternative weighting schemes, the constant squares (CS) 
and variable squares (VS) models. These two indices are then recombined using alternative 
weightings; in recent years these have been denoted as the W0.8 and W0.5 indices (Nishida & Tsuji 
1998, Itoh & Takahashi 2019).  
 
The Base model used to generate the CS and VS indices is a linear regression model that includes 
categorical variables for all spatial and temporal effects, along with three interaction terms as follows: 
 
log(cpue + 0.2) ~ yf + mf + areaf + latf + cpue.bet + cpue.yft + mf*areaf + yf* latf + yf*areaf 
 
Here the parameters yf, mf, latf, and areaf are categorical variables (factors) representing year, month, 
statistical area, and latitude respectively. The catch per unit effort (CPUE) of bigeye tuna (cpue.bet) 
and yellowfin tuna (cpue.yft) are calculated as catch per thousand hooks and fitted as continuous 
variables. For southern bluefin tuna, cpue is SBT catch per thousand hooks. A constant of 0.2 is added 
to all cpue records to avoid taking the logarithm of zero. The value of 0.2 is approximately 10% of the 
mean cpue, which has been found to minimise the bias due to this adjustment of the catch rate 
(Campbell et al. 1996; Campbell 2004). Interaction terms that involve the year effect are sometimes 
ignored but, if substantial, may lead to a biased index (Maunder & Punt 2004). In this case they are 
justified by clear differences among statistical areas in catch rate trends through time. Procedures for 
calculating the index in these circumstances are detailed by Campbell (2015).  
 
In recent years CPUE standardisation methods have given more consideration to spatial and temporal 
correlations (Nishida & Chen 2004; Chambers 2014a; Grüss et al. 2019). Many of these methods use 
the correlations among adjacent areas to estimate parameters more efficiently. Approaches using 
spatio-temporal smoothers within generalised additive models have been explored for SBT (Chambers 
2013; Chambers 2014a; Chambers 2014b) but, to date, the primary CPUE index has continued to be 
based on the categorical variables and linear models that generate the W0.8 and W0.5 indices.  
 
However, in 2019, the Base CPUE model produced an index value for 2018 that was identified as 
anomalous (Itoh & Takahashi 2019), and the 2020 update generated a similarly unrealistic index value 
for 2018, with some concern about the 2019 estimate.  
 
This paper explores reasons why the 2019 Base model produced high estimates for recent years and 
investigates the potential of generalised additive models (GAMs) (Hastie & Tibshirani 1990) that 
include spatio-temporal smoothers to provide a more reliable SBT abundance index.  
 

2. METHODS 

2.1 Data preparation 

These analyses were based on a slightly different dataset from the Base model, because the dataset 
used in that analysis is only available to Japanese scientists (Itoh & Takahashi 2019). The available 
dataset was sufficiently similar to the primary dataset to provide useful insights. The main differences 
between the two datasets are listed below.  
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- The primary dataset uses a set of core vessels that have high SBT catches for at least 3 years, 
whereas the available dataset includes data from all vessels.  

- The primary dataset includes catches of bigeye and yellowfin tuna, but the available dataset 
does not.  

- The primary dataset is available as operational (set by set) data (but is aggregated for the Base 
analysis) whereas the available dataset is aggregated.  

 
The data file ‘CPUEInputs_2020_January.txt’, available from the private area of the CCSBT website, 
was used for the analysis. These data are aggregated by year, month, and 5° latitude and longitude, 
with catches reported by age class based on spatially and temporally stratified size sampling.   
 
The following processes were then applied to the dataset: 
 

- Filter to include effort from 1986 to 2018, with DATA_CODE ‘COMBINED’, in statistical 
areas 4 to 9, and months 4 to 9. Include strata with more than 10 000 hooks. Include latitudes 
north of 50° S.  

- Create numeric catch variable, the sum of catches of all SBT 4+ and older.  
- Create categorical llf  variable, indicating 5° square that combines latitude and longitude.  
- Create categorical areaf variable, which merges statistical area 4 with 5 and statistical area 6 

with 7.  
- Create categorical variables yf, latf, and mf, for year, latitude, and month.  
- Adjust numeric longitude variable (lon) by adding 360 to all longitudes between -180 and -100, 

to provide continuity across the spatial domain of the fishery. Longitudes are recorded as -180 
to 180 and so the range of the adjusted longitude variable was from -95 to 260.  

- Create numeric cpue variable = catch per 1000 hooks.  
- Remove a single outlier with cpue > 120.  

2.2 Characterise data 

The data were investigated to identify how effort and catches have changed through time.  
 
Effort was plotted by 5° square, and temporally by two-month periods, for each 5 years since 1985, to 
explore the spatial distribution of effort through time and by season.  
 
To explore spatial and temporal changes through time, and the possibility that trends have varied by 
statistical area, CPUE was modelled separately by statistical area using, in each case, both a main 
effects model and a model that included a month by latitude interaction term.  
 
log(cpue + 0.2) ~ yf + mf + latf + mf* latf 
 

2.3 Data coverage and Base model estimates 

Data availability and how data gaps in space and time might affect the Base model were examined. 
Predicted catch rates from the Base model for each combined stratum of year, month, statistical area, 
and latitude, were generated by predicting from the parameters of the Base model provided by the 
analyst (Tomoyuki Itoh, personal communication).  
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2.4 Check relevance of inference from available dataset 

The available dataset was standardised using a model similar to the Base model, but without the 
parameters for other species. This is the simplified Base model:  
 

log(cpue + 0.2) ~ yf + mf + areaf + latf + mf*areaf + yf* latf+ yf*areaf, 
 
where all parameters are categorical variables.  
 
As for the Base model, predicted catch rates were generated for each combined stratum of yf, mf, 
areaf, and latf.  
 
To compare predictions from the Base (with primary dataset) and simplified Base (with available 
dataset) models, each set of predictions by year was normalised by the means across years and 
summed, and then all were plotted on the same figure.  

2.5 Changes to the Base model 

The fits of the simplified Base model and alternative approaches using categorical data were explored 
based on Akaike Information Criterion (AIC) and proportion of the deviance explained.   
 
The simplified Base model included three of the six possible two-way interactions. A fourth 
interaction term (mf*latf) was added to produce the ‘Base Plus’ model. The effects on model fit of 
dropping each of these four interactions terms were examined. A full two-way model was produced 
by including all 6 possible interactions terms, and the effect of dropping each of these in turn was 
examined. Finally, the effect on model fit of adding each of the four possible three-way interaction 
terms to the Base Plus model was assessed.  

2.6 Spatio-temporal smoothers 

Generalised additive models are generalised linear models that replace or augment the linear function 
with an additive function that may include smoothing parameters and use a local scoring algorithm to 
estimate the smoothing parameters. As implemented in the mgcv package (Wood 2011), they are a 
flexible and powerful tool for data modelling. Under mgcv a variety of smoothers and other additive 
functions are available. Methods for visualising outputs are provided in the package mgcViz (Fasiolo 
et al. 2020). 
 
With data increasingly sparse both spatially and seasonally, spatio-temporal smoothers allow for 
correlations between adjacent spatial and temporal cells and reduce the number of parameters being 
estimated.  
 
The approach used for the simplified Base models was replicated and then other approaches were 
explored that might explain more variability while retaining parameter identifiability.  
 
As with the previous analyses, modelling was carried out in R (R Core Team 2019) using the 
generalised additive modelling packages mgcv (Wood 2011).  
 
All models were fitted to the same dataset. Each variable was modelled either as a categorical (factor) 
variable, as in the simplified Base model, or as a continuous variable, which is necessary when using 
smoothers. The variables areaf, latf, llf , mf, and yf denote factors (categorical variables) for statistical 
area, latitude, 5° cells of latitude and longitude, month, and year. The variables lon, lat, mn, and yr 
denote continuous variables for longitude, latitude, month, and year. Interaction terms between 
continuous variables were fitted with the tensor product function te(), and individual continuous 
variables were fitted with the smooth function s() using the default thin-plate regression spline.  
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Each model was fitted with the mgcv setting ‘gamma = 2’ to reduce the effective sample size. CPUE 
standardisation models in mgcv can suffer from excess variability in the smoothers. Fisheries data are 
often over-dispersed due to dependencies among sets and strata, because individual data represent the 
combination of multiple sets by the same vessels, and unmodelled effects, such as environmental 
patterns and fish behaviour, can lead to overdispersion at multiple spatial and temporal scales. These 
dependencies reduce the amount of independent information in the data, which can be allowed for by 
reducing the effective sample size. Setting gamma to 2 was an ad hoc choice and further exploration 
is warranted.  
 
Initially the simplified Base and Base Plus models were replicated in mgcv using factor variables as 
before.  
 
Simplified Base: 

 
 
Base plus: 

 
 
Next, various smooth functions were used to replace and augment the factors (Table 1). A variety of 
two-way and three-way interactions were trialled. A four-way interaction with all the continuous 
variables was also explored.  
 
The model gam13 (Table 1) was designed to be a smoothed version of model ‘Base Plus’, replacing 
the factor areaf with te(lon, lat). The factor areaf was replaced with lon in interaction terms so that, 
for example, yf*areaf became te(yr, lon).   
 
Model assumptions were checked using the mgcv function gam.check() or the equivalent 
check.gamViz() function from the mgcViz package.  
 
Reasons for skewed residuals were checked by examining the relationship of effort to residual size, 
using a smoothing spline in mgcv: gam(hooks ~ s(residual)), where hooks is the effort (number of 
hooks set) in the stratum.  
 
Individual smoothers were plotted from the model with the best combination of low AIC and lack of 
extreme (unrealistic) predictions.  
 
Indices from each model were obtained by predicting catch rates in all spatial cells that were fished in 
at least 15 temporal strata (known as ‘x15’ filtering). Catch rates in these spatial cells were predicted 
for all years and months. Based on the unreliable assumption that all spatial cells have the same ocean 
area, catch rates were summed for each year and divided by the mean of the yearly estimates, to give 
an index with mean of 1. Because ocean areas change with latitude, and some spatial cells include 
land, abundance prediction methods will need to be correspondingly adjusted in the future.   
 
To explore the effect on the index of each model component, a progressive series of models that built 
up the components of the model recommended for inference (gam11) was fitted, as follows. Indices 
derived from these models were plotted in sequence.  

1. yf 
2. + te(lon, lat, k = c(40,4))  
3. + te(mn, lat, k = c(6,4))  
4. + te(lon, mn, k = c(10, 5))  
5. + te(yr, lat, k = c(20, 4))  
6. + te(yr, mn, k = c(20, 5))  
7. + te(lat, lon, mn,  k = c(4,15, 6))  
8. + te(lat, lon, yr, k = c(4,10, 9)) 
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Table 1: Models run using mgcv. The factors column reports all variables included as categorical variables. Smooth terms include two-way, three-way, and four-
way (‘All’) interactions. The last four columns show the estimated degrees of freedom (df), the AIC, delta AIC, and the percent deviance explained.  

Label Factors Smooth terms 4-way df AIC δAIC 
Deviance 
explained 

Base           252.0 9845.3 2340 61.7% 

Base plus .+mf:latf          267.0 9530.7 2025 64.7% 

Base_noYrAr .-yf:areaf          156.0 10061.8 2556 57.9% 

glmmYrAr           199.1 9893.7 2388 60.3% 

gam 2 yf+mf lon,lat         95.1 9522.9 2017 61.8% 

gam 3 yf+mf       mn,lon,lat   152.4 8562.3 1057 70.3% 

gam 4 yf         All 322.1 8064.9 559 75.5% 

gam 5 yf+llf         All 297.7 7886.2 381 76.3% 

gam 6 yf+llf  mn,lat       All 274.4 7856.4 351 76.2% 

gam 7 yf lon,lat mn,lat       All 220.8 7839.1 333 75.7% 

gam 8 yf lon,lat mn,lat lon,mn      All 248.9 7758.5 253 76.4% 

gam 9 yf lon,lat mn,lat lon,mn yr,lat   mn,lon,lat lat,lon,yr  262.2 7701.7 196 76.9% 

gam 10 yf lon,lat mn,lat lon,mn yr,lat yr,lon yr,mn    195.8 8048.5 543 74.2% 

gam 11 yf lon,lat mn,lat lon,mn yr,lat  yr,mn lat,lon,mn lat,lon,yr  267.1 7593.4 88 77.5% 

gam 12 yf lon,lat mn,lat lon,mn yr,lat yr,lon yr,mn lat,lon,mn lat,lon,yr  283.8 7505.7 0 78.1% 

gam 13 yf+mf lon,lat mn,lat lon,mn yr,lat yr,lon     217.8 7968.3 463 74.9% 
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To identify the causes of the changes at each stage, individual smoothers from these models were 
plotted and compared with the distributions of effort and CPUE with respect to the parameters in the 
smoothers.  
 
To identify the effects of data sparsity on the candidate standardisation models, indices of catch rate 
through time were created for each model by latitude latf and by statistical area areaf.  

2.7 Extreme prediction diagnostic 

A new prediction reliability diagnostic was developed (the extreme prediction diagnostic); this is 
based on the consistency of model predictions by year-month-statistical area-latitude stratum with the 
range of observed CPUE throughout the time series. The max diagnostic counts the number of 
predictions higher than the maximum observed CPUE in the same year, and the min diagnostic counts 
the number of observations lower than the minimum observed CPUE in the same year. These extreme 
counts are also classified based on whether there is an observed CPUE in the same stratum, and 
whether the stratum is included in results that are based on the x15 criterion.  
 
The preferred version of the ‘extreme prediction diagnostic’ is based on high values, x15 filtering, and 
all strata. High extreme predictions tend to be more variable and influential than low extreme 
predictions given that errors are lognormally distributed. The x15 filtered values are used to generate 
the index, and this makes them more relevant than the full range of cells. Counts of extreme values in 
strata with no observed catch (‘gap’) are provided for interest, but all strata are used to generate the 
index.  
 

3. RESULTS 

3.1 Data characterisation 

The statistical area with the most effort (hooks) was statistical area 9, whereas statistical areas 5 and 6 
had relatively little effort. Statistical areas 4, 7, and 8 had intermediate effort levels, with 
approximately 200 million hooks set from 1986 to 2018 (Figure 1).  
 
Statistical areas 4 and 5 had a relatively high proportion of records with zero catch, whereas statistical 
areas 6, 7, and 9 had very low proportions. The proportions of records with zero catch did not change 
substantially through time, though there was a small peak in the early 1990s. By latitude, most of the 
effort was between 35° and 45° S. Proportions of zeroes were much higher further north, with over 
half the strata reporting zero SBT north of 35° S. Effort by month was highest in May, June, and July. 
Proportions of zeroes were highest in April and declined through the season.  
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Figure 1:  Distribution of effort and data records. (a) Total hooks per statistical area; (b) Total records 
per statistical area, including both zero and nonzero catches; (c) number of records per year, 
including both zero and nonzero catches; (d) number of records per latitude band, including 
both zero and nonzero catches; (e) number of records per month, including both zero and 
nonzero catches.  

 
The spatial distribution of effort changed in consistent ways throughout the year (Figure 2). In April 
and May there was effort in the west (statistical area 9) and east (statistical areas 4, 5, 6, 7), but little 
effort in statistical area 8. Later in the year, effort moved north within these regions and into statistical 
area 8. Similar seasonal fishing patterns between statistical areas 8 and 9 were seen for the Korean 
fleet (Appendix Figure A1) (Hoyle et al. 2019). If these changes in effort distribution reflect SBT 
catch rates, they suggest interactions between month and latitude, and between month and longitude 
or statistical area.  
 
Long-term changes in effort occurred, with less effort in all statistical areas during the 2015–2018 
period, apart from an increase in statistical area 8 in April-May.  
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Figure 2:  Maps of total effort per two-month period (across), summed over 10-year periods (down) 

starting in 1986. Darker blue indicates higher effort. Black indicates land. 

  
Results of standardising catch rates separately by statistical area showed catch rates in statistical area 
6+7 increasing rapidly from 2007 and stabilising at a high level in 2010 and catch rates in statistical 
area 9 increasing rapidly from about 2008 to a peak in 2015 (Figure 3). Catch rates in statistical area 
4+5 showed no consistent change through time but did spike in 2018. Catch rates in statistical area 8 
were variable throughout but have been higher on average since 2010 than in the previous 10 years. 
Including a month*latitude interaction had little effect on most statistical areas but substantially 
increased standardised catch rates in statistical area 8 from 2010.  
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Figure 3:  Standardised CPUE indices for individual statistical areas.  

 

3.2 Data coverage and Base model estimates 

The number of empty strata (by year, statistical area, month, and latitude) increased progressively 
from 1990 to 2018 (Table 2). Predicted CPUE in most years was reasonably consistent with the 
observed CPUE in the same strata, apart from a few negative values due to low predictions and the 
effect of back-transformation.  
 
The increasing number of empty strata is consistent with figure 1b from Itoh & Takahashi (2019), 
which shows operations with SBT aged 4+ concentrated into a steadily reducing number of 5° cells 
and 1° cells through time, with minima for both 1° and 5° cells in 2018 (Figure A2). At the same time 
the effort per cell has increased since 2010, so that effort in 2018 was perhaps twice as concentrated 
as in 2010. An even stronger pattern of increasingly concentrated effort is apparent in the Korean 
data.  
 
The Base model (predictions from parameters provided by Tomoyuki Itoh, NRIFSF, Japan) predicted 
very high catches per thousand hooks in 2018 in statistical area 8, with the highest predictions all in 
strata with no reported effort (Table 2). Of the 18 month-latitude strata in statistical area 8, over 40 
fish per thousand hooks were predicted in four strata and almost 20 fish in two strata. 
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Table 2:  Observed numbers of hooks and catch rates in the aggregated Japanese dataset, and approximate predicted catch rates in the same strata generated by 
the Base model. Hooks are in thousands and catch rates in SBT per thousand hooks. Anomalously high values are highlighted in orange. (Continued on 
next page.) 

   
1990 2010 2017 2018 

stat area mon lat5 hooks cpue Pred 
cpue 

hooks cpue Pred 
cpue 

hooks cpue Pred 
cpue 

hooks cpue Pred 
cpue 

8 4 -45 0  0.14 0  0.54 0  1.01 0  5.17 
8 4 -40 0  0.10 0  0.63 0  1.08 0  5.55 
8 4 -35 0  0.03 196 0.46 0.20 879 0.01 0.02 534 0.06 0.30 
8 5 -45 0  0.35 0  0.98 0  1.73 0  8.35 
8 5 -40 0  0.29 0  1.12 0  1.84 0  8.96 
8 5 -35 0  0.17 427 0.14 0.44 545 0.04 0.16 226 0.25 0.60 
8 6 -45 0  0.99 0  2.37 0  4.00 0  18.39 
8 6 -40 245 1.70 0.85 0  2.66 0  4.23 0  19.71 
8 6 -35 0  0.60 304 1.38 1.19 17 0.00 0.58 0  1.54 
8 7 -45 0  2.38 0  5.37 0  8.91 0  40.16 
8 7 -40 2211 1.79 2.09 0  6.02 0  9.42 0  43.03 
8 7 -35 430 1.68 1.53 0  2.81 35 2.64 1.48 0  3.57 
8 8 -45 0  2.73 0  6.14 0  10.17 0  45.73 
8 8 -40 979 2.55 2.40 186 4.27 6.88 0  10.75 0  49.00 
8 8 -35 1113 2.16 1.77 663 3.49 3.23 1841 5.27 1.72 1857 7.19 4.09 
8 9 -45 0  2.04 0  4.64 0  7.71 0  34.83 
8 9 -40 33 1.99 1.79 0  5.20 0  8.15 0  37.32 
8 9 -35 101 0.79 1.30 43 4.08 2.41 476 8.52 1.26 544 7.96 3.07 
9 4 -45 258 2.90 1.42 0  2.22 0  5.18 77 5.64 5.24 
9 4 -40 3418 2.19 1.24 799 4.16 2.50 1201 8.07 5.48 1603 6.69 5.63 
9 4 -35 491 0.00 0.89 202 0.81 1.11 0  0.79 20 0.00 0.31 
9 5 -45 1082 1.96 1.79 0  2.76 25 7.39 6.38 0  6.45 
9 5 -40 4075 1.44 1.56 1202 3.51 3.10 2070 6.35 6.74 2741 6.38 6.93 
9 5 -35 279 0.27 1.13 282 1.88 1.40 23 2.39 1.02 26 0.00 0.42 
9 6 -45 205 1.42 1.96 0  3.02 0  6.94 0  7.02 
9 6 -40 4167 1.54 1.71 870 4.56 3.39 1171 8.62 7.34 1572 9.21 7.54 
9 6 -35 1555 0.62 1.25 602 1.48 1.54 0  1.12 0  0.48 
9 7 -45 21 1.53 2.53 0  3.87 0  8.83 0  8.94 
9 7 -40 1746 1.31 2.22 366 5.37 4.34 433 8.67 9.34 381 10.97 9.59 
9 7 -35 3952 0.98 1.63 267 2.35 2.00 0  1.47 0  0.65 
9 8 -45 0  2.79 0  4.27 0  9.71 0  9.83 
9 8 -40 0  2.46 17 1.22 4.78 27 7.18 10.26 0  10.54 
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1990 2010 2017 2018 

stat area mon lat5 hooks cpue Pred 
cpue 

hooks cpue Pred 
cpue 

hooks cpue Pred 
cpue 

hooks cpue Pred 
cpue 

9 8 -35 1500 1.10 1.81 392 2.13 2.21 0  1.63 0  0.74 
9 9 -45 0  2.32 0  3.56 0  8.16 0  8.25 
9 9 -40 0  2.04 0  4.00 0  8.62 0  8.86 
9 9 -35 17 0.00 1.49 51 3.08 1.83 0  1.34 0  0.59 

45 4 -35 49 0.00 0.23 313 0.09 0.39 16 0.36 0.30 0  1.35 
45 4 -30 16 0.00 -0.06 45 0.00 -0.12 0  -0.13 0  -0.13 
45 5 -35 149 0.00 0.93 1133 3.02 1.34 294 4.32 1.12 234 5.77 3.89 
45 5 -30 98 0.00 0.16 11 0.00 0.01 0  -0.01 0  -0.02 
45 6 -35 3346 1.18 1.15 507 8.63 1.65 468 2.97 1.38 718 6.61 4.70 
45 6 -30 746 0.01 0.23 340 0.00 0.05 144 0.00 0.02 147 0.00 0.02 
45 7 -35 3610 2.17 1.87 0  2.64 0  2.22 0  7.32 
45 7 -30 2964 0.40 0.46 311 0.00 0.18 339 0.03 0.14 524 0.00 0.14 
45 8 -35 315 1.19 1.97 0  2.78 0  2.34 0  7.69 
45 8 -30 1699 0.25 0.49 137 0.04 0.20 364 0.10 0.16 419 0.00 0.15 
45 9 -35 0  2.44 0  3.42 0  2.89 0  9.40 
45 9 -30 0  0.64 88 0.05 0.29 25 0.00 0.24 0  0.23 
67 4 -45 1795 2.62 1.95 0  6.00 0  5.61 0  6.02 
67 4 -40 3644 2.68 1.71 969 5.57 6.72 2088 5.02 5.93 2005 4.38 6.46 
67 4 -35 0  1.24 0  3.15 0  0.87 0  0.38 
67 5 -45 1288 2.22 2.23 167 6.79 6.79 0  6.35 0  6.80 
67 5 -40 5918 1.68 1.96 422 9.69 7.60 1983 5.09 6.71 2094 6.93 7.30 
67 5 -35 0  1.43 0  3.58 0  1.01 0  0.45 
67 6 -45 1163 1.24 2.22 0  6.77 0  6.34 0  6.79 
67 6 -40 2950 1.51 1.95 96 5.55 7.58 334 10.15 6.70 340 9.65 7.29 
67 6 -35 0  1.42 0  3.57 0  1.01 0  0.45 
67 7 -45 0  2.32 0  7.06 0  6.61 0  7.08 
67 7 -40 124 1.53 2.04 0  7.90 0  6.99 0  7.60 
67 7 -35 0  1.49 0  3.72 0  1.06 0  0.48 
67 8 -45 0  1.50 0  4.70 0  4.39 0  4.71 
67 8 -40 29 1.05 1.31 0  5.26 0  4.64 0  5.06 
67 8 -35 0  0.94 0  2.45 0  0.65 0  0.26 
67 9 -45 0  1.29 0  4.10 0  3.83 0  4.11 
67 9 -40 0  1.13 0  4.60 0  4.05 0  4.42 
67 9 -35 0  0.80 0  2.12 0  0.54 0  0.20 
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The Base model and the simplified Base model gave very similar indices (Figure 4), suggesting that 
approaches that improve results for the simplified Base model are also likely to work for the Base 
model. The primary and ‘available’ datasets are sufficiently similar to allow the available dataset to 
stand in for the primary dataset for exploratory analyses regarding some issues.  
 

 
Figure 4:  Comparison of the CPUE indices between the predictions generated from the Base parameters 

and the predictions generated from standardised data. For each, the predicted CPUE estimates 
are summed across all strata without weighting.  

 

3.3 Changes to the simplified Base model 

Removing any of the parameters and interactions included in the Base plus model resulted in poorer 
fit as measured by the AIC (Table 3). The mf * latf interaction term (not included in the simplified 
Base model) had the most effect on the AIC of all the interactions, suggesting that this interaction 
should be considered in future analyses. This interaction term is consistent with the observed 
movement patterns of the fleet, which fishes further north within each statistical area later in the 
season (Figure 2).  
 
The yf * mf and areaf * latf interactions (also not included in the Base model) improved the AIC but 
by the smallest amount of all possible two-way interactions (Table 4).  
 
Three of the four three-way interaction terms improved the AIC of the model, with the most impact 
coming from mf * latf * areaf (Table 5).  
 
These trials suggest that including additional terms in the simplified Base model is likely to improve 
the fit to the data. The proportion of deviance explained should also be considered when adding terms, 
because most CPUE datasets are over-dispersed, which can make the AIC oversensitive and lead to 
overfitting. Prediction reliability must also be considered when including additional terms, given the 
increasing concentration of the effort and the consequent sparse data.   
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Table 3:  Changes in the deviance, degrees of freedom, and AIC as a result of dropping parameters from 
the Base plus model.  

log(cpue + 0.2) ~ yf + mf + areaf + latf + mf*areaf + yf*latf + yf*areaf + mf*latf 
  

DF Deviance AIC 

<none> 
 

2049.0 9530.7 

mf:areaf 15 2137.6 9682.1 

yf:latf 96 2245.9 9731.7 

yf:areaf 96 2258.6 9756.0 

mf:latf 15 2220.7 9845.3 

 
 
Table 4:  Changes in the deviance, degrees of freedom, and AIC as a result of dropping parameters from 

the model with all possible two-way interactions.  

log(cpue + 0.2) ~ yf + mf + areaf + latf + mf*areaf + yf*latf +  yf*areaf + mf*latf + yf*mf + areaf*latf 
  

DF Deviance AIC 

<none> 
 

1859.6 9443.3 

yf:mf 160 2014.4 9465.7 

areaf:latf 4 1891.5 9508.1 

mf:areaf 15 1909.7 9527.2 

yf:latf 96 2030.4 9627.6 

yf:areaf 96 2070.5 9711.4 

mf:latf 15 2000.1 9725.3 

 
 
Table 5:  Changes in the degrees of freedom and AIC as a result of adding three-way interactions to the 

following model.  

log(cpue + 0.2) ~ yf + mf + areaf + latf + mf*areaf + yf*latf +  yf*areaf + mf*latf  
 
Interaction term DF AIC 

- 267 9530.748 

month*lat*area 285 9379.198 

year*month*area 764 9453.124 

year*lat*area 332 9461.132 

year*month*lat 753 9690.653 

 

3.4 Spatio-temporal smoothers 

All models with spatio-temporal smoothers fitted the data with lower AIC values than the simplified 
Base model (see Table 1). Where checked, most of the smooth terms explained over 1% of the 
deviance (Table 6).  
 
The best model fits according to AIC were (best to worst): gam12, gam11, gam9, gam8, gam7, gam6, 
gam5, gam13, gam10, gam4, gam3, gam2, Base plus, simplified Base, glmm_YrArea, 
Base_noYrArea (see Table 1). Given these results, the models gam2 to gam8 were dropped, to focus 
on the best-fitting GAMs. The model Base plus was also dropped to focus on models more relevant to 
the discussion, but it was nevertheless the best-fitting factor based model.  
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The extreme prediction diagnostic (Table 7) based on high values showed the best performance across 
all cells for model gam11, followed by model gam13, gam9, Base_noYearArea, glmm_YearArea, 
gam12, simplified Base, and gam10. After removing cells not included in index prediction due to x15 
filtering, the sequence from best to worst became: gam9, gam11, Base_noYearArea, gam13, 
glmm_YearArea, gam10, gam12, simplified Base.   
 
Given their poor performance with extreme predictions, models gam10 and gam12 were dropped. 
Model gam13, designed to be similar to the Base model but with smoothers, had lower AIC by 1877, 
predicted 5 high values rather than 19, and explained 74.9% of deviance rather than 61.7%. The 
model selected as the best was gam11, which had AIC better again by 375, predicted 2 high values, 
and explained 77.5% of the deviance.  
 
Residual diagnostic plots showed relatively normal distributions, although the tails of the GAMs with 
better fit to the data did not follow the expected distribution in the tails (Figure A3). This appears to 
be because the strata of aggregated data with lower sample sizes (fewer hooks set) are more variable 
than the strata with more effort, as demonstrated by fitting a GAM to the relationship between 
residual size (x-axis) and effort (y-axis) (Figure A4).  
 
Spatio-temporal smoothers from model gam11 showed relatively smooth catch rate patterns across 
space, but it is difficult to interpret individual plots in biological terms given their interactions, and the 
fact that the overall effect is the aggregate of all components (Figures A5, A6, and A7).  
 
Predictions from model gam11 across the spatial domain showed changing spatial distribution by 
month and year (Figure 5).  

 
Table 6:  For each three-way smooth term in model gam 11, the percentage of deviance explained, and 

the effect on the AIC of dropping the term from the model. The model is specified as:  

log(cpue + 0.2) ~ yf + te(lon, lat, k = c(40,4)) + te(mn, lat, k = c(6,4)) + te(lon, mn, k = c(10, 5)) + te(yr, lat, k = 
c(20, 4)) + te(yr, mn, k = c(20, 5)) + te(lat, lon, mn,  k = c(4,15, 6)) + te(lat, lon, yr, k = c(4,10, 9)) 

AIC delta AIC Change in % Deviance explained Smoother dropped 
7593.4 0.0 

  

8048.2 454.8 3.4 te(lat, lon, mn,  k = c(4,15, 6)) 
7859.9 266.5 1.8 te(lat, lon, yr, k = c(4,10, 9)) 

 
Table 7: Extreme prediction diagnostic showing the number of year-month-latitude-statistical area 

stratum predictions that either exceed the maximum observed values in any stratum per year 
(max) or predict less than zero (min). Results are reported for cell filtering methods that 
include all cells (full) or only those with at least 15 records observed (x15). Results are also 
reported both for all strata (all) and for only those strata with no observed CPUE in the year of 
the prediction (gap). The version of the extreme prediction diagnostic preferred for inference is 
in bold.  

Limit Cell filter Strata Models 

   Simp 
Base 

Base 
NoYrAr 

glmm 
YA 

gam 
9 

gam 10 gam 11 gam 12 gam 13 
max full all 34 9 14 4 38 0 19 2 
max full gap 30 9 13 4 38 0 18 2 
max x15 all 19 4 6 1 11 2 12 5 
max x15 gap 15 4 5 0 11 1 11 4 
min full all 95 92 90 47 36 40 36 56 
min full gap 40 39 38 21 18 17 15 21 
min x15 all 88 91 88 44 32 39 33 48 
min x15 gap 33 38 36 24 17 19 17 18 
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Figure 5:  Predicted catch rates from model gam11 for statistical areas 4 to 9 for the years 1988, 1998, 

2008, and 2018, in April, June, and August. 
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Indices from the three smoothed models were relatively similar to the factor models for most of the 
period, but a little less variable through time, and lacking the anomalously high value for 2018 that 
motivated this study (Figure 6).  
 

 

Figure 6:  Mean annual predicted CPUE after x15 filtering from the models simplified base, 
base_noYearArea, glmm_YearArea, gam9, gam11, and gam13.  

 
Progressive changes in the CPUE are shown as the model terms are added (Figure 7). Much of the 
change in trend since 2015 is associated with fishing location, with a large change in the third row of 
the progressive plot when te(lat, lon) is introduced. In 2015 there was much more effort in the 37.5° S 
latitude band and in the west than in 2018, and the spatial smoother expected this north-western effort 
to have lower catch rates (Figure 8). When the effort moved south the model explained the increase in 
catch rates with the spatial effect.  
 
When the year-latitude smoother is introduced (row 6 of the progressive plot, Figure 7), the 
contribution of the year effect increases after about 2013. This smoother increases the expected CPUE 
in the south in 2015, compared with the expected CPUE in the south in 2010 (Figure 9), which is 
consistent with the increasing observed CPUE in the south (Figure 10).  
 
When the year-month smoother is introduced (row 7 of the progressive plot) the contribution of the 
year effect after about 2013 increases further. This smoother reduces the expected CPUE in April and 
May compared with June and July, in 2015 relative to 2010 (Figure 9). This is consistent with the 
increasing difference between April-May and June-July during this period (Figure 10).  
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Figure 7:  Progressive changes in the index as each term of the gam11 model is added, starting with the 

nominal CPUE and the simplest model [log(CPUE + 0.2) ~ yf] in the top two rows. Each row 
of the plot includes the model specified in that row (black), the model from the row above 
(dashed line), and other models in rows above (grey).  
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Figure 8: Density plot of effort (above) and CPUE (middle) in 2015 (left) and 2018 (right). Darker colours 

indicate higher effort or CPUE. Below is the spatial smoother from the model log(CPUE + 0.2) 
~ yf + te(lon, lat).  

 
Predictions by latitude and by statistical area were much more stable than those from the factor-based 
models (Figure 11). High variability associated with sparse data was apparent at the northern and 
southern latitudes -32.5 and -47.5, and in statistical areas 8, 4+5, and 6+7. Note, however, that 
statistical areas with sparse data were given low weight by the constant squares and variable squares 
algorithm and by x15 filtering, which greatly limited their impact on the resulting indices. These 
figures nevertheless illustrate how spatio-temporal smoothing can stabilise estimates when data are 
sparse.  
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Figure 9:  (Left) Smoother on yr and lat (left) from the fifth model in the progressive series: log(cpue + 0.2) ~ yf + te(lon, lat, k = c(40, 4)) + te(mn, lat, k = c(6, 4)) + 

te(lon, mn, k = c(10, 5)) + te(yr, lat, k = c(20, 4)). (Right) Smoother on yr and mn from the sixth model in the progressive series: log(cpue + 0.2) ~ yf + 
te(lon, lat, k = c(40, 4)) + te(mn, lat, k = c(6, 4)) + te(lon, mn, k = c(10, 5)) + te(yr, lat, k = c(20, 4)) + te(yr, mn, k = c(20, 5)).  
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Figure 10:  Density plots of effort in number of hooks (above) and CPUE (below) by year and latitude (left) and by year and month (right). Darker colours indicate 

higher effort or CPUE. 



 
 
 

22 • Southern bluefin tuna CPUE model improvements Fisheries New Zealand 
 

 
 

 

 
Figure 11:  Mean annual predicted CPUE by latitude (above) and statistical area (below) after x15 

filtering from the models simplified base, base_noYearArea, glmm_YearArea, gam9, gam11, 
and gam13. 
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4. DISCUSSION 

This study has shown that the anomalous 2018 result (Itoh & Takahashi 2019) was likely caused by 
sparse data associated with increasing effort concentration. Generalised additive models with spatio-
temporal smoothers were able to address this problem. Such models may also provide more accurate 
indices of abundance by taking into account factors that cannot be included in the current SBT CPUE 
standardisation model.  
 
Effort included in the primary SBT index has been increasingly concentrated, with a relatively steady 
decline since 2006 in cells fished, and an increase from 2010 to 2018 in effort per cell. These changes 
have been associated with restrictive SBT catch quotas, subsequent increases in fish abundance, and 
associated changes in fishing behaviour. Changes in technology that facilitate fish finding may also 
have played a role. Future changes in effort concentration are unpredictable but, if the extent of 
concentration remains close to or above current levels, problems with prediction behaviour by the 
Base model are likely to be repeated.  
 
The reasons for the increasing concentration of fishing effort, and its implications, need to be 
understood. The increasing concentration is very marked in both the Japanese and Korean fleets. As 
well as causing the analytical problems that motivated this study, it may affect the reliability of CPUE 
as an index of abundance in ways that spatio-temporal smoothing does not resolve. If effort is 
concentrating because the fleet is getting better at finding fish, this would also tend to increase the 
average observed catch rate. In this situation the CS method and the GAM with spatial smoothers may 
produce a hyperstable CPUE index. It may therefore be appropriate to retain an approach that includes 
aspects of the VS method.  
 
There may also be concerns about changing stock distribution due, for example, to the effects of 
climate change on oceanic currents and temperatures. Contraction and expansion would be easier to 
detect if modelling at the 1° cell scale, which would be straightforward with smoothers. Currently 
there are only 4 x 5° latitude bands in the model, and changes in distribution must be large to be 
detectable. It would also be easier to detect changes in distribution if data were available from more 
vessels, which could be accomplished by including other fleets in the analysis, and perhaps including 
non-core vessels. Either of these additions to the dataset would make it more important to consider the 
effects of targeting and vessel-specific catchability.  
 
Spatio-temporal smoothers take advantage of Tobler’s (1970) ‘First Law of Geography’, that 
‘everything is related to everything else, but near things are more related than distant things’, a 
principle that can also be applied to time. Spatio-temporal smoothers implemented in a GAM with 
mgcv fitted the catch and effort data better than the categorical variables used in the Base linear model 
or any of the non-smoother alternatives, while using fewer parameters.  
 
Model fits were compared using the AIC which when used with CPUE standardisation tends to select 
the more highly parameterised model and results in overfitting. This is not a failing of AIC but due to 
the incorrect model assumption that records are independent. This is particularly problematic with 
CPUE standardisation of operational longline data that include time series of daily sets by the same 
vessels. However, it remains a concern with aggregated data. With aggregated data, these short-term 
considerations are less significant, but there are still dependencies within the data that are not 
accounted for by the model. These dependencies include factors affecting catchability such as vessel 
effects, oceanographic features, and targeting and reporting behaviour. Factors affecting fish 
distribution can also introduce dependence among strata and add process uncertainty to the 
relationship between CPUE and abundance. Use of alternative fitting criteria such as the Bayesian 
information criterion (BIC) raises the threshold for model selection but does not address the cause of 
the problem. A method commonly used in CPUE standardisations is to include only model 
components that explain at least 1% of the deviance. That approach was used to check the smoothers 
selected in this study for model gam11, and all such model components were included.  
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Similarly, lack of independence usually affects the confidence intervals estimated for CPUE indices. 
Generalised Estimating Equations can help by estimating the dependencies, but these approaches are 
not always practical and not often used. To adjust the smooth fitting process for lack of independence, 
effective sample size was reduced by half by setting the gamma parameter to 2.  
 
A major advantage of sharing parameters with spatio-temporal smoothing is the ability to better 
represent the biological features of the population. The Base model does not include a month by 
latitude interaction term, although effort tends to consistently move further north later in the season, 
as sea surface temperatures cool during the austral winter. Adding this interaction term to the 
simplified Base model improved the AIC but is likely to worsen prediction problems by increasing the 
number of strata. The models with smoothers were able to include these effects and greatly improve 
the fit to the data, while at the same time predicting fewer extreme values.  
 
The ‘extreme prediction diagnostic’ approach used here is a new approach for assessing the reliability 
and utility of model predictions. The upper limit is particularly relevant to CPUE modelling of target 
species, because more fishing effort can be expected in strata where catch rates are higher, so strata 
that are informed by less information may be expected to have lower catch rates. Predicted catch rates 
that exceed the maximum observed are therefore likely to be unrealistic. Currently, the diagnostic is a 
tool for comparing models but there are no established criteria for what is acceptable. This is likely to 
remain subjective and will depend on the dataset and species being modelled. Nevertheless, 
simulation would be useful to explore the behaviour of the diagnostic.  
 
Poor prediction beyond the range of the data is a well-known problem that occurs with both factors 
and smoothers. Prediction quality was managed with the criterion of at least 15 records per 5° cell, 
and by screening models with the extreme value diagnostic. Prediction behaviour varies among types 
of smoother, and mgcv provides many alternatives. Interaction-only tensor products using ti() were 
explored for some terms instead of using full tensor products with te() for every smooth term, but 
resulted in many more extreme predictions. 
 
Further work is needed to improve these preliminary GAM models, which can be done with both the 
primary dataset and with the dataset available here. Issues to consider include allowing for the 
different ocean areas of the spatial cells and examining how different data weighting/filtering methods 
affect results. Possible data filtering changes include adjusting the required number of records per 
stratum from 15, and changing the stratification in the filter to lat-long-month rather than lat-long. 
Alternative values of the ‘gamma’ adjustment to effective sample size should be considered, as should 
alternative initial smoothness values (assigned with the k parameter) in each of the tensor spline 
smoothers.  
 
Other and likely more important and influential issues include: consideration of vessel-specific fishing 
power which in many fisheries varies considerably and tends to increase through time; adjusting for 
targeting; the use of hurdle or zero-inflated models to deal with zero-catch strata instead of adding a 
constant; and the effects of quotas on vessel behaviour and catch rates, particularly within-season.  
 
Given that sparse data are causing problems, including data from other fleets is likely to be helpful if 
it fills in some of the gaps.  
 
The residual distributions were distinctly non-normal, perhaps mostly because the dataset was 
aggregated and catch rates for strata with low effort were more variable than those with more effort. 
This is potentially problematic because effort is likely to be higher in strata with higher catch rates. 
Issues like this are complex, and simulation may be the best approach for addressing them.  
 
Preliminary analysis and QQ plots suggested that the Tweedie model may give the best fit to the 
observed residual distributions. The fit of the lognormal (cpue + 0.2) model was reasonable for the 
Base model but less so for GAMs with spatio-temporal smoothers. 
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Using spatial smoothers in GAMs with mgcv has successfully addressed problems due to sparse data. 
GAMs are very efficient for data exploration and applying a variety of statistical methods but are only 
one of the potential approaches available. A recent comparison of standardisation methods found that 
VAST (Thorson et al. 2015) performed slightly better than GAM-based approaches (Grüss et al. 
2019). VAST also has potential to include multiple categories in a model, and therefore it can model 
size and catch rate data jointly (e.g., Maunder et al. 2020). This approach has potential to avoid the 
age slicing currently used to generate the 4+ dataset, which introduces some error.  
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7. APPENDIX 

 
Figure A1:  Monthly effort per CCSBT statistical area by the Korean longline fleet, from Hoyle et al. 

(2019).  
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Figure A2: Number of cells fished by Japanese core vessels (above) and Korean vessels (below), copied 

from CCSBT-ESC/1909/BGD05 and CCSBT-ESC/1909/39. (Upper plot for each fleet): The 
bars represent the number of major cells (5x5° by month) fished by CCSBT statistical area 
and year, see left y-axis. The line represents the mean annual operations per cell, see right y-
axis. (Lower plot for each fleet): As for upper plot, but with minor cells (1x1° by month) 
instead of major cells. The colours represent the statistical areas and differ between the 
Japanese and Korean figures.  
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Figure A3: Residual checking plots for the simplified Base model (above) and the gam11 model (below).  
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Figure A4: Relationship between residuals from the model gam11 and the effort (hooks) in the stratum, 

showing that higher variability (the tails of the residual distribution) is associated with less 
effort in a stratum.  
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Figure A5: Two-way lon:lat smoother from model gam11.  
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Figure A6: Smoothers from model gam11: mn:lat, lon:mn, yr:lat, and yr:mn. 
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Figure A7: Three-way interaction smoothers from model gam11: lat:lon:mn (above) and lat:lon:yr 

(below).  

 

 




