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Executive summary 
This paper contributes to determining the probable catch of SBT in other tuna fisheries by parties not 

reporting catch to the CCSBT, about which there is currently no reliable information. Information on 

longline fishing effort in the Indian Ocean and the Western Pacific were obtained from the Indian 

Ocean Tuna Commission and Western and Central Pacific Fisheries Commission. Effort within CCSBT 

statistical areas reported by cooperating parties (members and cooperating non-members) vs non-

cooperating parties was compared between the regional fishery datasets and the CCSBT catch and 

effort dataset.  

In order to obtain a sufficiently large dataset of CCSBT catch and effort data, we converted Japanese 

catches in number to catches in weight, by modelling fish size patterns in space and time. We then 

modelled catch rates (in weight per hook) in the CCSBT data in order to estimate expected catch rates 

by year, month, flag, and 5 degree square. These expected catch rates were combined with reported 

non-member fishing effort by year, month, and 5 degree square, in order to predict expected catches. 

The catchabilities of the Japanese and Taiwanese fleets were used with the non-member effort as 

alternative assumptions.  

 

Introduction 
The Extended Commission of CCSBT discussed the issue of “Unaccounted mortality of southern bluefin 

tuna” in 2013 and requested the Scientific Committee to give advice on the impact of these catches 

on the rebuild of SBT. 

The sources of mortality include: 

 Unreported or uncertainty in retained catch by Members, for example: 
‒ surface fisheries, 
‒ artisanal catch, 
‒ non-compliance with existing measures (e.g. catch over-run); 

 Mortality from releases and/or discards; 

 Recreational fisheries; 

 Catches by non-Members; 

 Research Mortality Allowance; and 

 Any other sources of mortality that the Extended Scientific Committee is able to provide 
advice on (including depredation). 

 

The objective of this paper is to contribute to determining the probable catch of SBT by non-members 

of CCSBT in other tuna fisheries that do not report catch to CCSBT. Cooperating non-members do 

report catch to CCSBT, and in this paper we have grouped them with members in all analyses. To 

distinguish them in this paper, those reporting catch are referred to as ‘parties’, and those not 

reporting are referred to as ‘non-parties’. The methods and results in this paper may be compared 

with those in Chambers and Hoyle (2015), which uses random forest methods to address the same 

objective.  

There is no reliable information available on SBT catch by non-cooperating parties. Information from 

a number of sources has indicated that a market for SBT exists in China. Although a small amount of 



 

catch in this market is supplied by catch from members and cooperating non-members, it may also be 

supplied with SBT that is not reported to CCSBT, since in 2013 exports were reported to be larger than 

imports (CCSBT Secretariat 2014). 

Analysis of the effort data reported to the IOTC (Indian Ocean Tuna Commission) and WCPFC (Western 

and Central Pacific Fisheries Commission) shows a large degree of overlap with SBT fishing grounds for 

these tuna fisheries (Larcombe 2014, and unpublished data). However, SBT catch by non-parties of 

CCSBT is not reported to WCPFC although these tuna fleets likely take quantities of SBT bycatch in the 

albacore, bigeye and yellowfin target fisheries. Observer reports presented at the 2014 Scientific 

Committee of WCPFC showed SBT catch on some trips in the other tuna target fisheries, but only a 

very small proportion is reported. There may also be bycatch of SBT in pelagic longline fisheries in the 

south Atlantic.  

Methods 

Overview of methods  

a) Obtain effort by each country targeted at all tuna species for time (months) and area strata 
(latitude or 5 degree squares). 

b) Model size data in order to estimate bycatch in tonnes for member fleets that report catches 
in numbers only.  

c) Fit GLM to aggregated catch and effort data for all fleets, and estimate spatial and temporal 
covariates contributing to CPUE. Use the results to predict relative CPUE of targeted effort by 
stratum.  

d) Predict total catch based on two alternate assumptions: all non-member effort has the same 
catchability as estimated for Japan, and all effort has the same catchability as estimated for 
Taiwan. These fleets represent fisheries in which SBT may largely a target (Japan) or a 
bycatch species (Taiwan). Estimate potential catch of non-parties by multiplying effort by 
assumed bycatch rates per stratum, and summing across strata.  

 

Data acquisition and preparation 
Non-member catch and effort data for the Pacific Ocean were obtained via the public domain data 

held by the WCPFC. These data were obtained in 2 formats, which we have labelled PD_agg and 

PD_flag. 1) PD_agg, downloaded from https://www.wcpfc.int/node/4648, was aggregated across all 

fleets and flags, and reported by year, month, and 5 degree square. 2) PD_flag, obtained via a data 

request to WCPFC, was stratified in time and space in the same way as PD_agg, and also grouped by 

flag. Both public domain datasets omit strata that include fewer than three vessels in order to avoid 

potential identification (WCPFC 2007), which meant that more data were omitted from the less 

aggregated dataset PD_flag.  

Indian Ocean non-member catch and effort data were obtained from 

http://www.iotc.org/documents/ce-longline. For IOTC data, in cases when an individual vessel can be 

identified, the data are aggregated prior to release by time, area or flag to preclude such identification. 

Thus no catch and effort are omitted from the IOTC dataset in order to avoid potential identification. 

A small amount of IOTC effort was reported in days rather than hooks, and these were omitted.  

The WCPFC western boundary runs from the Australian coast to 55S along the 140E line, then from 

55S to its southern limit at 60S along the 150E line (http://www.fao.org/fishery/rfb/wcpfc/en#Org-

GeoCoverage). The boundary between WCPFC data and IOTC data includes an area of overlap between 

140E and 150E, since the IOTC eastern boundary runs from the Australian coast to its southern limit at 

https://www.wcpfc.int/node/4648
http://www.iotc.org/documents/ce-longline


 

55S along the 150E line (http://www.iotc.org/about-iotc/competence). The IOTC southern boundary 

is at 45S from 20E to 80E, and at 55S from 80E to 150E.  

For these analyses, we used IOTC data for the region of overlap between 140E and 150E, except for 

statistical area 4 for which we used WCPFC data.  

Catch and effort data for parties reported to CCSBT were obtained from the file 

‘Catch_Effort_2014_July.txt’ in the 2014 CCSBT data compilation CD: (SEC_CCSBTDataCD_Interim 

Update_2014_Revision_2.zip). Data were prepared by extracting all records with gear code longline 

(‘LL’), and removing records with missing values for year or effort.  

The Japanese longline size sampling data held by CCSBT were obtained from 

http://www.ccsbt.org/site/sbt_data.php. Data were prepared by extracting only the records with gear 

code ‘LL’, and by removing records with class precision > 2 cm. The average length in each length class 

was assumed to be the middle value, i.e. 107.5 cm for a fish in the length class 108 with class precision 

of 1 cm, since the label indicates the upper end of the length class. Analyses that included size 

frequencies used the adjusted frequencies.  

In CCSBT data, the latitude and longitude numbers indicate the north-western corner of a grid square, 

while in the WCPFC data they indicate the south-western corner. For IOTC data, they indicate the 

corner closest to 0 latitude and 0 longitude. In this paper all spatial data are managed at the 5 degree 

square level, and all latitudes and longitudes have been converted to indicate the centre of the grid 

square.  

Length-weight relationships for southern bluefin tuna were based on the length to processed weight 

conversion factors agreed at the 1994 SBT Trilateral Workshop on Age and Growth, 17 Jan - 4 Feb, 

1994, with the formula  𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡 = 𝐴 × 𝐿𝑒𝑛𝐵  (Table 1). Weights were converted from 

processed to whole weight by adding 15%, as agreed at the 1994 workshop. Juveniles were defined as 

less than 130 cm, adults as greater than or equal to 130 cm.  

Analyses 
We loaded the CCSBT data and plotted the spatial distributions of reported effort and SBT catch by 

parties, in order to identify areas in which significant catch might be taken by non-parties. We also 

loaded the regional (WCPO and IO) catch and effort data.  

We compared the reported effort by parties between the CCSBT and the regional datasets, by dividing 

regional (PD_flag and IO) effort by CCSBT effort for each year since 1990, for each CCSBT statistical 

area. Statistical areas 4 and 7 cross the boundary at 150E so appear in both the IOTC and WCPFC data, 

but only the appropriate CCBST locations were compared for each statistical area. Comparisons were 

also made after further grouping by flag.  

In order to estimate the amount of data lost in the WCPO due to the three-vessel rule, we compared 

the effort in the PD_agg and PD_flag datasets by year since 2000. We divided total catch per year in 

PD_flag by the equivalent total in PD_agg, first for sets in the WCPO south of 30S and west of 170W so 

as to be inside the CCSBT statistical areas 4-7, and secondly for sets in the WCPO south of 30S and east 

of 170W, so as to be within CCSBT statistical area 12, but south of 30S where catch rates may be 

appreciable.  

In order to determine the distribution of potential unaccounted mortality, the spatial distribution of 

the effort was mapped separately for parties and non-parties of CCSBT for the areas of interest, which 

was south of 30S in the Pacific Ocean, and south of 25S in the Indian Ocean. We summed the total 

effort in thousands of hooks by 5 degree square for the years 2001-2012, and plotted the average 

annual effort. We also examined both the proportion and the sum of effort reported by non-parties 

through time by statistical area.  

http://www.ccsbt.org/site/sbt_data.php


 

The objective was to predict non-member catches in weight by multiplying non-member effort (in 

hooks) by expected catch rates (in weight per hook). These expected catch rates would be estimated 

from the catch and effort data provided by parties. We considered Japanese catch and effort data to 

be essential for determining expected catch rates, because of the spatial and temporal coverage of the 

Japanese fleet, and their relatively consistent fishing methods. However most of the Japanese data 

report catch numbers but not weight, which made it necessary to convert the catches in number to 

catches in weight. To estimate catch weights we multiplied catch in number by the expected size 

distributions, which we determined from the Japanese length frequency sampling data held by CCSBT.  

Testing the relationship of catch with mean weight 
This approach assumes that mean weight and catch size are independent, and so we tested the 

assumption. There was no information with the Japanese size sampling data to indicate the size of the 

catch, but both catch weight and catch number are available for many catch and effort data records 

(Australia (AU) 20%, Japan (JP) 0.4%, Korea (KR) 99%, New Zealand (NZ) 39%, Taiwan (TW) 27%, South 

Africa (ZA) 99%). We calculated mean weight as equal to weight_retained/number_retained in the 

CCSBT catch and effort. We applied a generalized additive model using package mgcv (Wood 2011) 

implemented in R 3.2.1 (R Core Team 2014), to model mean weight as a function of year, month, 

statistical area, flag, and number retained, using the CCSBT catch and effort dataset for the Indian 

Ocean (Equation 1). We transformed mean weight by taking the square root, to normalize residuals.  

𝑚𝑒𝑎𝑛 𝑤𝑒𝑖𝑔ℎ𝑡0.5~𝑦𝑒𝑎𝑟 + 𝑚𝑜𝑛𝑡ℎ_𝑎𝑟𝑒𝑎 + 𝑓𝑙𝑎𝑔 + 𝑠(log(𝑛𝑢𝑚𝑏𝑒𝑟 𝑟𝑒𝑡𝑎𝑖𝑛𝑒𝑑)) (1) 

Year, month-area, and flag were modelled as factors, with month-area formed as the combination of 

month and statistical area. Number_retained was modelled using a smoother. To observe the potential 

relationship between number_retained in a stratum and mean size, we plotted the predicted mean 

weight for Japanese catches in statistical area 2 across all months.  

Estimating mean weight per stratum 
The next step was to estimate mean sizes for all spatio-temporal strata, in order to convert catch 

numbers into catch weights for the Japanese data. For these analyses we used the CCSBT size data 

from Japan, and ran the analyses separately for the Indian Ocean and the Pacific Ocean.  Before 

estimation, the length frequency data were converted to weight frequency based on the length-weight 

relationship, as described earlier.  

We separated the CCSBT data into Indian Ocean and Pacific Ocean components, and modelled each 

dataset separately. We stratified the converted weight frequency data in each dataset by year, month, 

and statistical area. Mean weights were estimated for all strata in two stages: first, strata with total 

adjusted frequency of at least 100 were assigned the observed mean weight. Second, strata with 

adjusted frequency of fewer than 100 fish were assigned an expected mean weight, based on 

modelling.  

The original size data format had one row per stratum x length, with a field to indicate frequencies. 

Before modelling, the format of the weight frequency data was changed to facilitate the generation of 

diagnostics, with one row per individual frequency. The frequencies were reduced by a factor of 10 for 

the Indian Ocean data and 4 for the Pacific Ocean data, to permit analysis within the available 

computer memory.  

Fish weight was modelled as a function of year, month, and statistical area (Equation 2) with a 

generalized linear model implemented in R 3.2.1 (R Core Team 2014). All available Japanese weight 

frequency data were included in the model. 

𝑊𝑒𝑖𝑔ℎ𝑡~𝑌𝑒𝑎𝑟 + 𝑚𝑜𝑛𝑡ℎ_𝑎𝑟𝑒𝑎 (2) 



 

The month and the statistical area were combined into a categorical variable ‘month-area’ to avoid 

problems with interaction terms, since there were different amounts of data across months in different 

statistical areas. The model assumed that inter-annual variation was consistent for area-month 

combinations. There were statistically significant interactions between year and month-area effects, 

but these were ignored so as to be able to predict sizes for sufficient strata. Applying a square root 

transformation to the weights normalized the residuals.  

The fitted model was used to predict mean transformed weights for each stratum. Due to the 

distribution of the data and the square root transformation, back-transformed nominal mean weights 

tended to be lower than the true mean. We removed this bias by, for each stratum, sampling 2000 

residuals with replacement and adding them to the predicted mean to generate 2000 parametric 

bootstrap samples, back-transforming by squaring the samples, and taking the mean of the back-

transformed samples as the predicted weight for the stratum. Estimates were unavailable for several 

month-by-area combinations that lacked size sampling data, and were copied from other months for 

the same statistical areas.  

For all CCSBT effort that reported SBT catch in retained number but not weight, expected retained 

weights were calculated by multiplying retained numbers by expected mean weights for the 

appropriate stratum.  

In order to examine the results of the estimation process, we used the same approach to predict 

retained weights for CCSBT effort that reported catch in both numbers and weight. We plotted these 

results by flag, with observed weight plotted against predicted weight.  

CPUE standardization and catch prediction 
Catches were predicted by estimating expected catch rates per stratum from the CCSBT member data, 

and multiplying by non-member effort. As with the weight analyses, these analyses were conducted 

separately for Indian Ocean and Pacific Ocean data.  

CPUE analyses indicated that there was variation associated with location, fleet, year, and season. 

However, catch rates could not be estimated for all areas where SBT catch has been taken in the past, 

due to low member effort in some locations. Reported effort by CCSBT parties declined rapidly to the 

east of New Zealand (Figure 2). Subsequent analysis of the spatial patterns of catch rate using 

generalised linear models (see below) did not suggest that catch rates to the east of New Zealand are 

substantially lower than further east, but catch from these areas was assumed to be negligible.  

Catch rates for parties in CCSBT data were analysed separately for the Pacific and Indian Ocean. For 

the purposes of these analyses the Indian Ocean was defined as CCSBT statistical areas 1, 2, 3, 7, 8, 9, 

13, and 14, and the Pacific was defined as CCSBT statistical areas 4, 5, 6, 7, and 12, with statistical area 

7 to the west of 150E included in Indian Ocean analyses, and to the east of 150E included in Pacific 

analyses.  

Catch rates were estimated using generalised linear models fitted to year-quarter, month, flag, 5 

degree square, and a cubic spline f() fitted to the number of hooks. We applied two approaches. The 

first (Model 1) included all data and fitted the CPUE with a lognormal distribution, after adding a 

constant K to avoid errors when catches were zero.  

log (
𝑤𝑡𝑟𝑒𝑡𝑎𝑖𝑛𝑒𝑑

ℎ𝑜𝑜𝑘𝑠
+ 𝐾) ~𝑦𝑞 + 𝑛𝑠(𝑚𝑚, 𝑑𝑓 = 4) + 𝑓𝑙𝑎𝑔 + 𝑙𝑎𝑡𝑙𝑜𝑛𝑔 Model 1 

The model was fitted to categorical variables year-quarter (yq), flag, and 5 degree square (‘latlong’), 

and with a cubic spline ns() with 4 degrees of freedom fitted to the continuous variable month (mm). 

The constant K was defined as 10% of the mean CPUE, where CPUE was retained weight / hooks.  



 

Secondly, we applied a modified delta lognormal approach (Models 2a and 2b). This approach involved 

first modelling the probability of nonzero catch with a binomial glm, and then modelling the 

distribution of CPUE for nonzero catches with a lognormal model (Lo et al. 1992).   

wtretained > 0 ~ 𝑦𝑞 + 𝑛𝑠(𝑚𝑚, 𝑑𝑓 = 4) + 𝑓𝑙𝑎𝑔 + 𝑙𝑎𝑡𝑙𝑜𝑛𝑔 + 𝑛𝑠(ℎ𝑜𝑜𝑘𝑠, 𝑑𝑓 = 4) Model 2a 

𝑙𝑜𝑔 (
wtretained

ℎ𝑜𝑜𝑘𝑠
+ 𝐾) ~ 𝑦𝑞 + 𝑛𝑠(𝑚𝑚, 𝑑𝑓 = 4) + 𝑓𝑙𝑎𝑔 + 𝑙𝑎𝑡𝑙𝑜𝑛𝑔 Model 2b 

In this approach hooks was included as a predictor for the delta model, fitted as a cubic spline with 4 

degrees of freedom, because strata with more effort were expected to be more likely to include non-

zero catch. However it was not appropriate to use the number of hooks set as a predictor for the 

positive model when working with aggregated data. In order to normalize residuals in the positive glm, 

we modified the usual lognormal approach by adding a constant K to the response variable. K was 

calculated as 10% of the mean of positive catches.  

To estimate non-member catches we predicted CPUE based on the equivalent variables in the data 

from IOTC and WCPFC, by using the ‘predict.glm’ function in R. We back-transformed the predictions 

from Model 1 and Model 2b to the nominal scale by exponentiating and subtracting K. Given the 

lognormal distribution of the response variables, we added a bias correction factor of ½ the estimated 

variance to the predicted CPUE from Model 1 and Model 2b. CPUE for the delta lognormal models was 

predicted by multiplying the predicted probability of positive catch from Model 2a by the predicted 

catch rate from Model 2b. Catches were predicted by multiplying predicted catch rate by observed 

effort.  

We checked the estimates by predicting catches for member fleets using the CCSBT input data, and 

comparing them with reported catches. We also plotted average catch rates.  

 

Results and Discussion 
Reported effort by CCSBT parties declined rapidly east of New Zealand (Figure 2). In the WCPO, the 

majority of SBT catch was taken south of 30S, within the CCSBT statistical areas 4-7 (Figure 3). 

Significant member effort was reported throughout the Indian Ocean, but the majority of the catch 

again occurred south of 30S. However there was also significant catch between 25S and 30S.  

Reported effort for parties was similar but not identical for most statistical areas in the WCPO and the 

CSSBT datasets (Figure 4). WCPFC effort was consistently lower than CCSBT effort in statistical areas 4 

and 7, but more similar in statistical areas 5 and 6. Much more effort was reported to the WCPFC than 

to the CCSBT for statistical area 12, which was outside the CCSBT core area. In the Indian Ocean, more 

effort was reported to the CCSBT than the IOTC in most years in the southern statistical areas 7, 8, and 

9, while more effort was reported to the IOTC in the more northern statistical areas 2, 13, and 14.  

Disaggregating these ratios by flag indicated that consistency between the datasets varied among 

flags, and by statistical areas within flag (Figure 5 and Error! Reference source not found.).  

In order to estimate how much WCPO data may have been lost due to the three-vessel rule, we 

compared the effort in the PD_agg and PD_flag datasets for each year since 2000. Within statistical 

areas 4-7 the proportion of effort included in the PD_flag dataset has declined since 1990 and in 2012 

was approximately 80% of PD_agg (Figure 6). The remaining 20% has been removed due to the three 

vessel rule, which dictates that data can only be reported for strata that include effort from at least 

three vessels. However, non-member effort is higher in areas where member effort is low (Figure 7). 

The proportion of effort reported east of 170W has declined by more than 20%, and in 2012 was about 

55% of the effort in the aggregated dataset (Figure 6). Due to the three-vessel rule, the aggregated 



 

dataset will also be underreporting the actual level of effort, and the level of underreporting is 

unknown. The results of these analyses have been affected by the difficulty of obtaining reliable 

WCPFC data.  

In the Indian Ocean the spatial distributions of IOTC-reported effort by parties and non-parties were 

relatively similar (Figure 7), although there was no reported non-member effort to the south of 

Australia during the period examined (2001-2012). In the WCPO however a high proportion of the non-

member effort was concentrated outside and to the east of the CCSBT area.   

The proportions of effort in each statistical area attributed to non-parties have varied through time 

and between areas (Figure 8). In the Indian Ocean non-member effort reaches at least 10% of total 

effort in statistical areas 1, 2, 13, and 14, and is insignificant elsewhere. Reported effort is very low in 

statistical area 1 (Figure 9) but statistical areas 2 and 14 each contain significant effort, as does 

statistical area 13 which is outside the CCSBT core.  In the WCPO, non-member effort is substantial in 

statistical area 12 which is outside the CSBT core, but elsewhere is low. Uncertainty (due to the three 

vessel rule) about how much of the member and non-member effort is included in the PD_flag dataset 

may substantially affect the WCPO estimates.  

Size analyses 
The relationship between mean weight and the covariates year, month-area, flag, and 

number_retained was modelled using generalized additive models. All variables explained significant 

variation (p << 0.01). Residuals from the transformed data were sufficiently close to normally 

distributed to be used for inference. The relationship between log(number_retained) and mean weight 

was fitted with a smoothing function with 3.9 effective degrees of freedom, and showed a clear decline 

in mean weight with increasing number retained (Figure 10). Similar relationships were observed in 

separate analyses for individual flags.  

This relationship between number_retained and mean weight suggests that estimates of catch weight 

for Japanese effort will be somewhat biased, but the effect is relatively small compared to other 

uncertainties in the modelling. Moreover, some uncertainty about the reliability of the relationship is 

introduced by the fact that mean weight is estimated by dividing weight_retained by 

number_retained, which means that any uncoupling between the two would tend to produce a decline 

in mean weight as number_retained increases.  

Subsequently we analysed the sampled Japanese size data. In the Pacific, sufficient data were available 

to calculate observed mean weights for 1051 strata (year by month by statistical area), and mean 

weights were predicted for the remaining 2808. In the Indian Ocean, observed weights were calculated 

for 4749 strata, and weights predicted for 9473.  

Residuals from the generalized linear models were relatively normally distributed after 

transformation, and there was only limited variation in variance among statistical areas (Figures 11-

14).  

Estimates of mean weight were obtained for the majority of statistical area-month combinations, and 

inferred for the remainder (Figures 15-16). Mean weights were also predicted for year by month by 

statistical area strata (Figures Error! Reference source not found. and Error! Reference source not 

found.).  

The relationship between predicted and observed retained weight varied between flags, with 

predicted weights very close to observed weights for Japan in both the Indian Ocean (Figure 19) and 

Pacific Ocean (Figure 20). In the Indian Ocean the predicted weights were on average similar to 

reported weights for Korea, higher than reported for Taiwan, slightly higher for Australia, and lower 



 

for South Africa. For the Pacific Ocean the predicted weights were similar to reported for Korea, slightly 

higher than reported for Australia, and lower than reported for New Zealand and Taiwan.  

These differences between predicted and reported effort may reflect differences in average fishing 

locations and fishing behaviour between fleets. The predictive model takes into account year, month 

and statistical area, but there are also consistent differences in mean size within statistical areas that 

the model does not take into account. Including latitude in the model may improve predictions.  

The predictions of catch weight for Japanese effort appear to be sufficiently reliable to use in CPUE 

analyses, with the proviso that observed weights were only available in the Japanese data for 

comparison for a single year.  

Catch predictions 
Standardizations for both Pacific and Indian Ocean CCSBT data fitted the data relatively well, but with 

positively biased residuals for small numbers of hooks, particularly in the Indian Ocean (Figures 22 - 

24). The spatial effects showed the expected patterns of higher catch rates further south. Surprisingly, 

alternative models with interaction terms between quarter and statistical area did not substantially 

improve the model fit, or give significantly better catch predictions for the CCSBT data.  

Catch predictions with CCSBT data gave total catch estimates that were close to the observed 

estimates and without significant bias (Figure 27 and Figure 28), apart from overestimating Japanese 

catch in the Pacific Ocean between 1995 and 2005. This result suggests that the model is acceptable 

for predicting non-member catch.  

Non-member catch was estimated for the Pacific and Indian Oceans, by year and by statistical area 

(Tables 2- 5). Estimates for the Pacific Ocean for 2000-2012 were low with a highest estimate of 48 

tonnes in 2010, if catchability for non-parties was assumed to be the same as Japan.  Estimates of non-

member catch for the Indian Ocean were also affected by the assumed catchability. The low-

catchability estimates varied between 7 tonnes in 2002 and 98 tonnes in 2012, while the high-

catchability estimates varied between 18 tonnes in 2002 and 228 tonnes in 2012.  
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Figures 
 

 

Figure 1: Map showing the CCSBT statistical areas 

 

Figure 2: Average annual effort reported to CCSBT by parties since 2001 by 5 degree square. Red shading indicates higher 

effort than yellow, and areas with no reported effort are grey.  



 

 

Figure 3: Average annual SBT catch in tonnes reported to CCSBT by parties since 2001 by 5 degree square. Red shading 

indicates higher catch than yellow, and areas with no reported catch are grey. 

 

 

 

 

Figure 4: Ratios of CCSBT parties’ effort reported in regional datasets to effort reported to the CCBST, by statistical area 

and year. Strata without effort in one of the datasets are excluded.  

 

 



 

 

Figure 5: Ratios of CCSBT members’ and cooperating parties’ effort reported in the IOTC dataset vs effort reported to the 

CCBST, by flag, statistical area, and year. Strata without effort in one of the datasets are excluded. Flags are Australia (AU), 

Japan (JP), Republic of Korea (KR), New Zealand (NZ), Taiwan (TW), and South Africa (ZA).  

 

 

Figure 6: Ratio of effort in the PD_flag and PD_agg datasets, by year, for sets south of 30S and west of 170W (left) and for 

sets south of 30S and east of 170W (right).   

 

 



 

  

 

 

 

Figure 7: Spatial distribution of mean annual effort reported to IOTC and WCPFC 2001-2012 (thousands of hooks) by CCSBT 

parties (members and cooperating parties) and non-parties. Higher levels of effort are red, and grey indicates no reported 

effort.  

IOTC data, CCSBT parties 

IOTC data, CCSBT non-parties 

WCPO data, CCSBT parties 

WCPO data, CCSBT non-parties 



 

 

  

Figure 8: Proportion of effort in the IOTC dataset (left) and in the WCPFC dataset PD_flag south of 30S (right) reported by 

flags that are not parties of CCSBT, by statistical area and year.  

  

Figure 9: Effort (thousands of hooks) in the IOTC dataset south of 10S (left) and in the WCPFC dataset PD_flag south of 30S 

(right) reported by flags that are not parties of CCSBT, by statistical area and year.  

 



 

  

Figure 10: Number_retained versus predicted mean weight for Japanese effort in statistical area 2, with 95% confidence 

intervals around the predicted effect of number_retained.  

 

  

Figure 11: Diagnostic Q-Q plots for the generalized linear models of weight frequency data for the Indian Ocean (left) and 

Pacific Ocean (right).  



 

 

 

Figure 12: Histogram and boxplots of residuals from the analysis of size data for the Pacific Ocean.  

 

Figure 13: Histogram and boxplots of residuals from the generalized linear models of weight frequency data for the Indian 

Ocean. 



 

 

Figure 14: Histogram and boxplots of residuals from the generalized linear models of weight frequency data for the Indian 

Ocean. 

 



 

 

Figure 15: Predicted mean weights by month and statistical area for the Pacific Ocean. Estimated weights are plotted with 

black square, and inferred weights with red X’s. In the month where both estimated and inferred values are plotted, the 

estimated value was considered unreliable and replaced with inferred values 

 



 

 

 

Figure 16: Predicted mean weights by month and statistical area for the Indian Ocean. Estimated weights are plotted with 

black square, and inferred weights with red X’s. In the few months where both estimated and inferred values are plotted, 

the estimated values were considered unreliable and replaced with inferred values.  



 

 

Figure 17: Observed (black circles) and predicted (red crosses) mean weights for Japanese sets in the Pacific Ocean.  



 

 

Figure 18: Observed (black circles) and predicted (red crosses) mean weights for Japanese sets in the Indian Ocean.  

 



 

 

Figure 19: Comparisons of observed and predicted catches in metric tonnes (MT) by flag in the Indian Ocean, with 

predictions based on multiplying numbers caught by mean observed or predicted weights in the Japanese catch for each 

stratum (year-month-statistical area). Flags are Australia (AU), Japan (JP), Republic of Korea (KR), Taiwan (TW), and South 

Africa (ZA).  



 

 

 

Figure 20: Comparisons of observed and predicted catches in metric tonnes (MT) by flag in the Pacific Ocean, with 

predictions based on multiplying numbers caught by mean observed or predicted weights in the Japanese catch for each 

stratum (year-month-statistical area). Flags are Australia (AU), Japan (JP), Republic of Korea (KR), New Zealand (NZ), and 

Taiwan (TW).  



 

 

 

Figure 21: Histograms of residuals and boxplots of residuals versus covariates for the Pacific Ocean positive GLM. Lat5 and 

Lon5 represent the latitude and longitude in 5 degree categories. Hooks have been categorized by taking the natural 

logarithm and grouping by unit on the log scale.  



 

 

 

Figure 22: Histograms of residuals and boxplots of residuals versus covariates for the Indian Ocean positive GLM. Lat5 and 

Lon5 represent the latitude and longitude in 5 degree categories. Hooks have been categorized by taking the natural 

logarithm and grouping by unit on the log scale. 

 



 

 

Figure 23: Diagnostic Q-Q plot for the CPUE standardization of Indian Ocean positive catches.  

 

Figure 24: Diagnostic Q-Q plot for the CPUE standardization of Pacific Ocean positive catches.  



 

 

Figure 25: Relative catch rates of southern bluefin tuna by 5 degree square in the Pacific, predicted for May 2001. Red 

colour indicates higher catch rates and yellow lower catch rates.  

 

Figure 26: Relative catch rates of southern bluefin tuna by 5 degree square in the Indian Ocean, predicted for May 2001. 

Red colour indicates higher catch rates and yellow lower catch rates.  

 



 

 

Figure 27: Comparison of observed and predicted catches in the Pacific Ocean for Japan (JP), Australia (AU) and New 

Zealand (NZ), based on multiplying predicted CPUE by effort in the CCSBT data.  

 

Figure 28  Comparison of observed and predicted catches in the Indian Ocean for Japan (JP), Korea (KR) and Taiwan (TW), 

based on multiplying predicted CPUE by effort in the CCSBT data.  

  



 

Tables 
 

Table 1: Length to processed weight conversion factors agreed at the 1994 SBT Trilateral Workshop on Age and Growth, 

17 Jan - 4 Feb, 1994. The parameters are used in the equation 𝑾𝒆𝒊𝒈𝒉𝒕 =  𝑨. 𝑳𝒆𝒏𝒈𝒕𝒉𝑩, with A and B defined separately 

for adults and juveniles.  

Statistical area Quarter A_JUV B_JUV A_ADULT B_ADULT 

1 1 1.3545E-05 3.0214 7.3465E-06 3.157 

2 1 1.3545E-05 3.0214 7.3465E-06 3.157 

3 1 1.3545E-05 3.0214 5.5706E-06 3.2164 

4 1 1.3545E-05 3.0214 5.5706E-06 3.2164 

5 1 1.3545E-05 3.0214 8.3688E-06 3.1429 

6 1 1.3545E-05 3.0214 8.3688E-06 3.1429 

7 1 1.3545E-05 3.0214 5.5706E-06 3.2164 

8 1 1.3545E-05 3.0214 3.9080E-07 3.7529 

9 1 1.3545E-05 3.0214 5.1065E-06 3.2393 

10 1 1.3545E-05 3.0214 5.1065E-06 3.2393 

1 2 8.9030E-06 3.1225 1.8240E-07 3.9056 

2 2 8.9030E-06 3.1225 1.8240E-07 3.9056 

3 2 8.9030E-06 3.1225 5.5706E-06 3.2164 

4 2 8.9030E-06 3.1225 5.5706E-06 3.2164 

5 2 8.9030E-06 3.1225 2.9786E-06 3.3411 

6 2 8.9030E-06 3.1225 7.3465E-06 3.157 

7 2 8.9030E-06 3.1225 5.5706E-06 3.2164 

8 2 8.9030E-06 3.1225 1.8240E-07 3.9056 

9 2 8.9030E-06 3.1225 5.1065E-06 3.2393 

10 2 8.9030E-06 3.1225 5.1065E-06 3.2393 

1 3 1.5216E-05 3.0009 1.8240E-07 3.9056 

2 3 1.5216E-05 3.0009 1.8240E-07 3.9056 

3 3 1.5216E-05 3.0009 1.5380E-06 3.4754 

4 3 1.5216E-05 3.0009 1.5380E-06 3.4754 

5 3 1.5216E-05 3.0009 3.9490E-06 3.2886 

6 3 1.5216E-05 3.0009 3.9490E-06 3.2886 

7 3 1.5216E-05 3.0009 1.5380E-06 3.4754 

8 3 1.5216E-05 3.0009 1.8240E-07 3.9056 

9 3 1.5216E-05 3.0009 4.7780E-07 3.7032 

10 3 1.5216E-05 3.0009 4.7780E-07 3.7032 

1 4 1.3545E-05 3.0214 7.3465E-06 3.157 

2 4 1.3545E-05 3.0214 7.3465E-06 3.157 

3 4 1.3545E-05 3.0214 1.5380E-06 3.4754 

4 4 1.3545E-05 3.0214 1.5380E-06 3.4754 

5 4 1.3545E-05 3.0214 3.9490E-06 3.2886 

6 4 1.3545E-05 3.0214 8.3688E-06 3.1429 

7 4 1.3545E-05 3.0214 1.5380E-06 3.4754 

8 4 1.3545E-05 3.0214 3.9080E-07 3.7529 

9 4 1.3545E-05 3.0214 4.7780E-07 3.7032 

10 4 1.3545E-05 3.0214 4.7780E-07 3.7032 

 



 

Table 2: Predicted catches for the Pacific, based on alternative assumptions that non-member catchabilities match those 

of Taiwan or Japan.  

Year Assume TW Assume JP 

 Sarea 4 Sarea 6 Sarea 4 Sarea 6 

2002 -0.1 2.9 3.5 21.4 

2004 1.7 0 25.3 0 

2005 0.9 0 18.2 0 

2006 1.5 0 15.2 0 

2007 4.3 0 35.3 0 

2009 0.1 0 2.1 0 

2010 5.8 0 48.3 0 

 

 

Table 3: Estimated Indian Ocean catch by year and statistical area, assuming all fleets have the same catchability as JP 

(Japan) vessels 

q=JP Statistical Area 

 1 2 8 9 13 14 

2000 0 0 0 0.3 0.4 107.2 

2001 0 25 0 24.6 0.1 11.3 

2002 0 0.2 0 0 0.1 17.2 

2003 0.5 18.7 0 0.4 4.5 9.8 

2004 4 23.2 0 0 9.2 37 

2005 7.2 13.2 0 0 0.2 63.6 

2006 0.7 9.6 6.1 2.2 1.3 90.7 

2007 0.5 20.2 0 0.2 1 94.2 

2008 1 12.8 0 0 0.4 61.5 

2009 0 89.8 0 1.5 0.1 63.5 

2010 0 84.7 0 0.3 24.9 105.1 

2011 0.1 86.8 0.2 1.5 0.8 63.2 

2012 0 148.3 0 0.3 12.7 67.1 

2013 0 114.8 0 0 0 7.8 

 



 

Table 4: Estimated Indian Ocean catch by year and statistical area, assuming all fleets have the same catchability as TW 

vessels 

q=TW Statistical Area 

 1 2 8 9 13 14 

2000 0 0 0 0.1 0.1 45.8 

2001 0 11.4 0 11.9 0 4.7 

2002 0 0 0 0 0 6.6 

2003 0.1 7.2 0 0.2 1.9 3.8 

2004 1.2 9 0 0 3.8 15.4 

2005 2.5 5.8 0 0 0 28.4 

2006 0.2 4.1 2.9 1 0.3 36.2 

2007 0.1 8.2 0 0.1 0.2 37.9 

2008 0.3 5.2 0 0 0 25.4 

2009 0 43.6 0 0.6 0.1 24.6 

2010 0 36.5 0 0.2 10.5 42.1 

2011 0 38.4 0.1 0.6 0.1 25.1 

2012 0 64.8 0 0.1 5.7 27.3 

2013 0 50.2 0 0 0 3 

 

Table 5: Estimated Indian Ocean catch by year, assuming all fleets have the same catchability as either JP (Japan) or TW 

(Taiwan) vessels.  

 q=TW q=JP 

2000 46 107.9 

2001 28 61 

2002 6.7 17.5 

2003 13.2 33.9 

2004 29.5 73.4 

2005 36.7 84.3 

2006 44.7 110.6 

2007 46.5 116.1 

2008 30.9 75.6 

2009 69 154.9 

2010 89.2 215 

2011 64.4 152.6 

2012 97.9 228.3 

2013 53.2 122.6 
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