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Abstract 
A minimally realistic moment based model of SBT is described and its fitting by means 
of the Kalman filter explored. Some preliminary results are shown but these are still at an 
early stage of development. Feedback on the approach would be welcome. 

Introduction 
This is a draft concept paper. It will certainly need developing further to be useful. It 
introduces the possibility of moment based assessment or a moment based OMP being 
applied to the SBT. Moment based assessment (Fournier and Doonan. 1987, Pope 2003) 
allows a parsimonious description of a fish stock that nevertheless allows a good deal of 
reality to be preserved. In the case of SBT it allows us to model the fact that the stock 
exists in a number of size based phases (a recruitment phase, young fish in the GAB 
phase, the Oceanic phase and the spawning phase) and that biomass progressively moves 
through these phases in a way we understand through our knowledge of growth and likely 
mortality rates.  
Pope 2003 shows the linear annual recurrence relationships between the moments of the 
stock and hence between biological factors such as numbers and biomass. These can be 
very easily incorporated into a state space model of the fishery and this begs updating by 
some predictor corrector procedure such as the Kalman filter.  
 
Thus the intention of this paper is  

1. To provide a minimally realistic state space model of the SBT that describes the 
progression of SBT biomass though its size based phases. 

2. To fit this model using the Kalman filter 
3. To consider if this model might either act as an OMP in its own right or might 

alternatively help shed light on the best operation of simpler OMPs.  



 

Model and Methods 
 
The Protomoment model (Pope 2003) describes fish populations in terms of moments Ψi 
of their size distribution rather than in numbers at age or length, i.e as  
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Where l is length and Nl is number at length. Typically i = 0 to 4 since then Ψi provide 
the basis for calculating statistics of the mean, standard deviation, skewness and kurtosis 
of the size distribution. Clearly since Ψ0 . = total numbers and Ψ3 may be converted to 
total biomass under the assumption of isometric growth some of the Ψi do have clear 
biological meanings. Moreover, while Ψi   for i=1,2 and 4 have less obviously useful 
biological interpretations (for example Ψ1 is the distance the stock would extend if lined 
up nose to tail!) they are nevertheless useful for providing linear approximations to 
measures of interest such as spawning stock biomass, commercial catch per unit effort 
data (CPUE) or Aerial survey indices that are drawn from size dependent subsets of the 
total population. Thus the Ψi provide a useful and fairly adequate description of fish 
populations. 
 
An additional advantage is that the Ψi can be updated using linear recurrence 
relationships. Using the well known linearization of annual growth and population 
change given by the Ford-Walford equation  
 
Lt+1 =Ltexp(-K) + L∞(1-exp(-K))   2 
 
Where K and L∞ are the parameters of the Von Bertalanffy growth function. 
 
and by the reverse Pope Cohort equation 
 
Nt+1 =Ntexp(-M) - Ctexp(-M/2)       3 
 
Where Nt   are stock numbers of a size (or age) group in year t (above some age of 
recruitment r) and Ct are the equivalent catch numbers and M the natural mortality rate. 
 
Multiplying the RHS and LHS of equations 3 by powers (i=0:4) of the RHS and LHS of 
equation 2 and summing over all lengths we immediately see that with equation 2 raised 
to power 0 that  
 

Ψ0 (t+1) = Ψ0 (t)exp(-M) -Χ 0 (t)exp(-M/2)) + R(t+1).   4 

Where R(t+1) are the number of recruits in year t+1. 



We can also see with power 1 that 

Ψ1 (t+1) = exp(-K){Ψ1 (t)exp(-M) -Χ 1 (t)exp(-M/2)}  

+ L∞(1-exp(-K)){ Ψ0 (t)exp(-M) -Χ 0 (t)exp(-M/2)) } 

+ R(t+1)lr        5 

Where lC i

llengthsAll
li ∑Χ =        6 

and where lr  is the fish length at the time of recruitment. 

Similar linear equations can be written for Ψi i=2 to 4 by squaring ,cubing or 
raising equation 2 to the ith power and by multiplying by equation 3 and summing 
over all lengths 

We thus arrive at the linear matrix update of the protomoments 

ΨI    =   G*{Ψi-exp(-M) -Χiexp(-M/2)}+ R(t+1) Lr    7 
 
Where G is 5*5 the growth matrix whose terms g i, j are given by  
g i, j = o if j>i, 
g i, j  = (i-1)!/(i-j)!*(j-1)!L∞(1-exp(-K))(i-j)*exp(-K)(j-1) , and  
Lr is the vector of lr to the powers 0 to 4. 
 
In principle natural mortality that varies with age (as is usually postulated for SBT)might 
be introduced using approaches suggested in Pope 2003 but in practice it is far easier to 
use constant M and we do so here. M values of 0.1, 0.15 and 0.2 were considered. 
 
In order to use the Ψi  to provide predictors of those size dependent variables such as the 
SSB, the long line CPUE and the Aerial Survey indices that are used in SBT assessments 
we may make linear transformation that approximate maturity ogives and selection 
curves. The table below gives the adopted linear transformations SSBLT, CPUELT and 
ASLT that provide these three measures while Figure 1 shows the approximations to the 
size based functions these achieve. {N.B it is the ability of these transforms to estimate 
SSB etc. that is our main concern rather than their ability to precisely match a maturity or 
selection curve. This is an easier task since typically fish populations exist over a range of 
sizes and thus the negative values seen in figure 1 typically balance out with values from 
other parts of the size range.} Thus  
 
SSB(t+1)= SSBLT*Ψi       8 
 
Note that LTSSB is the row vector of the transformation. 



 
Text table Linear Transformations of Protomoments to provide predictors 

 PM0 PM1 PM2 PM3 PM4 
SSBLT 0.00E+00 5.74E+03 -1.54E+02 6.93E-01 3.91E-03
CPUELT 5.37E+00 -2.18E-01 2.93E-03 -1.52E-05 2.68E-08
ASLT 0.00E+00 -1.89E+04 5.90E+02 -3.85E+00 6.85E-03

 
 
 
Given the linearity in the system (equations 7 and 8) the protomoment model is well 
suited to being framed as a state vector model. This suggests a Kalman filter approach to 
tuning the model to the forms of abundance data available for the SBT.  
 
However to form a complete state vector model we need someway to predict recruitment. 
 
Here we assume a Beverton and Holt S/R relationship 
 
R(t)  = 1/{(a/SSB)+b}      9 
 
Alas this does introduces non linearity into the system which we overcome using the 
extended Kalman filter which uses the exact (non) linear state equations (including 
equation 9) but updates the variance matrices and forms the Kalman gain matrix using the 
Jacobian of the update equations.  
 
The state vector (SV) we adopt for the Kalman filter protomoment model is thus formed 
of the 11 element column vector,(’ denoting the transposes of vectors) 
 
SV = [ΨI’, a; b, qCPUE, qAS, R, SSB]’    10 
 
Where qCPUE and qAS are the catchability (calibration) terms for the CPUE and Aerial 
surveys respectively and these together with the stock recruitment terms a and b are taken 
to be remain constant between years as they are updated by the process equations but are 
allowed to change in the light of data. i.e. in Kalman talk a(t|t-1)=a(t-1|t-1) etc. 
 

The formulation of the Kalman filter follows the Wikipedia pages and notation 
(http://en.wikipedia.org/wiki/Kalman_filter 
 
In particular Χi  is treated as the control variable and for the historic period is estimated 
from the catch history of the SBT. (as may be seen from figure 10 the total catch weight 
derived from cf*Χ3 does not yet match the catch record and needs to be improved in later 
versions of this report). At present, when in predictive mode, Χi  is taken as the product 
of a constant harvest rate diagonal matrix Hi with the Ψi 
i.e.  Χi (t)= Ψi (t)*Hi (t).         11 
 



Hi for the predictive period is estimated for the average values of recent years that are 
then modified by a constant multiplier designed to steer the SSB to 20% of its 
unexploited level by 2035. So far such updates have been made annually but the same 
approach might be adopted for 2 or 3 year quota periods. Other strategies than constant 
harvest rate over the 2011-2035 period could also be explored. In OMP mode the historic 
period would be extended as data accrued and the predictions out to 2035 revised in the 
light of the updated state vector.  
 
For the Historic period 1951-2009 the Kalman filter first updates SV(t-1|t-1) (its value 
given data up to year t-1) to that for year t (SV(t|t-1). This first update is based only upon 
the process using the deterministic process defined by equations 7 thro. 9  together with 
the constant updates of qCPUE and qAS, a and b. 
 
SV(t|t-1) is then modified by proportions of the innovations (the  differences between the 
actual and predicted observations of CPUE(t) and AS(t) ) specified by the Kalman Gain 
matrix to give SV(t|t).  
 
Note that the data prediction equations are non linear 
 
CPUE(t) = qCPUE*LTCPUE*Ψi (t) 
AS(t)      = qAS*LTAS*Ψi (t) 
 
And thus their Jacobian is adopted in the calculation of variance and of the Kalman gain 
matrix. 
 
In prediction mode only the deterministic update can be made. In order to achive the 
target 20% of the unfished SSB by 2035 the multiplier of the harvest rate is modified by 
an iteratively estimated multiplier.  
The covariance matrices of the initial state, the deterministic update and the data matrix 
were estimated using assumptions of constant coefficients of variation of the various 
elements. These were chosen to favour the process rather than the data inorder to keep 
stability of the critical parameter estimates a, b, qcpue and qas. Since these were initially 
unknown they were tuned so that their initial values matched the average values 
estimated over the period for which CPUE and AS data were available. So far this tuning 
has been handraulic but I believe it could be fairly simply achieved by an iterative 
process. Other approaches to estimating initial values of a, b, qcpue and qas might be a 
backward smoothing using the reversed Kalman filter or by endeavoring to reduce the 
bias and variance of the innovations. 
 
Using assumptions about how the harvest rates are linked it is possible to simply solve 
the system for the steady state SSB and yield at various harvest rates and selection 
factors. Simple matrix equations for these purposes can be found in Pope 2003. 
 



Results 

Basis of fits 
Results shown are those found using the average a, b, qcpue and qas. parameter value 
tuning described above and a natural mortality rate M of 0.2. 
 

Fit to data 
Figures 2 shows the fit of CPUE(t|t-1) and CPUE(t|t) to the observed CPUE series. Given 
the choice of covariance matrices that set observation error higher than process error the 
fitted lines are relatively stiff and while the (t|t) points move further toward the data than 
the (t|t-1) points they do not follow slavishly. Figure 3 shows simlar results for the shorter 
Aerial survey (these were given equivalent precision to the CPUE series)..  
 
Figure 4 shows the innovations (differences between estimated and actual data values) 
fior each year for which CPUE and/or AS data existed. These seem reasonably balanced 
about zero though there is perhaps evidence of trend in the early years of the CPUE data 
which might be eliminated with alternative tuning approaches for the a, b, qcpue and qas. 
 
Plots of a relative index of the 4 key parameters a, b, qcpue and qas are shown in figure 5. 
These suggest negative correlation between qcpue and qas and possibly the a parameter of 
the S/R relationship. The b parameter (inverse Rmax) is rather stable through the time 
period. The parameters of the S/R relationship suggest an steepness of 0.47 both at the 
beginning and end of the historical period. Higher steepness values may be obtained with 
alternative approaches to tuning the initial a, b, qcpue and qas. 
 

Assessment estimates  
Figure 6 shows the SSB both for the historical period and for predictions out to 2035. The 
later were made both to achieve the target and with zero harvest rates. In this realization 
the target is only achieved with near zero catches so the zero H line is overlaid.  Again 
the process depicted is rather stiff due to the relative choice of process and observational 
error made. 
 
Figure 7 shows the recruitment estimated in the historical period and for the projections 
to achieve the SSB target in 2035. Clearly the model has reappraised recruitment between 
1980 and 1990 presumable resulting from the dip in the a and b parameters seen in figure 
5 in that period.  
 
Figure 8 shows the estimates of harvest rate by protomoment. In general harvest rate on 
numbers H0 is considerably higher than the harvest rate on biomass H3. However, all Hs 
are fairly correlated and peak in the mid 1980’s and again in the period 2000-2010. They 
become zero in the prediction period post 2010 because this reduction was needed to 
meet the SSB target in this pessimistic realization. Figure 9 shows these same H results 
expressed relative to the H3 value. Figure 10 shows the catches estimated from the Χ3 



estimates. Note that these do not yet match the OMP groups catch series and will need to 
be modified.  
 

Steady state yield and steady state SSB. 
 
Figure 12 shows the steady state yield for a range of harvest rates and selections. 
Selections here are taken as the ratio of H0 to H3 (other Hi) being interpolated from these 
values. Note that since Hi =Xi/Ψi , then  
 
selection  = H1/H3=(X1/(X3*cf))* ((Ψ3*cf)/ Ψ1 )  
 

      =Average fish wt in the sea/Average fish weight in the catch. 
 

This then is a rather understandable measure of selection. However the high values seen 
for SBT may suggest the model is accumulating too many “paper” old fish. The figure 
suggests that yield is higher at lower selections but note that these lower values may not 
be achievable. The general form of cross sections of this surface for given levels of 
selection is of a Fox type shape. 
 

 
Figure 13 shows the SSB at various levels of harvest rate and selection. When harvest 
rate is zero it is the same of course regardless of the selection but for positive harvest 
rates the SSB achieved is obviously higher when larger fish are harvested (ie when the 
selection ratio is low).  
 
Figure 13 attempts (rather unsuccessfully in this realization) to depict both the temporal 
trajectory of catches across the harvest rate –selection grid and to show this in relation to 
the yield surface. The intention of this figure was to illustrate that one of our problems 
with estimating productivity of this stock might be changing selection 



Discussion –Conclusions 
The present paper is intended as a first description of a possible form of MP. Clearly to 
become operational it will need to be developed in a way that can be tested against the 
full OMP test data grid.  
 
This first development has been encouraging in that the model has proved easy to 
develop to this stage. Apart from three non-linear equations {those needed for the stock 
recruitment relationship and for estimates to be made of the CPUE and the Aerial survey 
indices} the model is entirely linear and most constants can be based upon known 
biological processes. Thus many constructs can be developed with a few matrix 
equations. The steady state yield and SSB calculations are an example of this. For 
example the following MATLAB code estimates both steady state yield and steady state 
SSB for a given harvest rate matrix HA. 
 
IGH=eye(size(G))-G*em+G*HA*em2; 
PMper=inv(IGH)*Lrec; 
PMrec=PMper*(1-a/(SSBLT*PMper))/b; 
yield(h1,h3+1)=CF*PMrec(4,1)*HA(4,4)/1000; 
SSBg(h1,h3+1)=CF*SSBLT*PMrec/1000; 
 
{NB eye is the identity matrix, inv is the matrix inverse, em is Exp(-M) and em2 is Exp(-
M/2).}  
 
Thus the workings of the model are often mathematically explicit. 
 
Fitted with a Kalman filter the model produces robust and seemingly sensible results. 
Those shown in the figures are somewhat pessimistic but this is a consequence of the 
particular tuning approach used which converged towards relatively low steepness. Using 
a similar approach but adopting a lower initial ‘a’ parameter value leads to solutions with 
higher steepness. Figure 14 shows the SSB from one such run with initial steepness of 
0.58 and final steepness of 0.55. The trick to keeping the equivalent tuning seems to be to 
have a smaller initial SSB with a more productive stock. Alternative tunings might be 
based upon reducing the bias and variance of the innovation estimates.  
 
The ease of running the model should mean that it may prove useful for exploring matters 
of concern to the group. Examples might be the consequences of early and late pain 
strategies or factors influencing stock production.  
 
I do not at the present time have scope to develop this as a full candidate OMP (and 
indeed you may prefer not to have any more) but if people feel that this might be useful I 
could endeavor to produce some thing that works for the ESC. If developed it will just 
have to be named JCL (Johnny Come Lately)! 
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Figures 
 
Figure 1 approximate ogives resulting from the linear transformations used to estimate 
predictors of the Aerial survey index, the CPUE index and the SSB from the population 
protomoments. 
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Figure 2 CPUE observations and the predictors based upon previous years data (k|k-1) 
and process and the estimate when the current years data is included (k|k). 
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Figure 3 Aerial survey observations and the predictors based upon previous years data 
and process (k|k-1) and the estimate when the current years data is included (k|k) 
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Figure 4 The innovations of the CPUE and the Aerial survey - (N.B.Innovations are 
Kalman Filter talk for the difference of the prediction of the data based upon previous 
years data and the process update and the data for the year) 
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Figure 5 Relative changes in estimates of catchability and stock recruitment parameters. 
NB these were tuned to set initial values equal to the average for the periods with data. 
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Figure 6 Estimates of SSB from process and data update estimates together with 
predictions out to 2035 with zero fishing mortality (hidden) and with mortality scaled 
down to meet a target of 20% of unfished SSB. (units tonnes) 
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Figure 7 Estimates of recruitment from process and data update estimates together with 
predictions out to 2035 with zero fishing mortality and with harvest rate scaled down to 
meet a target of 20% of unfished SSB. (units 1000?check) 
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Figure 8 Estimates of harvest rate per protomoment including those used to make the 
predictions to 2035. 
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Figure 9 Harvest rates by year relative to the value for the harvest rate of biomass. (i.e. 
relative to the harvest rate of Protomoment 3) 
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Figure 10 Total Catch including predicted catches to meet 2035 target (NB these historic 
catches used so far do not accord with the OMP record and will need amending)(units 
tonnes) 
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Figure 11 Yield surface (1000t) for different harvest rates of biomass (harvest rate) and 
different ratios of harvest rate of numbers to harvest rate of biomass(selection)- the latter 
estimate is also equivalent to the average weight in the sea/ average weight in the catch. 
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Figure 12 SSB surface (1000t) for different harvest rates of biomass (harvest rate) and 
different ratios of harvest rate of numbers to harvest rate of biomass(selection)- the latter 
estimate is also equivalent to the average weight in the sea/ average weight in the catch. 
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Figure 13 Time trajectory (telephone wires) of estimated catches (rather approximate)  
(tops of telephone poles) relative to the interpolated yield surface. 
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Figure 14 SSB from a tuned run made with an initial steepness of 0.58 and a final 
steepness of 0.55 (units tonnes) 
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