

CCSBT-ESC/2008/Info 02 (ESC Agenda item 4.1)

UPDATE ON SBT MONITORING PROGRAM IN BENOA PORT, BALI, INDONESIA 2019

Ririk K Sulistyaningsih, Maya Agustina, Zulkarnaen Fahmi

Prepared for the Twenty Fifth Meeting of The Extended Scientific Committee 31 August – 7 September 2020

Summary

This paper will provide update information about the SBT monitoring program in Benoa port, Bali Indonesia 2019 presented in the CCSBT-ESC 2019 (CCSBT-ESC/1909/Info 03). The sampling coverage was decreasing from 53.69% in 2018 to 44.63% in 2019. The SBT number observed were also falling in 2019 with only 1,662 individuals compare to 2018 (1,733 individuals). The SBT size also decreased from 121-210 to 108-200 cm.

Indonesian tuna monitoring program

SBT monitoring program commenced since 1993 through the series collaboration between Indonesia's marine fisheries research institutes within the Ministry of Marine Affairs and Fisheries (MMAF) and Commonwealth Scientific and Industrial Research Organisation (CSIRO) (Farley et al. 2017). The development of this program occurred in mid-2002, a monitoring program in three major Ports of Indonesia Benoa (Bali), Muara Baru (Jakarta), and Cilacap (south cost Central Java) was established (Farley *et al.* 2014). The monitoring program aims to monitor the catch of all landing species and record the number of tuna longline vessel landings. Since 2011, the monitoring activities have been submitted to the Research Institute for Tuna Fisheries (RITF) as an institution that specializes in research on tuna resources in the Indian Ocean.

Sampling methods

Sampling

The SBT data collection conducted in 2019 (January-December) by enumerators from RITF at tuna fish processing company in Benoa port. In this period, there are ten companies that routinely organize tuna fish processing. The enumeration unit applied is the number of tuna longline vessels that perform SBT catch landings in Benoa port. The data collected, including the number of catches, fish weight, fish length, fish destination (export/reject/ bycatch), vessel name and company name.

The most important thing to verify is that every individual fish that represents all the fish caught from the tuna longline vessels must be recorded. If the weight per individual of tuna cannot be recorded, it is not allowed to make an estimate of the data itself. Registration of individual weights for all tuna longline vessel catches, will ensure that there is no bias in terms of sorting data by weight or by species (Jatmiko *et al.* 2017). Length measurements are conducted using callipers that have a precision of up to 0.5 cm. Length sizes are shown in order of priority

according to international measurement standards. If not possible to measure the length of all fish catches, then measuring the length of the rejected fish can already be recorded as a random sampled (Jatmiko *et al.* 2017).

Statistical analysis

Estimation of total production can be calculated using formula modification from IOTC (2012):

CM = LM * AVM

Where:

CM: Estimation of total production per month (ton)

LM: Number of landed vessels per month which landed SBT (unit)

AVM: Production from sampled vessels per month which landed SBT (ton)/number of total vessels per month per processing plant which landed SBT (unit)

The relationship between fish length and weight was obtained using a multiplicative regression model $(y = ax^b)$ (King 2013).

Registered vessels

The total number of longline vessels landed in Benoa port, sampled by RITF enumerator were 183 units in 2019. These vessels landed in 10 processing plants in Benoa port. In average, the number of longline vessels landed were about 34 ships per month with the total sampling coverage in 2019 is 43.41% (Appendix 1). This percentage resulted from the calculation on how many total vessels landed either one or more divide by the number of vessels that sampled.

Bycatch composition

A total 24 species of bycatch recorded in the longline vessels monitoring program at Benoa port in 2019. The catch composition is dominated by *Prionace glauca* (BSH) with 43.53%, followed by *Lampris guttatus* (LAG) 23.42%. Whereas, the bycatch composition which was less than 0.1% consist of 7 species, including *Coryphaena hippurus* (DOL), *Katsuwonus pelamis* (SKJ), *Bramidae* (BRZ), *Lophotus capellei* (LOP), *Trachipterus arcticus* (TPA), *Carcharhinus longimanus* (OCS), and *Taractes rubescens* (TCR) (Appendix 2). The bycatch composition of tuna longline vessels based on fish number sampled provided in Appendix 3.

SBT length frequency and length-weight relationship

The length frequency of southern blue fin tuna (SBT) landed in Benoa port, Bali in 2019 is presented in Appendix 4. A total 1,662 SBT were measured in fork length (FL), ranged from 108-200 cm with the domination length is between 151 and 155 cm. While the relationship between SBT length and weight, showed the strong correlation, with the high R value, 0.9756 (Appendix 5).

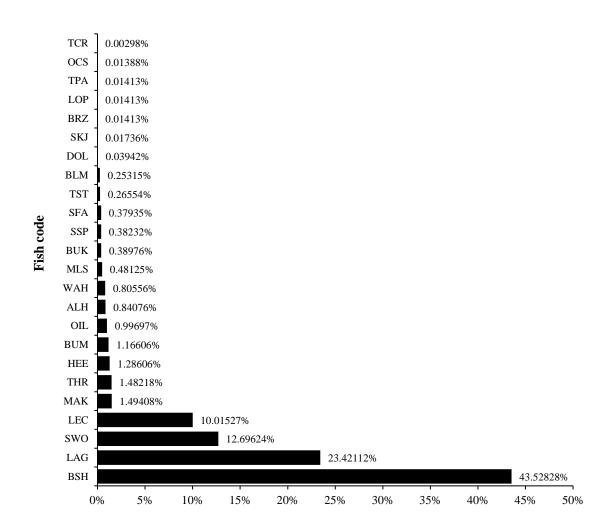
References

Farley, J., Nugraha, B., Proctor, C., and Preece, A. (2014) Update on the length and age distribution of SBT in the Indonesian longline catch. *CCSBT-ESC/1509/14*.

Farley, J., Sulistyaningsih, R.K., Proctor, C., Grewe, P., and Davies, C.R. (2017) Update on the length and age distribution of SBT in the Indonesian longline catch and close-kin tissue sampling and processing. *CCSBT-ESC/1708/09*.

Jatmiko, I., Zulkarnaen, F., Setyadji, B., and Rochman, F. (2017) Indonesian tuna protocol sampling, case study on catch monitoring in Benoa port, Bali, Indonesia. *CCSBT-ESC/1708/Info 03*

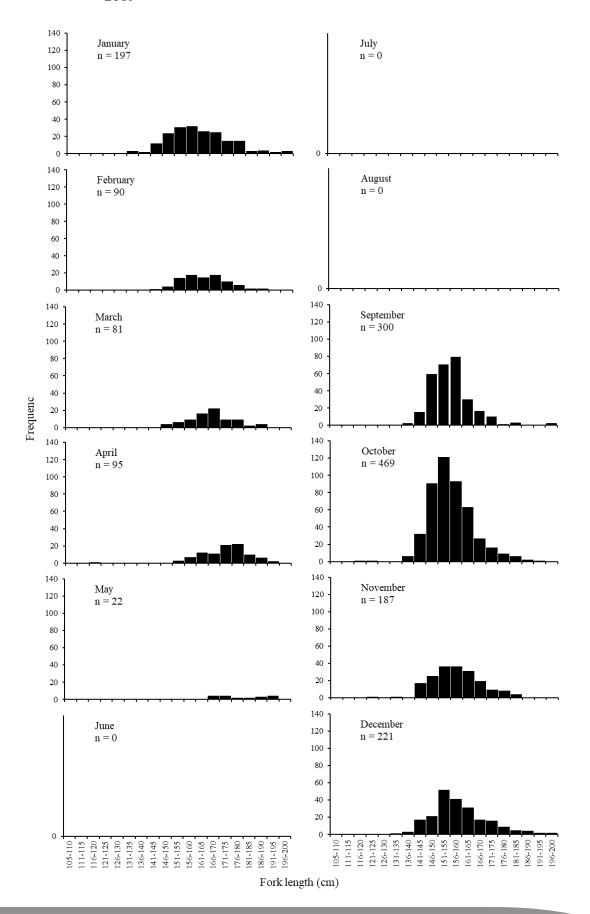
King, M. (2013) 'Fisheries biology, assessment and management.' (John Wiley & Sons)

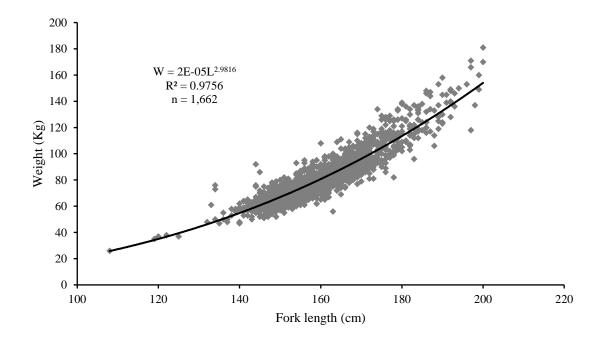

Sulistyaningsih, R.K., Tampubolon, P.A.R.P., Fahmi, Z. (2018). Update on SBT Monitoring Program in Benoa Port, Bali, Indonesia 2017. CCSBT-ESC/1809/Info05.

Sulistyaningsih, R.K., Tampubolon, P.A.R.P., Fahmi, Z. (2019). Update on SBT Monitoring Program in Benoa Port, Bali, Indonesia 2018. CCSBT-ESC/1909/Info03.

Appendix 1. Number of sampled and landed vessels and its proportion at Benoa Port in 2019

Month	Landed	Sampled	%		
January	43	27	62.79%		
February	19	7	36.84%		
March	32	11	34.38%		
April	27	12	44.44%		
May	38	16	42.11%		
June	21	5	23.81%		
July	25	13	52.00%		
August	37	16	43.24%		
September	38	16	42.11%		
October	41	24	58.54%		
November	42	16	38.10%		
December	47	20	42.55%		


Appendix 2. Bycatch composition (%) based on fish weight percentage landed in Benoa port, Bali in 2019


Appendix 3. Bycatch composition of tuna longline vessels based on fish number sampled at Benoa port, Bali in 2019

Code	Common name	Scientific name	Jan	Feb	Mar	Apr	Mau	Jun	Jul	Aug	Sep	Oct	Nov	Des	Total
ALH	Slickhead	Alepocephalidae sp	1			2			90	99	111	38	82	19	442
BLM	Black Marlin	Makaira indica	1		2	1			3	2	2	9			20
BRZ	Pomfret, ocean breams nei	Bramidae							2		2				4
BSH	Blue shark	Prionace glauca	3,152		2,390	262			616	947	1,570	568	668	310	#######
BUK	Butterfly kingfish	Gasterochisma melampus			1				28	2	20	2	4		57
BUM	Blue marlin	Makaira mazara	2			26	13		3	1	3	9		3	60
DOL	Common dolphin fish	Coryphaena hippurus			8				22			1	13		44
HEE	Snaggletooth shark	Hemipristis elongata	6		3	1			6	17	101	84	73	124	415
LAG	Opah	Lampris guttatus	61		68	23			939	333	1,214	478	476	105	3,697
LEC	Escolar	Lepidocybium sp	37		557	82			878	136	1,124	1,053	488	298	4,653
LOP	Crestfish	Lophotus capellei										3	5		8
MAK	Mako shark	Isurus spp	18		10	3			18	61	29	5	4	6	154
MLS	Striped marlin	Tetrapturus audax	1		7	2			2	1	1	39		1	54
OCS	Oceanic whitetip shark	Carcharhinus longimanus									1				1
OIL	Oilfish	Ruvettus pretiosus	29		2	1			22	14	132	29	86	34	349
SFA	Sailfish	Istiophorus platypterus	3			6			36	14	25	16	7	1	108
SKJ	Skipjack tuna	Katsuwonus pelamis			1				1	1		6	1		10
SSP	Shortbill Spearfish	Tetrapturus angustirostris	2		23	1			51			12	9		98
SWO	Swordfish	Xiphias gladius	23	4	73	29	20	27	150	40	174	196	174	110	1,020
TCR	Knifetail pomfret	Taractes rubescens								1			1		2
THR	Thresher shark	Alopias spp	12		2	1			7	3	5	1	6	7	44
TPA	Tapertail ribbonfish	Trachipterus arcticus											2		2
TST	Sickle pomfret	Taractichthys steindachneri	2		,			,	5	6	46	6	23	8	96
WAH	Wahoo	Acanthocybium solandri			12	3			149	4	16	37	1	7	229

Appendix 4. Length frequency of southern blue fin tuna (SBT) landed in Benoa port, Bali in 2019

Appendix 5. Length-weight relationship of southern blue fin tuna (SBT) landed in Benoa port, Bali in 2019

