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Abstract 
This paper reports work to explore the potential to develop CPUE indices for SBT based on data for 

multiple fleets in addition to Japan. The analyses use generalized additive models (GAMs) with 

spatiotemporal smoothers, and a delta lognormal approach. The temporal and spatial distributions 

of both fishing effort and the highest catch rates have changed between 1986 and 2022, while the 

spatial and temporal extents of fishing effort have declined. Simulated data were generated from 

the best models fitted to the aggregated dataset and used to explore the effectiveness of different 

model configurations for dealing with these changing distributions. The principal GAM models 

produced unbiased estimates with the simulated data, while GLM models and less flexible GAM 

smoothers provided biased indices. Manipulating the simulated dataset to produce a large rapid 

change in fish distribution resulted in moderately biased indices. Increasing the effort concentration 

through time to focus effort on areas with higher CPUE also resulted in estimation bias, particularly 

at the end of the time series when concentration was greatest. This bias may be due to loss of 

information from the dataset rather than model failure, and it may be helpful to increase the 

information via models that include data from other fleets as well as Japan. In general, GAM models 

provided less biased indices than either a GAM equivalent to the variable squares method (GAM_VS) 

or a combined model (w0.8) approach.  
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Introduction 
The CPUE standardization methods used for SBT have been updated to address problems with 

recent CPUE estimates, particularly an anomalously high value in 2018 (CCSBT, 2020). The main 

reason for these analytical problems was identified as increasing aggregation of fishing effort, 

together with a method that relied on data availability in all strata. Sparse data caused parameter 

estimation problems (ESC 25, para 37). Analyses between 2020 and 2022 (Hoyle, 2021; Hoyle, 2022; 

Hoyle, 2020) developed an alternative approach using generalized additive models (GAMs) 

implemented with the R package mgcv (Wood, 2011). Data were fitted with multi-dimensional 

smoothers which share information among adjacent values of continuous variables. Further analysis 

(Hoyle, 2022) indicated that the principal GAM models produced unbiased estimates with the 

simulated data, while GLM models and less flexible GAM smoothers provided biased indices, 

particularly at the end of the time series as effort became more concentrated, and data became 

sparse.  

However, manipulating the simulated dataset to produce a large rapid change in fish distribution 

resulted in moderately biased indices from all models. Increasing the effort concentration through 

time to focus effort on areas with higher CPUE also resulted in estimation bias, particularly at the 

end of the time series when concentration was greatest. This bias may be due to loss of information 

from the dataset rather than model failure, and ESC 27 concluded that it may be helpful to increase 

the available information via models that include data from other fleets as well as from Japan.  

Work for 2023 involved exploring the spatio temporal effort distributions of fleets other than Japan, 

to help understand whether they might usefully contribute to maintaining through time the 

coverage of the SBT population distribution, and thereby reducing the risk of parameter estimation 

difficulties. This involved plotting the distribution of data from these fleets and exploring patterns of 

effort concentration among all fleets.  

Methods 

Input data 
These analyses were based on two datasets, files ‘CPUEInputs_2023_June.txt’ (CPUEinputs) and 

‘CatchEffort_2023_June.txt’ (CatchEffort), available from the private area of the CCSBT website. 

These data are aggregated by year, month, and 5° latitude and longitude. In the CPUEinputs file, 

catches are reported by age class based on spatially and temporally stratified size sampling, whereas 

the CatchEffort file reports only numbers and weights.  

The following processes were then applied to the CatchEffort_2023_June.txt dataset: 

- Filter effort as follows:  

o Year > 1985. 

o Statistical areas 4 to 9. 

o Months 4 to 9. 

o latitudes north of 50° S. 

o gear code = ‘LL’. 

o dataset_code is not ‘JP_RTMP’. 

o fleet_code is not NZA or NZP.  

- Data cleaning  

o filter out one misplaced stratum.  

o CPUE is not missing.  

o CPUE < 120 (outlier).  
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- Create categorical areaf variable, which merges statistical area 4 with 5 and statistical area 6 

with 7.  

- Adjust numeric longitude variable (lon) by adding 360 to all longitudes between -180 and -

100, to provide continuity across the spatial domain of the fishery. Longitudes are recorded 

as -180 to 180 and so the range of the adjusted longitude variable was from -95 to 260.  

- Create categorical variables yf, latf, lonf, and mf, for year, latitude, longitude, and month.  

- Create categorical llf variable, indicating 5° square that combines latitude and longitude.  

- Create numeric catch variable, the sum of NUMBER_RETAINED and NUMBER_DISCARDED.  

- Create numeric cpue variable = catch per 1000 hooks.  

For these analyses, data preparation did not remove strata with fewer than 10000 sets, except 

where stated otherwise. This was to avoid complications due to different levels of filtering 

depending on how many fleets were fishing in a stratum.  

Aggregated datasets differ from the Japanese operational dataset used for primary analyses. The 

primary dataset is only available to Japanese scientists. The main differences between these 

datasets are listed below.  

- The primary dataset is available as operational (set by set) data (but may be aggregated for 

the main analysis) whereas the available dataset is aggregated by month and 5-degree cell.  

- The primary dataset uses a set of core vessels that have high SBT catches for at least 3 years, 

whereas the available dataset includes data from all vessels.  

- The primary dataset includes catches of bigeye and yellowfin tuna, but the available dataset 

does not.  

Data exploration 
Several approaches were used to explore changes in effort distribution and concentration through 

time. CPUE estimates are affected by effort concentration both spatially and by month within years, 

since data are stratified by 5-degree cell and month. We therefore explored changes in both the 

numbers of strata fished and the number of operations per fished stratum, and their variation 

through time both within individual fleets and within datasets combined across fleets.  

Maps 

In order to explore how effort concentration has changed through time by fleet, a map series 

showing data coverage through time was generated for each individual fleet code, for each year 

between 1986 and 2022 in which data were available. These were annual plots of the number of 

month x spatial cell strata fished. An additional map series was generated that compared data 

coverage between Japanese effort and total effort for all fleets.  

The 252 maps are not included in this paper, but available for download from the github repository.  

Concentration indices  
Indices of fishing effort concentration were also calculated, including the Gini coefficient (Gini, 1912) 

and Gulland’s index of concentration (Gulland, 1956). The Gini coefficient is best known as an 

indicator of wealth concentration but can be used to measure aggregation of any quantity. We use it 

to estimate the spatial aggregation of the catch of each species, and effort, in each region. A higher 

Gini coefficient indicates that more of the catch (or effort) is being taken from fewer spatial cells. We 

estimated values separately for each year, where the values yi are catches or effort per 5° x 5° cell, 

ranked from lowest to highest, and including zeroes for unfished cells. Cell areas are assumed to be 

uniform.   



4 
 

𝐺𝑖𝑛𝑖 =
2∑ 𝑖𝑦𝑖

𝑛
𝑖=1

𝑛∑ 𝑦𝑖
𝑛
𝑖=1

−
𝑛 + 1

𝑛
 

Gulland’s index of concentration measures the extent to which a fleet has concentrated its fishing 

effort in areas with higher than average catch rates. The weighted version of the index is calculated 

as follows, where yi is the catch in the ith stratum, ei is the effort in the ith stratum, and N is the 

number of exploited strata.  
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This index varies from year to year depending on both the distribution of the effort, and the 

distribution of the catch rates. If effort is evenly distributed with respect to catch rate then the index 

will average 1, whereas it will be higher than 1 if effort is preferentially targeted to areas with higher 

than average catch rate (Hoyle, 2014).  

CPUE standardization 
Using the variables and interactions previously selected (Hoyle, 2022), models were run using the 

delta lognormal approach using the R package mgcv. This package uses the offered terms and initial 

basis dimension (k) as a starting point for a search. The k parameter sets the upper limit on the 

degrees of freedom associated with a single smooth, while for a tensor product smooth the upper 

limit is the product of the k values for each marginal smooth.  

Delta models were fitted using the function gam() and restricted maximum likelihood (REML), and 

positive models were fitted using the function bam() and generalized cross-validation (GCV).  

Wood (2011) recommends that models with multiple levels of interactions should specify main 

effects using either s() or ti() and interaction terms with ti(). Models were fitted using ti() for all 

terms, so that all terms were fitted using the default cubic splines. 

Binomial: cpue != 0 ~ yf + ti(lon2, k=40) + ti(LAT, k=4) + ti(MONTH, k = 6) + ti(lon2, LAT, k = c(40,4)) + 

ti(MONTH, LAT, k = c(6,4)) + ti(lon2, MONTH, k = c(10, 5)) + ti(YEAR, LAT, k = c(20, 4)) + ti(YEAR, 

MONTH, k = c(20, 5)) + ti(lon2, YEAR, k =c(10, 9)) + ti(LAT, lon2, MONTH,  k = c(4,15, 6)) + ti(LAT, lon2, 

YEAR, k = c(4,10, 9)) + ti(log(N_HOOKS), k = 10) 

Lognormal: log(cpue)= 0 ~ yf + ti(lon2, k=40) + ti(LAT, k=4) + ti(MONTH, k = 6) + ti(lon2, LAT, k = 

c(40,4)) + ti(MONTH, LAT, k = c(6,4)) + ti(lon2, MONTH, k = c(10, 5)) + ti(YEAR, LAT, k = c(20, 4)) + 

ti(YEAR, MONTH, k = c(20, 5)) + ti(lon2, YEAR, k =c(10, 9)) + ti(LAT, lon2, MONTH,  k = c(4,15, 6)) + 

ti(LAT, lon2, YEAR, k = c(4,10, 9))  

As a final step the model was specified using a ‘shrinkage’ version of the cubic spline smooth (bs = 

“cs”), which if warranted will penalise a curve to zero and effectively eliminate it from the model.  

The lognormal model used log(cpue) as the response, with identity link and gaussian error 

distribution, while the binomial model used ‘cpue != 0’ as the response, with logit link function. 

Binomial models included effort in the formula to account for the effect of effort on the probability 

of non-zero catch in a stratum. Effort was included as a spline rather than a straight line or offset, to 

allow for potential nonlinearity in the relationship.  
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Table 1: Settings used in mgcv to compare models with different distributions.  

Distribution Family Dataset response Link function Likelihood 

Binomial (DLN) Binomial all cpue > 0 logit REML 

Lognormal (DLN) Gaussian nonzero  log(cpue) identity GCV 

 

delta <- gam(cpue > 0 ~ formula, data = a, gamma = 2, method = 'REML', family = binomial) 

pos <- bam(log(cpue) ~formula, data = apos, gamma = 2, method = ‘GCV’)  

Preparation of indices 
The density of SBT in each stratum (year by month by grid cell) was predicted and stratum 

abundances predicted by multiplying ocean area (Hoyle and Langley, 2020) stratum density.  

A time series of predicted abundance was calculated by summing predicted abundances across 

strata for each year. Abundance indices were obtained by dividing the abundances for each year by 

the mean of all years.  

Spatial cells were included in the locations used for prediction if the original dataset contained at 

least 15 nonzero effort observations (strata) associated with the cell.  

Several alternate methods were used to generate indices.  

- CV_limit indices were prepared by including predictions only for strata for which the 

coefficient of variation (CV) of the predicted density was less than a predefined limit.  

- Fished_strata: indices were developed by predicting only for strata (5-degree cell by month) 

that were fished at least once during the period 1986 to 2022. Given the limit of 10000 

hooks for including strata in the dataset, this implies at least quarter and month with more 

than 3 sets.  

- Fished_strata_nyears: indices were developed by predicting only for strata (5-degree cell by 

month) that were fished at least once during a predefined period, for a range of different 

periods. Periods used were 2017, 2018, 2019, 2020, 2021, and 2017-2022.  

To check the utility of conclusions based on the CatchEffort_2023_June.txt dataset, indices were 

developed using both the CPUEinputs_2023_June.txt and the CatchEffort_2023_June.txt datasets 

and compared on the same plot.  

To check the influence of omitting strata with fewer than 10000 hooks, indices were developed 

using the CPUEinputs_2023_June.txt dataset both with and without these strata and compared on 

the same plot.  

To check the influence of sharing catchability between the main Japanese fleet and the Japanese 

charter fleets fishing in Australian and New Zealand waters (fleet codes AUC and NZC), models were 

run with both the standard approach and with separate fleet effects estimated.  

Indices for combined fleets 
Indices for combined fleets were developed by fitting models as follows, which estimates 

independent catchability by fleet in both model components. For these analyses, Japanese charter 

fleets were assigned the same fleet code as the Japanese domestic fleet, so as to assume consistent 

catchability across the entire Japanese fleet.   

Binomial: cpue != 0 ~ yf + FLEET_CODE + ti(lon2, k=40) + ti(LAT, k=4) + ti(MONTH, k = 6) + ti(lon2, 

LAT, k = c(40,4)) + ti(MONTH, LAT, k = c(6,4)) + ti(lon2, MONTH, k = c(10, 5)) + ti(YEAR, LAT, k = c(20, 
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4)) + ti(YEAR, MONTH, k = c(20, 5)) + ti(lon2, YEAR, k =c(10, 9)) + ti(LAT, lon2, MONTH,  k = c(4,15, 6)) 

+ ti(LAT, lon2, YEAR, k = c(4,10, 9)) + ti(log(N_HOOKS), k = 10) 

Lognormal: log(cpue)= 0 ~ yf + FLEET_CODE + ti(lon2, k=40) + ti(LAT, k=4) + ti(MONTH, k = 6) + 

ti(lon2, LAT, k = c(40,4)) + ti(MONTH, LAT, k = c(6,4)) + ti(lon2, MONTH, k = c(10, 5)) + ti(YEAR, LAT, k 

= c(20, 4)) + ti(YEAR, MONTH, k = c(20, 5)) + ti(lon2, YEAR, k =c(10, 9)) + ti(LAT, lon2, MONTH,  k = 

c(4,15, 6)) + ti(LAT, lon2, YEAR, k = c(4,10, 9))  

First, indices were developed by combining Japanese data with one fleet at a time, for each of the 

Australian, Korean, New Zealand, South African, and Taiwanese fleets. Next, indices were developed 

after combining data from all fleets. Then, indices were developed by combining Japanese, 

Australian, Korean, and New Zealand data.  

CPUE by year and fleet 
To explore the nominal catch rates by year and fleet, and factors affecting recent catch rates, 

histograms of CPUE were plotted by year and fleet.  

Nominal CPUE by fleet (without combining with Japanese data) was estimated by fitting the simple 

model cpue ~ year_factor.  

A simplified version of standardized CPUE was estimated by fitting a delta lognormal model as 

follows, with all variables included as factors.  

mod_delta <- gam(cpue != 0  ~ year + month + cell) 

mod_pos <- gam(log(cpue) ~ year + month + cell) 

R code 
All R code used in and developed for this study is available at the github repository 

https://github.com/hoyles/R_ccsbt_cpue. Please email simon.hoyle@gmail.com to request 

permission to access the repository.  

Results 

Patterns in the Japanese effort  
Plots of patterns in the Japanese effort by latitude (Figure 1) show that both the number of fished 

strata and total effort have in general declined through time in all latitudes, but with considerable 

temporal variation. Effort in the southernmost latitude centred on 47.5 S has declined almost to 

zero, with occasionally a small amount of fishing in a few strata. Effort in the northernmost stratum 

centred on 32.5 S has been comparatively stable. Most of the effort in (to a lesser extent) the 

majority of fished strata has consistently occurred in the central latitudes centred on 37.5 S and 42.5 

S. Relative effort in these strata has oscillated. The period 2017 - 2020 saw very high effort at 42.5 S, 

but by 2022 some effort had shifted north so that 37.5 S and 42.5 S had similar levels of effort.  

In the 1990s, apportionment of effort by month (Figure 2, lower right) showed highest effort in May 

and June, followed by July. From 2010 - 2020, May had the most effort followed by April and June. 

The most recent year (2022) saw an unusually high proportion of effort occurring in August, and a 

very low proportion in April. Apportionment of fished strata by month was more stable through time 

than effort (Figure 2, upper right). The most obvious changes were a steady reduction in the 

proportion of strata fished in August, and increases in the proportions of strata fished in May, June, 

and particularly April.  

When viewed in terms of statistical areas (Figure 3), area 9 has always seen the largest number and 

the highest proportion of strata fished. This has not been the case for effort however, with similar 

https://github.com/hoyles/R_ccsbt_cpue
mailto:simon.hoyle@gmail.com
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amounts of effort allocated to area 8 since about 2009. The year 2022 saw approximately twice as 

much effort in area 8 as in area 9. Significant Japanese effort also remains in area 7. However, effort 

in areas 4, 5, and 6 has been minimal since 2015, although reasonable numbers of strata are still 

fished except in area 6.  

Comparisons by fleet 
Operations per stratum by flag, statistical area and year were plotted to compare changes in effort 

concentration through time among flags (Figure 4). Australia shows relatively stable effort through 

time, mostly in areas 4 and 5. There was decline in Japanese operations per stratum until 2010, with 

more stability since then, and considerable variability among statistical areas. Korean effort has 

shown a high degree of increasing concentration into area 9, with increasing numbers of operations 

per stratum. New Zealand data show relatively stable operations per stratum since about 2005. 

Taiwanese effort has somewhat increased the numbers of operations per stratum in both areas 8 

and 9. South African operations per stratum have declined since 2010, and no data are available 

since 2019.  

The number of fished strata per year has declined steadily from a very high level for the Japanese 

fleet (Figure 5). Fished strata have also declined for the Korean fleet. The Australian and New 

Zealand fleets have been relatively stable in recent years, and the Taiwanese fleet increased its 

number of fished strata from 2003 until around 2015. Combining all fleets results in much more 

stable coverage through time than coverage for just the Japanese fleet, with considerably higher 

numbers of strata (Figure 6). When data are cleaned so that there are at least 10000 hooks per 

stratum, the number of strata in the Japanese dataset declines from a high of 176 in 1998 to a low of 

56 strata in 2022.  

The comparison by fleet is made more obvious when directly comparing the Japanese coverage with 

the improvement in coverage when combined with effort from another flag (Figure 7). To aid 

comparison with results in Japanese and Korean documents, Figures 8 and 9 replicate the approach 

in those documents to show both the number of fished cells per statistical area and year and the 

number of operations per cell per year on the same plot.  

Indices of concentration 
Gini coefficients by month for Japanese effort (Figure 10) showed a general pattern of increasing 

concentration through time in all months. Gini coefficients for all fleets’ effort (Figure 11) showed 

similar trends in months 8 and 9 but were more stable in for months 4 to 7. In addition, the average 

level of the coefficients was lower, indicating that effort was in general less concentrated. The 

equivalent figures for SBT catch showed similar relationships between Japanese CPUE and CPUE of 

all fleets (Figures 12 and 13), although the differences between Japan and all fleets for CPUE were 

smaller than they were for effort.  

Similarly comparing Gulland’s indices of concentration for Japanese catch and effort (Figure 14) with 

those for all fleets’ catch and effort (Figure 15) showed that Japanese effort was somewhat more 

concentrated into areas of higher CPUE than was the effort of all fleets combined. This is not 

surprising, since the effort of all fleets includes effort from the Taiwanese fleet which targets species 

other than SBT and reports significantly lower SBT catch rates.  

CPUE indices  
CPUE indices were developed for the combination of Japanese data and data from each other fleet 

(Figure 16). In general, the indices were similar to the estimated Japanese indices, for most of the 

time series. Divergence increased through time as effort became more concentrated and other 
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fleets comprised a higher proportion of effort. The largest differences occurred for indices that 

included Taiwanese data and South African data.  

Additional CPUE indices were developed for datasets that a) combined all fleets, and b) combined all 

except the Taiwanese and South African fleets. Both diverged from the Japanese index primarily in 

the period since 2010. The greatest divergence was for the all-fleets dataset, which reached a very 

high level for the 2022 index.  

The array of strata used for predicting indices had relatively little impact on the CPUE index time 

series (Figure 18). The greatest differences between sets of predicted indices were for the 2015 and 

2022 predictions. In 2022 the all-strata prediction was lower than any of the fished strata indices, 

whereas for 2022 the all-strata prediction was higher than any of the fished strata indices.  

Frequency histograms of CPUE by year and fleet (Figure 19) did not suggest any inconsistencies 

between the high index estimate in 2022 and the observed catch rates. Catch rates in 2022 were 

notably high in data from Japan and New Zealand, but not for any of the other fleets. The uniformly 

low catch rates in the Taiwanese data may have obscured any temporal patterns in that dataset.  

Nominal CPUE indices by fleet (Figure 20) and standardized indices using a simplified GLM model 

(Figure 21) were similarly consistent with the GAM standardized indices. Strong increases were 

observed since 2010 in all indices, with the 2022 index particularly high for Japan and New Zealand.  

Indices based on the CV_limit method (Figure 22) included predictions only for strata where the CV 

of the predicted density was less than a predefined limit. Application of this limit tended to change 

the trend, because uncertainty was greater in later parts of the time series. Since strata that were 

more uncertain were not summed to form the index, indices were more negatively biased in periods 

with greater uncertainty.  

Inclusion of strata with fewer than 10000 hooks had a significant effect on the index in several years, 

particularly 2014 and 2015 (Figure 23).  

Indices based on to Japanese data were slightly different depending on whether they were based on 

the CPUEInputs.txt file or the CatchEffort.txt file. These files differ in that fish less than 4 years old 

were omitted in the analyses of the CPUEInputs.txt file.  

Maps 
For maps of the data coverage see the Github repository (https://github.com/hoyles/R_ccsbt_cpue). 

Please email simon.hoyle@gmail.com to request access. 

 

Discussion 
The distributions of both fish and effort change through the time series, in addition to varying 

seasonally. The increasing sparsity of the Japanese fishing distribution is marked, with far fewer 

fished strata in 2022 than in 1986. The factors motivating the effort contraction are less well 

understood. Initially the contraction would been driven by reduced catch quotas. More recently, 

catch rates that increased faster than quotas are likely to have allowed vessels to catch their quotas 

with less effort. The contributions of improvements in fishing and communication technology, 

remote sensing, and understanding of tuna behaviour are unclear but may have increased vessels’ 

ability to identify and target areas of higher abundance, thus increasing catch rates and reducing the 

effort required to take the quota.  

mailto:simon.hoyle@gmail.com
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GAM models perform better than GLM models at estimating indices from sparse data. They suffer 

less from the problem of inestimable parameters since they share information across strata. 

Nevertheless, there are limits to their ability to derive information from sparse data, and this is 

reflected in increasing uncertainty about recent catch rates. Lower spatiotemporal coverage is 

inevitably associated with higher uncertainty and increases the risk that fished strata are not 

representative of the overall biomass trend.  

Analyses in this study have shown that data from other fleets can significantly improve coverage 

throughout the time series, and particularly in recent years. Catch rates of most other fleets are 

likely to contain useful information about abundance trends. They show similar trends to indices 

from the Japanese fleet, as shown by indices based on nominal and standardized CPUE.  

Joint analysis using data from multiple fleets fishing on the same stock is increasingly applied as a 

way to increase the coverage and representativeness of CPUE indices (Hoyle et al., 2018; Hoyle et 

al., 2015b; Kitakado et al., 2021). Such analyses require significant work to prepare data, to ensure 

they are compatible for a joint analysis. Different fishing methods are used by different fleets, and 

by different groups and even different vessels within fleets, resulting in variation in catchability. The 

current study has to some extent accounted for fleet-level catchability variation by using the fleet as 

a covariate – the only option available with aggregated data. However, aggregated data are likely to 

be unsuitable for joint analyses - operational data will be required. There is likely to be considerable 

catchability variation within fleets other than Japan, given the diversity of vessel size, experience, 

equipment, bait use, and targeting practices within domestic fleets compared to distant water 

fishing fleets. These sources of variability can be addressed using a combination of techniques, such 

as the inclusion of vessel ids, identification of targeting practices, and auxiliary analyses using 

additional covariates.  

Targeting behaviour is an important issue that can significantly affect catch rates. A common 

approach is the use of clustering based on species composition (He et al., 1997; Hoyle et al., 2022; 

Hoyle et al., 2015b).  

Before jointly analysing national datasets, each dataset should be thoroughly explored and 

characterised to identify factors that may need to be accounted for during the standardization, and 

to eliminate sources of data conflict (e.g., Hoyle et al., 2015a; Hoyle and Okamoto, 2015; Hoyle et al., 

2015c). It will also be necessary to remove effort where there may be issues with reporting quality 

or the representativeness of the sampling frame (e.g., Hoyle et al., 2015b).  

Previous arrangements for joint standardization of operational DWFN tuna catch and effort data 

(Hoyle et al., 2018; Hoyle et al., 2015b) have involved joint in-person meetings of one week to 10 

days at which all data are shared amongst all participants. The first exercise of this type also involved 

several week-long in-country meetings to characterise data and develop the code used to explore, 

clean, and prepare data (https://github.com/hoyles/cpue.rfmo). At the joint workshops, analysts 

have run models for their own datasets, and the lead analyst has provided assistance and run both 

individual fleet and joint models. Joint analysis requires that all datasets have the same fields, so 

data preparation code needs to be consistent and shared. Joint analyses involve very large datasets, 

so standardization models run slowly. Past analyses have used GLM methods, which run much faster 

than GAMs and use less RAM. Code development would be helpful to permit GAM runs to be 

parallelized for much greater speed. Pilot studies will also be needed to identify computer hardware 

requirements. The process would be greatly facilitated if data sharing or cloud computing 

arrangements could be identified that allowed analyses to be done outside a relatively short in-

person meeting.   
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Figures 

 

Figure 1: For the Japanese fleet, the number of strata fished (above) and total effort (below) by latitude and year, with 
totals on the left and proportions per latitude on the right. 
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Figure 2: The number of fished strata (above) and total effort (below) by month and year, with totals on the left and 
proportions per month on the right.  
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Figure 3: For the Japanese fleet, the number of fished strata (above) and total effort (below) by statistical area and year, 
with totals on the left and proportions per statistical area on the right. 



14 
 

 

Figure 4: For each flag, the average number of operations per stratum (5 x 5 x month) by statistical area, year, and flag. The 
number of operations is estimated by assuming 3000 hooks per operation.  
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Figure 5: For each fleet, the number of fished strata (5 x 5 x month) per statistical area, year, and flag.  
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Figure 6: The number of fished strata per statistical area and year for all fleets combined (above) and for Japan alone 
(below).  
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Figure 7: The annual numbers of fished strata for Japan (red) and for the combination of Japan and another flag (black). The 
‘All’ subplot compares Japan (red) with the strata fished by all fleets combined (black).  
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Figure 8: Combined plot showing both the number of fished cells (5 x 5) per statistical area, year, and flag (bar plot) and the 
number of operations per cell per year and flag (line plot).   
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Figure 9: Combined plot showing both the number of fished cells (5 x 5) per statistical area and year (bar plot) and the 
number of operations per cell per year (line plot) for Japan (above) and all flags combined (below).   
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Figure 10: Gini coefficients for effort distribution by the Japanese fleet, by year and month.  
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Figure 11: Gini coefficients for effort distribution across all fleets, by year and month.  
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Figure 12: Gini coefficients for SBT catch distribution for the Japanese fleet, by year and month. 
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Figure 13: Gini coefficients for SBT catch distribution across all fleets, by year and month.  
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Figure 14: Gulland’s coefficient of effort concentration applied to SBT catch and effort by Japan, by year and month. 
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Figure 15: Gulland’s coefficient of effort concentration applied to SBT catch and effort from all fleets combined, by year and 
month.  



26 
 

 

Figure 16: Standardized CPUE indices based on data from Japanese vessels only (black circles), and Japanese vessels plus 
one additional fleet at a time.  
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Figure 17: Standardized CPUE indices based on data from Japanese vessels (black circles), all fleets (red triangles), and 
Japanese, Australian, New Zealand and Korean vessels (green crosses).  
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Figure 18: Comparison of indices based on predictions from different groups of cell-month strata, fitted using the 
CPUEinputs.txt dataset. Indices are based on all strata (black circles), strata fished between 1985 and 2022 (red triangles), 
and strata fished either during a single year, or during the period 2018-2022.  
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Figure 19: Frequency histograms of CPUE per cell-month stratum by year and fleet, for the period 2014 to 2021, and the 
Australian, Japanese, Korean, New Zealand, Taiwanese and South African fleets.  
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Figure 20:Nominal CPUE based on catch and effort data for individual fleets (not combined with data for the Japanese 
fleet).  
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Figure 21: Indices of abundance based on standardized CPUE for individual fleets (not combined with data for the Japanese 
fleet), using the simple delta lognormal standardization model 1) CPUE !=0 ~ year + cell + month; and 2) log(CPUE) ~ year + 
cell + month. 
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Figure 22: Indices of abundance based on the standard CPUEInputs file, based on the sums of predictions for strata with CVs 
less than the thresholds listed in the legend.  
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Figure 23: Indices of abundance based on the CPUEinputs file, where the model either retains all strata or omits strata with 
fewer than 10000 hooks.  
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Figure 24: Comparison of indices estimated using the CPUEinputs and CatchEffort files. In both cases strata with fewer than 
10000 hooks are omitted, and data are included from the Japanese fleet and Japanese charter vessels fishing under 
Australian and New Zealand flags.  




