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要約 

2022 年 ESC27 では、GAM を用いた 2 段階のデルタログノーマルアプローチで CPUE を標準化

して、面積重みづけする新たなミナミマグロの CPUE資源量指数の作成方法に合意した。合意さ

れた方法に従い、CPUE 資源量指数の作成を 2023 年までの漁獲データに対して実施した。本文

書ではベースケースの結果と、様々な感度分析を行った結果を示す。得られた指数値では 2022

年に中程度に増加し、2023 年には少し低下した。モデル選択、レトロスペクティブ解析、船の

ID、海域範囲の変更、対象年齢の変更、データおよびモデルの分解能の変更を含む様々な感度

分析に対して資源量指数は頑健であった。操業の無い時空間に対する予測 CPUEが高い値を示す

場合があった。 

 

Summary 

At ESC27 in 2022, the new calculation method of the abundance index of southern bluefin tuna, which 

standardized by generalized additive model in the two-step delta log normal approach with area 

weighting, was agreed. The CPUE abundance index was updated for fishery data up to 2023 according to 

the agreed methodology. This document presents the base case results as well as the results of various 

sensitivity tests. The index value was increased moderately in 2022 and decreased slightly in 2023. The 

abundance index was robust for a variety of sensitivity analyses, including model selection, retrospective 

analysis, vessel ID, area range changes, age range changes, and data and model resolution changes.  There 

were cases where the predicted CPUE for non-fishing space-time showed high valuess. 
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1. Introduction 

Stock assessment and stock management through the Management Procedure (MP) of southern bluefin 

tuna (Thunnus maccoyii; SBT) in CCSBT have historically been strongly relied on the abundance index 

obtained from the CPUE (number of fish / 1000 hooks) of the Japanese commercial longline fishery. In 

the old days, Nishida and Tsuji (1998) developed a model to calculate the abundance index by the 

generalized linear model (GLM). Since 2007, alternative abundance index was developed which called 

the core vessel CPUE standardized by GLM in response to the shrinking operating area in time and space 

and the problem of target fish species (ESC12 report, Itoh et al. 2008). The CPUE abundance index had 

been used as one of the main abundance indices in the two MPs of the Bali procedure used for the TAC 

calculation from 2012 to 2020 and the Cape Town Procedure (CTP) used for the TAC calculation from 

2021. 

It was recognized that the 2018 value of the CPUE abundance index by the core vessel CPUE was 

anomalously high in ESC24 held in 2019 (ESC24 Report). This prompted further investigation, which 

subsequently identified that this estimate was generated due to a prediction bias in the GLM 

standardisation method being used, which generated anomalously high estimates for cells with no effort. 

At ESC26 in 2021, it was agreed that a new CPUE abundance index should be prepared by May 2022 to 

assess its impact on MP (ESC26 report). Through the collaboration work between Japanese scientists and 

the consultant hired by CCSBT, as well as the discussion and suggestion of the CPUE working group, a 

new abundance index using CPUE standardised by the generalized additive model (GAM) was developed 

and agreed at ESC27 in 2022 (OMMP12 and ESC27 Reports). 

This document presents the CPUE results obtained by updating the data to 2023 using the agreed GAM 

methodology not only for the base case but also for the various sensitivity analyses  (Itoh and Takahashi 

2022, 2023a). Although the ESC has already agreed to use the GAM new series in 2023, the CPUE 

abundance index may change with additional updates of the data over a one-year period, we need to 

carefully consider whether we can draw the same conclusion again. We have done all the analyses which 

had been done last year (Itoh and Takahashi 2023a). We have also included in this document a detailed 

review of predicted value from model conducted last year (Itoh and Takahashi 2023b). 

 

 

2. Materials and Methods 

2-1. Dataset used 

The dataset was extracted from logbook data for the Japanese longline fishery, which include the period 

from 1969 to the latest year (currently 2023). Following procedures for the conventional SBT CPUE 

abundance index, records in statistical Areas between 4 and 9 and from April to September were selected. 

From the logbooks, year, month, latitude (in 1 degree), longitude (in 1 degree), vessel ID (available from 

1979), number of hooks used, number of fish caught of SBT, bigeye tuna (T. obesus, BET), yellowfin 

tuna (T. albacares, YFT), albacore (T. alalunga, ALB) and swordfish (Xiphias gladius, SWO) data were 

used. In the development work in 2022, the number of hooks between floats (HBF; available since 1975) 

and other fish species (several species of marlines, and butterfly kingfish (Gasterochisma melampus; 

available since 1994)) were examined and we decided not to use them so that these items were not 

included in the work this year. 

From the size data of the CCSBT database, the age composition of Japanese commercial catch was 

calculated and converted into the number of fish caught age-4 and older (age-4 plus). The age composition 

information was first applied to the fork length composition of 50 or more individuals measured in the 

same month, 5 degrees longitude, and 5 degrees latitude. At this stage, 97% of the number of SBT caught 
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was incorporated and the ratio of age-4 plus was calculated. For records of the conditions for 50 or more 

individuals were not met the time and space were gradually expanded to correspond to fork length 

composition, such as the same month - longitude 15 degrees - latitude 5 degrees, the same month - 

longitude 15 degrees - latitude 15 degrees, the same quarter - longitude 15 degrees - latitude 5 degrees, 

the same quarter - Statistical Area, and the same year - Statistical Area, and the same year. The fork length 

was converted to age by the age-length relationship used by CCSBT. Sensitivity analysis was conducted 

for age-5 plus and all ages. 

The following records were eliminated: hooks 500 or less, hooks 4500 or more, CPUE 200 or higher. 

As a result of the examination, with the agreement in the CPUE working group discussion, the record of 

50S (50S to 54S), which had a small number of data, were also eliminated. 

 

2-2. Cluster analysis 

A cluster analysis was performed to consider the target species of the fishing operations. The 

clust_PCA_run function of the R package cpue.rfmo was used. Cluster analysis was performed using the 

number of fish caught of five species, SBT, BET, YFT, ALB and SWO as data. 

 

2-3. Standardization by GAM 

Standardization by the generalized additive model (GAM) was carried out by use of the delta log 

normal approach. A software for statistical computing and graphics, R was used for analysis. The bum 

function, which is suitable for large volumes of data, in the mgcv package was used. Based on the results 

of the study by the consultant (Dr. Hoyle), a binomial submodel (hereinafter referred to as BSM) and a 

positive catch submodel (hereinafter referred to as PCSM) were used, and gamma = 2, binomial 

distribution and gauss distribution were used respectively (Hoyle 2022). For the smoother, s (spline) was 

used for the offset term (hook logarithmic value), and ti (tensor product suitable when there was an 

interaction with the main effect) was used for the others. cs (cubic regression spline with shrinkage) was 

used for the basis function (bs) of ti. Gamma is a coefficient multiplied by EDF (described later) and 

promotes smoothing with values set to >1 (= 1.5 is common). 

 

Binomial submodel 

cpue > 0 ~ yf +ti(month) + ti(lon) + ti(lat) +  

ti(lon,  lat) + ti(month, lat) + ti(lon, month) + ti(year, lat) + ti(year, lon) + ti(year, month) +  

cl + s(log(hook)) 

 

Positive catch submodel 

log(cpue) ~ yf +ti(month) + ti(lon) + ti(lat) +  

ti(lon,  lat) + ti(month, lat) + ti(lon, month) + ti(year, lat) + ti(year, lon) + ti(year, month) +  

ti(lat, month, year) + ti(lat,  lon, month) + ti(lat, lon, year) + ti(year, lon, month) +  

cl + s(log(hook)) 

 

where, 

yf: Year of fishing. In factor. 

year: Year. In number 

month: Month. In number 
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lat: Latitude in 5 degree. In number. Represented by the middle (e.g. -47.5 from 45.0S to 49.9S) 

lon: Longitude in 5 degrees. In number. Represented by the middle (e.g. 32.5 for 30.0E to 34.9E). 

Convert to 360 degree while >240 was converted by -360 so that lon ranged from -22.5 to 187.5 

continuously. 

cl: Cluster. In factor. 1, 2, 3, and 4. 

hook: Number of hooks used. In number. 

 

R code actually used is as follows. 

Binomial submodel 

modA2 <- cpue > 0 ~ yf + 

ti(month, k=kA.month11,bs="cs")+  

 ti(lon,    k=kA.lon11,bs="cs")+   

 ti(lat,    k=kA.lat11,bs="cs")+   

 ti(lon,  lat,    k=c(kA.lon21,  kA.lat21), bs="cs")+  

 ti(month, lat,    k=c(kA.month22,kA.lat22), bs="cs")+  

 ti(lon, month,  k=c(kA.lon23,  kA.month23), bs="cs")+  

 ti(year, lat,    k=c(kA.year24, kA.lat24), bs="cs")+  

 ti(year, lon,    k=c(kA.year25, kA.lon25), bs="cs")+  

 ti(year, month,  k=c(kA.year26, kA.month26), bs="cs")+  

 cl+ 

 s(log(hook)) 

mgcv::bam(modA2, data =data, gamma = 2, method = 'fREML', family = binomial, discrete=F) 

 

Positive catch submodel 

modB3 <- log(cpue) ~ yf + 

 ti(month,  k=kB.month11,bs="cs")+   

 ti(lon,     k=kB.lon11,bs="cs")+   

 ti(lat,     k=kB.lat11,bs="cs")+   

 ti(lon,  lat,     k=c(kB.lon21,  kB.lat21), bs="cs")+  

 ti(month,lat,     k=c(kB.month22,kB.lat22), bs="cs")+  

 ti(lon,  month,   k=c(kB.lon23,  kB.month23), bs="cs")+  

 ti(year, lat,     k=c(kB.year24, kB.lat24), bs="cs")+  

 ti(year, lon,     k=c(kB.year25, kB.lon25), bs="cs")+  

 ti(year, month,   k=c(kB.year26, kB.month26), bs="cs")+  

 ti(lat,  month,year,  k=c(kB.lat31, kB.month31, kB.year31), bs="cs")+    

 ti(lat,  lon, month,  k=c(kB.lat32, kB.lon32, kB.month32), bs="cs")+      

 ti(lat,  lon, year,   k=c(kB.lat33, kB.lon33, kB.year33), bs="cs")+        

 ti(year, lon, month,  k=c(kB.year34, kB.lon34, kB.month34), bs="cs")+    

 cl+      
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 s(log(hook)) 

mgcv::bam(modB3, data = data.positive, gamma = 2, method ="fREML", discrete=F) 

 

The larger the k value (basis dimension for smoothing flexibility) of the interaction, the better, but the 

longer the calculation time (Wood, help of choose.k in mgcv). The effective degrees of freedom for a 

model term (EDF) value is calculated by the k.check function in mgcv package, and if EDF was close to 

k' (the maximum possible EDF for the term), “and” the p-value of k-index is < 0.05, a larger k value was 

set. The k values were determined by trial and error. Since the k value of the interaction is treated as the 

value of 2 multiplications (3 multiplications for 3 interactions), it is not necessary to set them separately, 

however, for the purpose of organizing the work, the k value of each variable in the interaction was set 

to the same value (i.e. k for year = 20 was used for all interaction terms which include year). 

For the diagnosis of the GAM result, the fit was confirmed by the plot diagram (QQ plot, residual 

distribution) by the gam.check function of the mgcv package. AIC was calculated. The distribution of the 

residuals for each variable was examined. It was examined whether the predicted values were consistent 

with our knowledge of distribution of SBT and plausible trend of SBT stock abundance.  We made a 

comprehensive judgment by looking at these information as well as AIC. 

Calculation is performed by desktop PC (CPU = Intel (R) Core (TM) i9-10900T CPU @ 1.90GHz and 

1.90 GHz, RAM = 64.0GB, 64 bit, Windows 10 Pro). The software R (R4.1.2) was used to make the 

dataset. Microsoft R Open 4.0.2 was used to calculate GAM. 

 

2-4. Calculation of abundance index 

After creating data with all combinations of year / month / latitude / longitude (using R's expand.grid 

function), we made a dummy data set limited to the month / latitude / longitude where the fishing was 

operated in the past. The predicted value was calculated for each submodel for the dummy data set, and 

the product of estimates  from the two submodels (BSM and PCSM) was calculated. Since the expected 

value is biased when the lognormal distribution is restored, the predicted value was corrected by adding 

mean squared error (MSE) / 2 in the case of the positive catch submodel.  

Furthermore, the area weighting coefficient was calculated in consideration of the fact that the distance 

of 1 degree of longitude differs depending on the latitude and the number of 1 degree squares that SBT 

have been caught in the past within the 5 degree x 5 degree squares. The abundance index can be 

calculated by the following formula. 

Σ(predicted value of binomial submodel of dummy data set × predicted value of positive catch 

submodel of dummy data set × Area weighting coefficient) / Overall average value. 

 

2-5. Sensitivity analysis 

Various sensitivity analyses were performed along the way in selecting the datasets and methods. The 

following sensitivity analyses were performed at the final stage in 2022 and updated in 2023. We repeated 

the same procedure for the 2024 work. 

Model selection: In some cases, estimation did not converge, and in some cases, even if the AIC was 

low, the abundance index behaved significantly differently from the others, so a simple selection by AIC 

seemed inappropriate. For the binomial submodel, we tried the case where all the interactions were 

removed from the base case, the case where the two-way interaction was removed one by one, and the case 

where the three-way interaction was added one by one. For the positive catch submodel, we tried the case  

where all the interactions were removed from the base case, the case where the two-way interaction was 
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removed one by one, and the case where the three-way interaction was removed one by one. 

Retrospective analysis: Excludes data from the last year up to the past 10 years. It was also carried out 

in a part of the sensitivity analysis (i.e. latitude-longitude resolution in the model, core vessel). Mohn’s 

rho was calculated as an index of retrospective bias (Hurtado-Ferro et al. 2015). 

Selection of k: Effect when k was increased by one step. 

Effect including vessel ID: The effect of including vessel ID in each of BSM and PCSM. 

Effect excluding 30S: We saw the effect excluding 30S from the dataset.  

Effect of changing age: Age-4 plus used in the base case, but limited to age-5 plus, or all ages were 

tried. 

Data resolution: The shot-by-shot data are used in the base case. Aggregated data by month, 1 degree 

latitude and 1 degree longitude, and aggregated data by month, 5 degrees latitude and 5 degrees longitude 

were tried. 

Latitude-longitude resolution in the model: The latitude and longitude in the model is based on the 5 -

degree in the base case. We tried the effect when this was made into one degree resolution. 

2 clusters: 4 clusters were the base case, but we tried clusters in 2 groups. 

Core vessel: From the dataset prepared for this analysis (note that it differs from the traditional GLM 

dataset), we tried to select core vessels and create CPUE index. A core vessel is defined as a vessel that 

has been included in the top xx rank in terms of SBT catch in number of yy years. 

 

2-6. Abundance indices by historical models 

We compared the newly created abundance index (GAM_new) with other models used in CCSBT 

including the core vessel index by the conventional GLM (GLM_core) and the one obtained by GAM used 

for the 2020 stock assessment (GAM11).  

The GLM model is as follows (Itoh and Takahashi 2022): 

log(CPUE+0.2) = Intercept + Year + Month + Area + Lat5 + BET_CPUE + YFT_CPUE + 
(Month*Area) + (Year*Lat5) + (Year*Area) + Error,  

where year, month, area, lat5 were treated as factors. A Gaussian distribution was used for the error 

term. glm function of R was used. Note that whole the dataset was applied instead of restricted to the core 

vessel data. 

 

The GAM11 models is as follows: 

log(CPUE +0.2) = Intercept + Year + te(Lon, Lat) +te(Lon, Month) = te(Year, Lat) + te(Year, 
Month) + te(Lat, Lon, Month) + te(Lat, Lon, Year) + s(BET=CPUE) + 
s(YFT_CPUE) + Error. 

A Gaussian distribution was used for the error term. W0.8, which weighed indices of 80% constant and 

20 % variable square hypotheses, was used for these indices. 

 

2-7. Analysis of predicted value 

To each record of the dummy data set, the number of operations in actual fishery data was attached. 

Predicted values were calculated for each combination of variables by GLM (GLM_core) and GAM 

(GAM_new), respectively (both area weighted). The dataset was classified into four groups based on the 

number of operations actually given. Group 0 has 0 operations, Group 1 has 1 to less than 5 operations, 

Group 2 has 5 to less than 10 operations, and Group 3 has 10 or more operations.  
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A higher CPUE is expected in a space-time with a higher number of operations. This is because there 

would be a high probability that a vessel does not stay in a space-time with a low CPUE, and it is expected 

that operations are not conducted in a space-time with a low CPUE through the accumulation of historical 

knowledge. Boxplot is used for visualization. 

 

 

3. Results 

3-1. Dataset used 

Data from 1969 to 2023 amounted to 803,439 records. Of these, 710,182 records included catch of SBT 

age-4 plus, accounting for 88% of the total. A fairly high positive catch rate is characteristic of this dataset. 

By year, the positive catch rate dropped to about 60% in the mid-1990s and around 2010, but otherwise 

remained above 80% (Fig. 1). The percentage was high in 2023, and few low values were observed in the 

aggregated month and 5-degree data (Fig. 1, center panel). The nominal CPUE of the positive catch 

dataset is high in the 1970s, low in the 1980s to 2000s, and high after 2010. The nominal CPUE in 2022 

was the highest in the past 40 years and slightly decreased in 2023.  

Similar figures are shown for other variables, including month, longitude, latitude, latitude and 

longitude maps (Fig. 2 and Fig. 3). There is no strong tendency for the month and longitude. For latitude, 

positive rate and CPUE in the positive catch data was low at 30S, high up to 35S (CPUE) or 40S (positive 

rate), and 45S was similar to 40S. Data of 30S exists only in the Pacific Ocean (Area 4 and Area 5). 

 

3-2. Cluster analysis 

The data were divided into four cluster groups. Relevant figures are shown in Fig. 4 to Fig. 8. Since 

the eigenvalues are greatly reduced to 2 groups and the decrease to 4 groups is not so large, it may be 

appropriate to divide them into 2 groups. However, in the analysis of the data up to 2020,  there was a 

problem that the BSM of GAM did not converge when divided into two groups (the data up to 2021 

converged in a short time). Therefore, we decided to analyze in 4 groups. Note that the case of 2 groups 

was carried out by sensitivity analysis. 

The fish species included five species: SBT, BET, YFT, ALB and SWO. At the stage of trial and error  

in the 2022 work, we also tried 3 species (SBT, BET and YFT) and obtained the similar results as 5 

species. But 3 species are few and cover all species that can be the main target of operation, it was decided 

by the CPUE working group to have 5 species (Itoh and Takahashi 2022). 

The latitudes of the four clusters differed (Fig. 7), however, there were no noticeable trends in year, 

month, longitude, number of hooks used, or hooks between floats (HBF). It was probable that HBF had 

a narrow range in the dataset and did not make a difference because it contained few data of deep longline 

targeting on BET. Such an effect may have been seen in the waters north of the Area 4-9. The main catch 

in the first cluster which locate southernmost was SBT. SBT and ALB were caught in the second cluster. 

The third cluster was a mixture of SBT, ALB and BET and the fourth cluster was a mixture of five species. 

 

3-3. Standardization by GAM 

For the binomial submodel, the model including all main effects and two-way interaction terms was 

selected mainly from AIC in the 2022 work. There was a problem that the run did not converge when the 

three-way interaction term was included. For the positive catch submodel, the model including the main 

effect and all the two-way and three- way interaction terms was selected mainly from AIC. It was agreed 

in the ESC in 2022 that these models were used for the base case. 

The k value was examined independently for each submodel. The same sets of k used in the 2022 work 
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were utilized (Table 1). Table 2 shows relevant statistics including the EDF value for k and the p value for 

k-index. There are cases where EDF is close to k' (e.g. positive catch submodel ti (lat)), but since the p 

value is well above 5% in that case, k is large enough and there is no problem. 

The diagnosis results are shown in Table 3, Fig. 9, and Fig. 10. The binomial submodel explained 73.7% 

deviance, and the positive catch submodel explained 49.5%. For BSM, the QQ plot is generally good, 

although some parts do not fit at both ends. The residual histogram has a single peak and is skewed to near 

0 residual. For PCSM, the QQ plot is generally good, and the residual has a single peak. In the plot of t he 

fit value and the response variable, there is a roughly upward-sloping relationship. Both are judged to be 

not bad fit. 

The residuals were further examined. Plots were made for year, month, latitude, and longitude (Figs. 11 

and 12). Note that these figures are not from gamVis, which uses simulation. There was too much data and 

gamVis caused a memory over and so we couldn't get any results. These are simple box plots of residuals. 

For BSM, the median residuals were positively biased in 2004-2007 in the year. There was a slight positive 

bias for month. At latitude, the negative bias was large at 30S, a slight positive bias was  seen at 35S, and 

the bias was small at 40S and 45S. At the western end of the longitude, there was a large negative bias.  

For PCSM, the bias was small by year and month. At latitude, the range was large at 30S. The bias of 

the longitude was small, but a negative bias was seen only at the eastern end. When made into a map, the 

area with zero residuals was greatly expanded in both submodels (Fig. 13). In some places, large residuals 

may occur in the peripheral waters. It has been confirmed in the 2022 work that the data in the area where 

these large residuals are seen has almost no effect on the abundance index. 

Box plots of predicted values for variables (year, month, latitude, longitude, latitude x longitude) are 

shown (Fig. 14, Fig. 15, Fig. 16, Fig. 17 and Fig. 18). No inconsistency was found in comparison with the 

current knowledge of the distribution of SBT and changes in the abundance. The predicted values by year 

in the BSM (top panel of Fig. 14) ranged from 0% to 100%, which is quite different in appearance from 

the 2023 work, where only 90% or more appeared. This is because the GAM parameter estimates are  

relative values based on the most recent year, and the nominal value for the 2023 data is concentrated at 

100%. The high median of the predicted values for each year, at 90%, is common to the output of the 2023 

work. The high predicted values in the southeastern waters of Australia (35S, 140E) are interesting (Fig. 

18). Currently, there is no fishing operation in this area, but it was confirmed in the 2022 work that the 

fishing was operated in this area in the 1970s and 1980s. 

 

3-4. Calculation of abundance index 

The predicted value of the dummy data set was weighted by the area factor and normalized by the 

average value to obtain the abundance index. To see the effect of area weighting, we compared it with a 

simple unweighted average (Fig. 19). As a result, it was found that they are similar to each other and the 

influence of weighting is small. Since this method includes the interaction of years in the model, it is no 

longer necessary to obtain the conventional Constant / Variable square hypothesis and its intermediate 

index (see Hoyle (2022) for details). 

Figure 20 shows the obtained abundance index. The values are shown in Table 4. It increased in many 

years from 2006 to 2022. In 2023, it decreased from 2022 but higher than 2021 in the series. 

 

3-5. Sensitivity analysis 

Model selection 

For BSM, a model (modA2) containing all two-way interactions was selected as the base case in the 

2022 work. Its AIC was lower than any other model with one term removed from modA2 (Table 5). On 
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the contrary, in the model to which one three-way interaction term was added (e.g. modA2.p11), the AIC 

was low, but there was a problem that it did not converge sometimes. The difference on the abundance 

index was small in the models (Fig. 21 and Fig. 22). Therefore, it is considered appropriate to use modA2 

as the base case this year again. 

For PCSM, a model (modB3) containing all the two-way and three-way interaction terms was selected 

as the base case in the 2022 work. Its AIC was lower than any other model with one term removed from 

modB3 except modB3.no8 (Table 6). In order to maintain consistency, modB3 was used as the base case 

this year again. The difference between the models in the abundance index is small (Fig. 23 and Fig. 24). 

Relatively large differences were seen in modB3.no9 and mdB3.no10 which excluding ti(year, lon) and 

ti(year, month), respectively. 

 

Retrospective analysis 

Figure 25 shows the results of retrospective analysis of the base case model. Figure 26 shows the results 

by each submodel. The value for 2022 was a large overestimate. Differences were smaller for previous 

years. Mohn's rho was 0.16, less than the +0.20 that indicates caution (Hurtado-Ferro et al. 2015). 

We examined further for the 2022 value. We compared the results of the data up to 2022 made in 2023 

and that in 2024. That is, verification of the additional effect of data for 2022. As a result, the value for 

2022 was even higher in the 2024 dataset (Fig. 27). These indicate that the evaluation of the most recent 

year of data is sensitive to the addition of the data for the following year. 

 

Selection of k 

For BSM, we examined the effect of adding +1 to k of the month, +5 to k of the year, and +5 to k of 

the longitude. The latitude has already reached the maximum value (k = 4). For PCSM, we examined the 

effect of increasing the year k by +5 and the longitude k by +5. The month and latitude are already at 

their maximum. 

As a result, there was very little effect on BSM (Fig. 28 and Fig. 29) , however, there is some change 

when kA.year25 (ti(year, lon)) was changed from 10 to 15. It is suggested that k was large enough for 

most cases. For PCSM, there was a noticeable change when kB.year34 (ti (year, lon, month)) or kB.year33 

(ti (lat, lon, year)) was changed from 20 to 25 (Fig. 30, Fig. 31). It might be better to consider increasing 

these k-values associated with year in future. 

 

Effect of including vessel ID 

The vessel ID was included in the logbook data after 1979. The analysis was limited to the data in the 

years after that and records that the vessel ID was not missing. We tried both cases where the vessel ID 

was included as a fixed effect and where it was included as a random effect. Both cases took a long time 

to calculate. Whereas the base case took 30 minutes, the random term took more than 120 minutes, and 

the fixed effect took more than 155 minutes. 

The results are shown in Fig. 32. The trajectories of the three abundance indices were similar to each 

other, which suggests the effect including the vessel ID was small. However, the behavior of recent years 

differs depending on the model and index with vessel ID had larger values in 2022 and 2023. Due to the 

long run time, it was not possible to conduct a more detailed examination by trial and error.  

 

Effect of excluding 30S 
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In the dataset used, 30S existed only in the Pacific Ocean in Statistical Area 4 and 5. As a test, data in 

30S was eliminated from the dataset for the base case. The cluster analysis has not been redone. The 

abundance index is shown in Fig. 33. The abundance index is similar to each other. While there was a 

large difference in the 2022 value in the 2023 work, there is little difference in the 2024 work.  

 

Effect of changing age range 

The results are shown for the base case of age-4 plus, limited to age-5 plus (Fig. 34), and for all ages 

(Fig. 35). At the age-5 plus, the overall trajectory was similar to the base case up to 2021, but significantly 

lower in 2022 and 2023 values. For all ages, the values for 1990-1994 and 2017-2023 were higher, but 

the overall trajectory was similar. 

This sensitivity analysis is related to release and discard. When fish is released and discarded from 

longline vessels, it is often a small fish, age-3 or age-4. The proportion of released fish will depend not 

only on the vessel’s IQ utilization strategy but also on the cohort strength. If the proportion of released 

fish changes in a certain year in the future, the effect can be examined by calculating the abundance index 

for those ages other than 4 and comparing it with the abundance index for those age-4 plus. 

 

Resolution of data 

The base case was obtained from shot-by-shot data. On the other hand, Fig. 36 shows the comparison 

with the aggregated data by month in 5 degrees x 5 degrees, and Fig. 37 shows the comparison with the 

aggregated data by month in 1 degree x 1 degree. The abundance index in the 5-degree aggregated data 

behaved differently from that in the shot-by-shot data after 2014. This is probably due to differences in 

the amount of data and effort. In this analysis, CPUE is taken as a response variable, and the number of 

hooks used is included as an offset term by taking a logarithm. For this reason, in the 5-degree aggregate 

data, even if there are multiple operations, they are treated as one record, and the effect of the number of 

operations (number of hooks) is treated only in logarithmic. Shot-by-shot data influences the results 

according to the number of operations. That is, aggregated data underestimates the variance in CPUE 

fluctuations. The abundance index of 1-degree aggregated data was an intermediate characteristic 

between shot-by-shot and 5-degree aggregated data. 

The residuals were plotted against four variables (year, month, latitude, longitude) (Fig. 38). A 

significant improvement was seen in the homoscedasticity of the residuals by using shot -by-shot at 

latitude. From these facts, the resolution of the data has a strong influence on the result, and it is 

considered appropriate to use shot-by-shot data as agreed in 2022. 

 

Resolution in the model in latitude and longitude 

The latitude and longitude in the model uses a 5-degree resolution, but we tried the effect of using this 

as a 1-degree resolution. The runtime then doubled. The abundance index was higher in the 1-degree 

model in 2010-2015 and 2022-2023 (Fig. 39). When retrospective analysis was performed, the 1-degree 

model was more deviated and overestimation (Mohn’s rho=0.22) than the base case (Fig. 40). By 

submodel, BMS was underestimated ant PCSM was overestimated (Fig. 41). 

 

2 clusters 

The base case used clusters in four groups, but clusters in two groups were tried. SBT was abundant in 

the first cluster, and five species were mixed in the second cluster. The first cluster was located to the 

south (Fig. 42, Fig. 43, Fig. 44, Fig. 45). The abundance index of two clusters was similar to that of four 
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clusters, although higher between 2018 and 2022 (Fig. 46). The 2022 work showed that the four clusters 

were considered more robust and suitable, as the dataset up to 2020 caused the problem of GAM 

convergence and there was no significant change in the abundance index. 

 

Core vessel 

The core vessel is that included in the top xx vessels in terms of SBT catch in number of a certain year 

and has been included for yy years. The conventional core vessel CPUE is selected with xx = 56 and yy 

= 3. The core vessel data set was obtained by setting xx and yy in various ways (Table 7). Data is limited 

to 1979 and later with vessel ID. The number of vessels selected has decreased from 3% to 17%. The 

abundance index is shown in Fig. 47. The behavior that deviated greatly was shown in the case of data in 

which the number of vessels was greatly compressed to <7%. The index values for 2022 and 2023 were 

lower on the core vessel. 

Retrospective analysis was performed for the cases of core vessel data xx = 56 and yy = 3 (Fig. 48, Fig. 

49). The result was roughly robust the data used, but was underestimated in 2013 and overestimated in 

2020. Since the data was limited after 1979 because the vessel ID was required, and the robustness was 

inferior, it was considered that the significance of using the core vessel was small. 

 

3-6. Comparison of abundance indices by historical models 

We compared the newly created abundance index (GAM_new) with the core vessel index by the 

conventional GLM (GLM_core) and the one obtained by GAM used for the 2020 stock assessment 

(GAM11) (Fig. 50). The overall trends were similar to each other. Compared to the other two series, the 

new GAM series had lower values from 1970 to 1990. Also, the values were high in 1993-1994, 2019 

and 2022. Values in 2022 was high and decreased in 2023 in GAM_new, while low in 2022 and high in 

GLM_core and GAM11. The value of 2023 was significantly high in GLM_core. 

 

3-7. Analysis of predicted value 

Figure 51 shows the proportion of each group of the number of operations conducted in the dummy 

dataset by year. The value for 2023 is provisional and may increase as data input work progresses. The 

proportion has decreased since 1969, indicating a decrease in the proportion of time-space in which 

operations took place. The decline has continued since 2000. 

Figure 52 shows the predicted CPUE values by group in data all years combined, by GLM_core and 

GAM_new. As expected, the time and space with higher operation numbers had higher CPUE. The same 

figure is shown in Fig. 53, including the boxplot outlier. It is apparent that there are anomalously high 

predicted outliers in GLM_core and fewer in GAM_new. 

A similar figure is shown in Fig. 54 by year. From 1969 to 2007, the box part is wide and the CPUE 

increases according to the increase in the number of operations. From around 2008, outliers became higher 

as the box area was compressed in the figure. From 2018, the outliers were particularly high in GLM_core, 

and it was significantly different from the figure by GAM_new. Fig. 55 shows the change in outliers over 

time in the space-time without operations. Extremely large outliers are seen in 2018 and 2019 in 

GLM_core and lesser extent in 2022 and 2023 in GAM_new. These came from Area 8 between June to 

September for GLM_core (Table 8) and Area 4  btween July and September for GAM_new (Table 9). 

Outliers in GAM are not extremely high. 
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4. Discussion 

The 2023 fishing data was added to the dataset. The method using GAM agreed at the 2022 ESC was 

able to obtain a convergent solution without changing the settings such as the k parameter. For various 

sensitivity analyses, we were able to obtain results similar to those in the 2022 and 2023 works. The 

distribution of the residuals for each variable and the overall fitting of the residuals were the same as in 

the previous work, and no problems were observed. The results of the sensitivity analysis were similar to 

those of the 2022 and 2023 works. 

The 2023 work resulted in fairly high values of 2022, while the 2024 work resulted in a more moderate 

increase in 2022 and a lower value in 2023. Caution is acknowledged that behavior of the most recent 

year may change with additional data in the following year. High CPUE was predicted in 2022 and 2023 

for July to September in Area 4 where fishing was not conducted. Fishing in Area 4 is mostly conducted 

from April to June or July, and future data is unlikely to be available in the future. While this is not as 

significant an issue as the 2018 GLM_core, the predictions for the non-fished space-time will require 

careful interpretation and future monitoring. 
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Fig. 1.  Nominal value of positive catch rate and CPUE by year. 
Upper panel is the positive rate which is the total number of positive catch operations / the total number of all 

records.  Middle panels is boxplot based on the positive catch rate by year, month, 5 degree latitude and 5 degree 

longitude. Lower panel is CPUE in positive catch records. 

 

 

 

Fig. 2.  Nominal value of positive catch rate and CPUE by month, longitude and latitude. 
 Upper panel is the positive rate which is the total number of positive catch operations / the total number of all 

records.  Middle panels is boxplot based on the positive catch rate by year, month, 5 degree latitude and 5 degree 

longitude. Lower panel is CPUE in positive catch records. 
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Fig. 3.  Nominal value of positive catch rate and CPUE in map. 
Left panel is the positive rate. Right panel is CPUE in positive catch records. Red is the higher value, followed 

by green, blue and white in the positive catch rate panel. 

 

 

 

 

 

 
Fig. 4.  Eigen values for the number of components in cluster analysis. 
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Fig. 5.  Dendrogram of the cluster analysis. 
 

 

 
Fig. 6.  Occurrence by species in each group in cluster analysis. 

ALB is albacore, BET is bigeye tuna, YFT is yellowfin tuna, SWO is swordfish and SBT is southern bluefin 

tuna. 

 

 



CCSBT-ESC/2409/21 

17 

 

 
Fig. 7.  Occurrence by variables of each group in the cluster analysis. 
 

 

 
Fig. 8.  Occurrence on map by group in the cluster analysis. 
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Fig. 9.  Diagnostic plots for the binomial sub-model in the base case run. 
 

 

 

 
Fig. 10.  Diagnostic plots for the positive catch sub-model in the base case run. 
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Fig. 11.  Residuals by variable in the binomial sub-model in the base case run. 
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Fig. 12.  Residuals by variable in the positive catch sub-model in the base case run. 
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Fig. 13.  Residual on maps for both sub-models in the base case run. 
 

 

 
Fig. 14. Predicted value by year in the base case run. 

Upper panel is the positive rate obtained from the binomial sub-model. Middle panels is CPUE obtained from the 

positive catch sub-model. Lower panel is product of the two. 
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Fig. 15. Predicted value by month in the base case run. 

See Fig. 14. 

 

 

 
Fig. 16. Predicted value by longitude in the base case run. 

See Fig. 14. 
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Fig. 17. Predicted value by latitude in the base case run. 

See Fig. 14. 

 

 

 

 
Fig. 18. Predicted value on map in the base case run. 

See Fig. 14. 
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Fig. 19. Comparison of area weighted abundance indices in the base case run. 

Red (M5) is area weighted abundance index which taking into account that the longitude length change over 

latitude and the number of 1x1 degree squares ever fished in a 5x5 degrees square. Black is the abundance index 

which weighting was not considered. 

 

 

 

 
Fig. 20. CPUE abundance index for the base case. 
 

 



CCSBT-ESC/2409/21 

25 

 

 
Fig. 21. Sensitivity analysis of model selection in the binomial sub-model for all runs. 
 

 

 

 

 
Fig. 22. Sensitivity analysis of model selection in the binomial sub-model for each run. 

Full represents modA2. 
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Fig. 23. Sensitivity analysis of model selection in the positive catch sub-model for all runs. 
 

 

 

 

 
Fig. 24. Sensitivity analysis of model selection in the positive catch sub-model for each run. 

Full represents modB3. 
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Fig. 25. Retrospective analysis for the base case model. 

Rho represents Mohn’s rho. 

 

 

 
 

Fig. 26. Retrospective analysis for the base case model by sub-model. 
Upper panel is by binomial submodel and lower panels is by positive catch submodel. Rho represents Mohn’s 

rho. 
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Fig. 27. Two indices from datasets up to 2022 by the datasets made in 2023 (red) and 2024 (green). 
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Fig. 28. Sensitivity analysis of k-value in the binomial sub-model for all runs. 
 

 

 

 

 

 
Fig. 29. Sensitivity analysis of k-value in the binomial sub-model for each of run. 
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Fig. 30. Sensitivity analysis of k-value in the positive catch sub-model for all runs. 
 

 

 

 
Fig. 31. Sensitivity analysis of k-value in the positive catch sub-model for each of run. 
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Fig. 32. Sensitivity analysis for the effect of vessel ID. 
 

 

 

 
Fig. 33. Sensitivity analysis for the effect of eliminating 30S from the data. 

Red is the base case, and green is the sensitivity run (eliminate 30S). 
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Fig. 34. Sensitivity analysis for the effect of age-5 plus instead of age-4 plus. 

Red is the base case, and green is the sensitivity run (age-5 plus). 

 

 

 

 
Fig. 35. Sensitivity analysis for the effect of of all ages instead of age-4 plus. 

Red is the base case, and green is the sensitivity run (all ages). 
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Fig. 36. Sensitivity analysis for the effect of data resolution in 5 degree. 

Red is the base case, and green is the sensitivity run (aggregated by month and 5 degree latitude and 5 degree 

longitude). 

 

 

 
Fig. 37. Sensitivity analysis for the effect of data resolution in 1 degree. 

Red is the base case, and green is the sensitivity run (aggregated by month and 1 degree latitude and 1 degree 

longitude). 
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Fig. 38. Sensitivity analysis for the effect of data aggregation by residuals in the positive catch sub-model. 

Left is shot-by-shot data, middle is 5 degree data and right is 1 degree data. 

 

 

 
Fig. 39. Sensitivity analysis for the effect of resolution in model. 

Red is the base case, where 5 degree for latitude and longitude, and  green is the sensitivity run (1 degree in the 

model).  
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Fig. 40. Retrospective analysis in the sensitivity analysis of 1 degree model. 
 

 

 
Fig. 41. Retrospective analysis in the sensitivity analysis of 1 degree model by sub-model. 

Upper panel is by binomial submodel and lower panels is by positive catch submodel. 
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Fig. 42. Dendrogram in the cluster analysis of sensitivity analysis for the effect of 2 clusters. 
 

 

 

 
Fig. 43.  Occurrence by species in the group in the 2 cluster analysis as a sensitivity analysis. 
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Fig. 44. Occurrence by variables in the group in the 2 cluster analysis as a sensitivity analysis. 
 

 

 

 
Fig. 45. Occurrence on map in the group in the 2 cluster analysis as a sensitivity analysis. 
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Fig. 46. Sensitivity analysis for the effect of 2 clusters instead of 4 clusters in the abundance index. 

Red is the base case, and green is the sensitivity run (2 clusters). 

 

 

 

 
Fig. 47. Sensitivity analysis of core vessels selection. 

Black and red lines with dots are the index from all vessels since 1969 and 1979, respectively. Black line is 

adjusted to the mean since 1979. Indices from different core vessels data are shown in different colors.  
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Fig. 48. Retrospective analysis in the sensitivity analysis of the core vessel. 

rho is Mohn’s rho value. 

 

 
Fig. 49. Retrospective analysis in the sensitivity analysis of the core vessel by sub-model. 

Upper panel is by binomial submodel and lower panels is by positive catch submodel. rho is Mohn’s rho value.. 
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Fig. 50. Comparison of three abundance indices.   

GLM_CoreVessel is the index by core vessel data with GLM base model in W0.8. GAM11 is the GAM model 

W0.8 used for the stock assessment in 2020. 
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Fig. 51.  Proportion of actual data existed in the dummy data used for glm/gam prediction by year. 
The number of operations >0, >5 and >10 are shown in black, red and green, respectively. 

 

 

 



CCSBT-ESC/2409/21 

42 

 

 

Fig. 52.  Boxplot of CPUE predicted values by category group without outliers. 
Group 0 is the number of operation in actual data corresponded was 0. Group 1 is >=1 and < 5 operations. Group 

2 is >=5 and < 10 operations and Group 3 is > 10 operations. Data in all years were combined. 
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Fig. 53.  Boxplot of CPUE predicted values by category group with outliers. 
Group 0 is the number of operation in actual data corresponded was 0. Group 1 is >=1 and < 5 operations. Group 

2 is >=5 and < 10 operations and Group 3 is > 10 operations. Data in all years were combined. 
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Fig. 54.  Boxplot of CPUE predicted values by category group and year with outliers. 

Group 0 is the number of operation in actual data corresponded was 0. Group 1 is >=1 and < 5 operations. Group 

2 is >=5 and < 10 operations and Group 3 is > 10 operations. 
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Fig. 54.  (Cont’d) 
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Fig. 54.  (Cont’d) 
 

 



CCSBT-ESC/2409/21 

47 

 

 
Fig. 54.  (Cont’d) 
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Fig. 54.  (Cont’d) 
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Fig. 54.  (Cont’d) 
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Fig. 54.  (Cont’d) 
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Fig. 55.  Boxplot of CPUE predicted values by year in group 0, which no actual data corresponded. 
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Table 1. The k values selected for each of sub-model. 
 

 
 

 
  

Submodel BSM PCSM

k.month11 5 6

k.lon11 20 20

k.lat11 4 4

k.year24 10 20

k.year25 10 20

k.year26 10 20

k.month22 5 6

k.month23 5 6

k.month26 5 6

k.lon21 10 20

k.lon23 10 20

k.lon25 10 20

k.lat21 4 4

k.lat22 4 4

k.lat24 4 4

k.year31 20

k.year33 20

k.year34 20

k.month31 6

k.month32 6

k.month34 6

k.lon32 20

k.lon33 20

k.lon34 20

k.lat31 4

k.lat32 4

k.lat33 4
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Table 2. Statistics of choosing k values in the two sub-models of GAM. 

 
 

 

 
Table 3. Diagnostic statistics of GAM. 

 

 
 

 

 

 

  

BSM

Term k' edf k-index p-value

ti(month) 4 3.76 0.9774 0.24

ti(lon.cnt) 19 18.63 0.9672 0.12

ti(lat) 3 2.15 0.9833 0.35

ti(lon.cnt,lat) 27 18.70 0.9603 0.15

ti(month,lat) 12 8.48 0.9435 0.02

ti(lon.cnt,month) 36 31.32 0.9182 0.00

ti(year,lat) 27 22.17 0.9445 0.09

ti(year,lon.cnt) 81 73.71 0.9057 0.00

ti(year,month) 36 34.12 0.9447 0.06

s(log(hook)) 9 8.27 0.9959 0.76

PCSM

Term k' edf k-index p-value

ti(month) 5 4.68 1.0140 0.84

ti(lon.cnt) 19 18.14 0.9997 0.51

ti(lat) 3 2.97 1.0201 0.95

ti(lon.cnt,lat) 42 33.54 1.0092 0.77

ti(month,lat) 14 10.91 1.0130 0.86

ti(lon.cnt,month) 94 72.10 1.0038 0.68

ti(year,lat) 57 47.36 0.9775 0.09

ti(year,lon.cnt) 335 255.46 0.9864 0.14

ti(year,month) 95 79.61 0.9929 0.30

ti(lat,month,year) 155 112.91 0.9637 0.03

ti(lat,lon.cnt,month) 80 60.62 0.9989 0.48

ti(lat,lon.cnt,year) 290 233.83 0.9653 0.01

ti(year,lon.cnt,month) 770 581.39 0.9466 0.00

s(log(hook)) 9 7.63 1.0021 0.56

Sub-model BSM PCSM

n.data 803,439 710,182

dev.expl 73.74% 49.47%

AIC 152,044 1,508,004

residual.df 803,160 708,603

REMLscore 1,547,516 380,028
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Table 4. Abundance index as the base case. 

 

 
  

Year Index Year Index

1969 2.48230 2001 0.47739

1970 2.00741 2002 0.56149

1971 1.77994 2003 0.57620

1972 1.89907 2004 0.42800

1973 1.29904 2005 0.47647

1974 1.55466 2006 0.34748

1975 1.13866 2007 0.35257

1976 1.42075 2008 0.47444

1977 1.36457 2009 0.69502

1978 0.99399 2010 0.93409

1979 1.03800 2011 0.96569

1980 1.08619 2012 0.94455

1981 0.95992 2013 1.13823

1982 0.79580 2014 1.20047

1983 0.87159 2015 1.50305

1984 0.75089 2016 1.20953

1985 0.54882 2017 1.39743

1986 0.42659 2018 1.65992

1987 0.44153 2019 1.95994

1988 0.43591 2020 1.50932

1989 0.42556 2021 1.52783

1990 0.44590 2022 2.39803

1991 0.44328 2023 2.07894

1992 0.55244

1993 0.85266

1994 0.89398

1995 0.68572

1996 0.51090

1997 0.56282

1998 0.52322

1999 0.51164

2000 0.48019
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Table 5. Results of sensitivity analysis for model selection in the binomial sub-model. 
 

 
 

 
Table 6. Results of sensitivity analysis for model selection in the positive catch sub-model. 

 

 
 

  

name term dev.expl AIC residual.df REMLscore dAIC

modA2 Main and 2 way interactions 73.74% 152,044 803,160 1,547,516 2,682

modA2.no5 -ti(lon, lat) 73.27% 154,720 803,177 3,986,110 5,358

modA2.no6 -ti(month, lat) 73.48% 153,524 803,167 4,415,553 4,162

modA2.no7 -ti(lon, month) 73.42% 153,843 803,190 1,598,090 4,481

modA2.no8 -ti(year, lat) 73.09% 155,750 803,180 2,623,613 6,388

modA2.no9 -ti(year, lon) 72.34% 159,966 803,233 1,469,867 10,604

modA2.no10 -ti(year, month) 72.79% 157,464 803,193 1,296,485 8,102

modA2.no15 -cl 71.07% 167,495 803,159 2,416,441 18,133

modA2.no16 -s(log(hook)) 73.38% 154,148 803,168 1,622,046 4,786

modA1 Main effects 67.16% 189,631 803,347 1,256,863 40,269

modA2.p11 +ti(lat, month, year) 74.15% 149,764 803,134 11,097,940 402

modA2.p12 +ti(lat, lon, month) 74.02% 150,535 803,132 521,972,038 1,173

modA2.p13 +ti(lat, lon, year) 73.99% 150,685 803,133 4,189,448 1,323

modA2.p14 +ti(year, lon, month) 74.23% 149,362 803,110 1,087,803 0

name term dev.expl AIC residual.df REMLscore dAIC

modB3 Full model 49.47% 1,508,004 708,603 380,028 91

modB3.no5 -ti(lon, lat) 49.45% 1,508,317 708,587 380,187 403

modB3.no6 -ti(month, lat) 49.46% 1,508,105 708,589 380,109 192

modB3.no7 -ti(lon, month) 49.42% 1,508,720 708,562 380,390 807

modB3.no8 -ti(year, lat) 49.47% 1,507,913 708,602 380,018 0

modB3.no9 -ti(year, lon) 49.29% 1,510,493 708,582 380,720 2,579

modB3.no10 -ti(year, month) 49.45% 1,508,204 708,608 380,079 290

modB3.no11 -ti(lat, month, year) 49.45% 1,508,088 708,661 379,987 174

modB3.no12 -ti(lat, lon, month) 49.44% 1,508,339 708,620 380,118 425

modB3.no13 -ti(lat, lon, year) 49.14% 1,512,300 708,777 380,808 4,386

modB3.no14 -ti(year, lon, month) 48.41% 1,521,625 709,144 382,616 13,711

modB3.no15 -cl 49.20% 1,511,797 708,598 380,992 3,884

modB3.no16 -s(log(hook)) 49.42% 1,508,646 708,610 380,179 732

modB1 Main effects 41.25% 1,612,039 710,089 403,362 104,126

modB2 Main and 2 way interactions 47.38% 1,534,788 709,548 385,244 26,875
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Table 7. Sensitivity analysis of core vessels chosen by various definition. 
 

 
 

 
Table 8. Summary statistics of the estimates where CPUE predicted value > 1500, in group 0 in the GLM 

model. 
 

 
 

 
Table 9. Summary statistics of the estimates where CPUE predicted value > 800, in group 0 in the 

GAM_new model. 
 

 
 

 

Data records Number of vessels

Run xx yy Original core vessel data % Original core vessel data %

1 9999 1 604,381 604,381 100% 1,680 1,680 100%

2 56 3 604,381 233,542 39% 1,680 286 17%

3 56 5 604,381 164,990 27% 1,680 165 10%

4 56 7 604,381 121,122 20% 1,680 107 6%

5 50 3 604,381 216,523 36% 1,680 262 16%

6 40 3 604,381 182,949 30% 1,680 215 13%

7 30 3 604,381 143,973 24% 1,680 159 9%

8 20 3 604,381 91,357 15% 1,680 93 6%

9 20 5 604,381 57,220 9% 1,680 49 3%

SBT catch Run time in minutes

Run xx yy Original core vessel data % BSM PCSM Total %

1 9999 1 16,821,474 16,821,474 100% 3.47 7.47 10.93 100%

2 56 3 16,821,474 9,780,839 58% 1.46 2.92 4.38 40%

3 56 5 16,821,474 7,416,073 44% 1.01 1.90 2.91 27%

4 56 7 16,821,474 5,834,742 35% 0.82 1.54 2.36 22%

5 50 3 16,821,474 9,368,727 56% 1.34 2.54 3.87 35%

6 40 3 16,821,474 8,381,066 50% 1.15 2.34 3.49 32%

7 30 3 16,821,474 7,082,717 42% 0.96 1.81 2.77 25%

8 20 3 16,821,474 5,190,124 31% 0.62 0.96 1.58 14%

9 20 5 16,821,474 3,542,045 21% 0.37 0.64 1.01 9%

Year Area Month N Mean Max Sum

2018 8 6 4 1,521 1,521 6,083

2018 8 7 4 1,662 1,662 6,647

2018 8 8 4 1,944 1,944 7,778

2019 8 6 20 2,810 4,481 56,207

2019 8 7 12 3,828 4,896 45,934

2019 8 8 12 4,265 5,728 51,182

2019 8 9 8 1,765 1,765 14,122

Year Area Month N Mean Max Sum

2021 4 8 4 830 830 3,319

2021 4 9 4 907 907 3,626

2022 4 8 4 1,443 1,443 5,772

2022 4 9 8 1,389 1,612 11,113

2023 4 7 4 926 926 3,706

2023 4 8 4 1,490 1,490 5,960

2023 4 9 8 1,424 1,749 11,391


