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要約 

2022 年 ESC27 では、GAM を用いた 2 段階のデルタログノーマルアプローチで CPUE を標準化

して面積重みづけする、新たなミナミマグロの CPUE資源量指数の作成方法に合意した。合意さ

れた方法に従った CPUE 資源量指数（GAM22 と称す）の作成を、2024 年までの漁獲データに対

して実施した。本文書ではベースケースの結果と、様々な感度分析を行った結果を示す。得ら

れた指数値では 2024 年に 2023 年よりも増加し、1969 年からのシリーズでの最高値に達した。

モデル選択、レトロスペクティブ解析、対象年齢の変更を含む様々な感度分析に対して資源量

指数は頑健であった。操業の無い時空間は年々増加しており、それらに対する予測 CPUEが高い

値を示す場合があった。 

 

Summary 

At ESC27 in 2022, the new calculation for the abundance index of southern bluefin tuna, which was 

standardized via a generalized additive model in the two-step delta log-normal approach with area 

weighting, was agreed. The CPUE abundance index, referred to as GAM22, was updated for fishery data 

up to 2024 according to the agreed methodology. This document presents the base case results as well as 

the results of various sensitivity tests. The index value increased in 2024 from 2023 and reached the 

highest value since 1969. The abundance index was robust to a variety of sensitivity analyses, including 

model selection, retrospective analysis, and age range changes. The amount of time and space without 

fishing operations has been increasing, and the predicted CPUEs for these time and space were sometimes 

high. 
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1. Introduction 

Stock assessment and stock management through the Management Procedure (MP) of southern bluefin 

tuna (Thunnus maccoyii; SBT) in CCSBT have historically been strongly relied on the abundance index 

obtained from the CPUE (number of fish / 1000 hooks) of the Japanese commercial longline fishery. In 

the old days, Nishida and Tsuji (1998) developed a model to calculate the abundance index by the 

generalized linear model (GLM). Since 2007, alternative abundance index was developed which called 

the core vessel CPUE standardized by GLM in response to the shrinking operating area in time and space 

and the problem of target fish species (ESC12 report, Itoh et al. 2008). The CPUE abundance index had 

been used as one of the main abundance indices in the two MPs of the Bali procedure used for the TAC 

calculation from 2012 to 2020 and the Cape Town Procedure (CTP) used for the TAC calculation since 

2021. 

It was recognized that the 2018 value of the CPUE abundance index by the core vessel CPUE was 

anomalously high in ESC24 held in 2019 (ESC24 Report). This prompted further investigation, which 

subsequently identified that this estimate was generated due to a prediction bias in the GLM 

standardization method being used, which generated anomalously high estimates for cells with no fishing 

effort. At ESC26 in 2021, it was agreed that a new CPUE abundance index should be prepared by May 

2022 to assess its impact on MP (ESC26 Report). Through the collaboration work between Japanese 

scientists and the consultant hired by CCSBT, as well as the discussion and suggestion of the CPUE 

working group, a new abundance index using CPUE standardized by the generalized additive model 

(GAM) was developed and agreed at ESC27 in 2022 (OMMP12 and ESC27 Reports). Here, we refer to 

the abundance index as GAM22, because it was agreed in 2022. 

This document presents the CPUE results obtained by updating the data to 2024 using the agreed GAM 

methodology not only for the base case but also for the various sensitivity analyses  (Itoh and Takahashi 

2022, 2023a, 2024). We have also included a detailed review of predicted value from model for the time 

and space with no effort (Itoh and Takahashi 2023b). 

 

2. Materials and Methods 

2-1. Dataset used 

The dataset was extracted from logbook data for the Japanese longline fishery, which include the period 

from 1969 to the latest year (currently 2024). Following procedures for the conventional SBT CPUE 

abundance index, records in statistical Areas between 4 and 9 and from April to September were selected. 

From the logbooks, year, month, latitude (in 1 degree), longitude (in 1 degree), vessel ID (available from 

1979), number of hooks used, number of fish caught of SBT, bigeye tuna (T. obesus, BET), yellowfin 

tuna (T. albacares, YFT), albacore (T. alalunga, ALB) and swordfish (Xiphias gladius, SWO) data were 

used. In the development work in 2022, the number of hooks between floats (HBF; available since 1975) 

and other fish species (several species of marlines, and butterfly kingfish (Gasterochisma melampus; 

available since 1994)) were examined and we decided not to use them so that these items were not 

included in the work this year. 

From the size data of the CCSBT database, the age composition of Japanese commercial catch was 

calculated and converted into the number of fish caught age-4 and older (age-4 plus). The age composition 

information was first applied to the fork length composition of 50 or more individuals measured in the 

same month, 5 degrees longitude, and 5 degrees latitude. At this stage, 97% of the number of SBT caught 

was incorporated and the ratio of age-4 plus was calculated. For records of the conditions for 50 or more 

individuals were not met the time and space were gradually expanded to correspond to fork length 

composition, such as the same month - longitude 15 degrees - latitude 5 degrees, the same month - 
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longitude 15 degrees - latitude 15 degrees, the same quarter - longitude 15 degrees - latitude 5 degrees, 

the same quarter - Statistical Area (CCSBT Statistical Area), and the same year - Statistical Area, and the 

same year. The fork length was converted to age by the age-length relationship used by CCSBT. 

Sensitivity analysis was conducted for age-5 plus and all ages. 

The following records were eliminated: hooks 500 or less, hooks 4500 or more, CPUE 200 or higher. 

As a result of the examination, with the agreement in the CPUE working group discussion in 2022, the 

record of 50S (50S to 54S), which had a small number of data, were also eliminated. 

 

2-2. Cluster analysis 

A cluster analysis was performed to consider the target species of the fishing operations. The 

clust_PCA_run function of the R package cpue.rfmo was used. Cluster analysis was performed using the 

number of fish caught of five species, SBT, BET, YFT, ALB and SWO as data. 

 

2-3. Standardization by GAM 

Standardization by the generalized additive model (GAM) was carried out by using the delta log-normal 

approach. A software for statistical computing and graphics, R (R Core Team 2025) was used for analysis. 

The bum function, which is suitable for large volumes of data, in the mgcv package was used. Based on 

the results of the study by the consultant (Dr. Hoyle), a binomial submodel (hereinafter referred to as 

BSM) and a positive catch submodel (hereinafter referred to as PCSM) were used, and gamma = 2, 

binomial distribution and gauss distribution were used respectively (Hoyle 2022). For the smoother, s 

(spline) was used for the offset term (hook logarithmic value), and ti (tensor product suitable when there 

was an interaction with the main effect) was used for the others. cs (cubic regression spline with 

shrinkage) was used for the basis function (bs) of ti. Gamma is a coefficient multiplied by EDF (described 

later) and promotes smoothing with values set to >1 (= 1.5 is common). 

 

Binomial submodel 

cpue > 0 ~ yf +ti(month) + ti(lon) + ti(lat) +  

ti(lon,  lat) + ti(month, lat) + ti(lon, month) + ti(year, lat) + ti(year, lon) + ti(year, month) +  

cl + s(log(hook)) 

 

Positive catch submodel 

log(cpue) ~ yf +ti(month) + ti(lon) + ti(lat) +  

ti(lon,  lat) + ti(month, lat) + ti(lon, month) + ti(year, lat) + ti(year, lon) + ti(year, month) +  

ti(lat, month, year) + ti(lat,  lon, month) + ti(lat, lon, year) + ti(year, lon, month) +  

cl + s(log(hook)) 

 

where, 

yf: Year of fishing. In factor. 

year: Year. In number 

month: Month. In number 

lat: Latitude in 5 degree. In number. Represented by the middle (e.g. -47.5 from 45.0S to 49.9S) 

lon: Longitude in 5 degrees. In number. Represented by the middle (e.g. 32.5 for 30.0E to 34.9E). 
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Convert to 360 degree while >240 was converted by -360 so that lon ranged from -22.5 to 187.5 

continuously. 

cl: Cluster. In factor. 1, 2, 3, and 4. 

hook: Number of hooks used. In number. 

 

R code actually used is as follows. 

Binomial submodel 

modA2 <- cpue > 0 ~ yf + 

ti(month, k=kA.month11,bs="cs")+  

 ti(lon,    k=kA.lon11,bs="cs")+   

 ti(lat,    k=kA.lat11,bs="cs")+   

 ti(lon,  lat,    k=c(kA.lon21,  kA.lat21), bs="cs")+  

 ti(month, lat,    k=c(kA.month22,kA.lat22), bs="cs")+  

 ti(lon, month,  k=c(kA.lon23,  kA.month23), bs="cs")+  

 ti(year, lat,    k=c(kA.year24, kA.lat24), bs="cs")+  

 ti(year, lon,    k=c(kA.year25, kA.lon25), bs="cs")+  

 ti(year, month,  k=c(kA.year26, kA.month26), bs="cs")+  

 cl+ 

 s(log(hook)) 

mgcv::bam(modA2, data =data, gamma = 2, method = 'fREML', family = binomial, discrete=F) 

 

Positive catch submodel 

modB3 <- log(cpue) ~ yf + 

 ti(month,  k=kB.month11,bs="cs")+   

 ti(lon,     k=kB.lon11,bs="cs")+   

 ti(lat,     k=kB.lat11,bs="cs")+   

 ti(lon,  lat,     k=c(kB.lon21,  kB.lat21), bs="cs")+  

 ti(month,lat,     k=c(kB.month22,kB.lat22), bs="cs")+  

 ti(lon,  month,   k=c(kB.lon23,  kB.month23), bs="cs")+  

 ti(year, lat,     k=c(kB.year24, kB.lat24), bs="cs")+  

 ti(year, lon,     k=c(kB.year25, kB.lon25), bs="cs")+  

 ti(year, month,   k=c(kB.year26, kB.month26), bs="cs")+  

 ti(lat,  month,year,  k=c(kB.lat31, kB.month31, kB.year31), bs="cs")+    

 ti(lat,  lon, month,  k=c(kB.lat32, kB.lon32, kB.month32), bs="cs")+      

 ti(lat,  lon, year,   k=c(kB.lat33, kB.lon33, kB.year33), bs="cs")+        

 ti(year, lon, month,  k=c(kB.year34, kB.lon34, kB.month34), bs="cs")+    

 cl+      

 s(log(hook)) 

mgcv::bam(modB3, data = data.positive, gamma = 2, method ="fREML", discrete=F) 
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The larger the k value (basis dimension for smoothing flexibility) of the interaction, the better, but the 

longer the calculation time (Wood, help of choose.k in mgcv). The effective degrees of freedom for a 

model term (EDF) value is calculated by the k.check function in mgcv package, and if EDF was close to 

k' (the maximum possible EDF for the term), “and” the p-value of k-index is < 0.05, a larger k value was 

set. The k values were determined by trial and error. Since the k value of the interaction is treated as the 

value of 2 multiplications (3 multiplications for 3 interactions), it is not necessary to set them separately, 

however, for the purpose of organizing the work, the k value of each variable in the interaction was set 

to the same value (i.e. k for year = 20 was used for all interaction terms which include year). 

For the diagnosis of the GAM result, the fit was confirmed by the plot diagram (QQ plot, residual 

distribution) by the gam.check function of the mgcv package. AIC was calculated. The distribution of the 

residuals for each variable was examined. It was examined whether the predicted values were consistent 

with our knowledge of distribution of SBT and plausible trend of SBT stock abundance.  We made a 

comprehensive judgment by looking at this information as well as AIC. 

Calculation is performed by a desktop PC (CPU = Intel (R) Core (TM) i9-10900T CPU @ 1.90GHz 

and 1.90 GHz, RAM = 64.0GB, 64 bit, Windows 10 Pro). The software R (R4.4.1) was used to make the 

dataset. Microsoft R Open 4.0.2 was used to calculate GAM. 

 

2-4. Calculation of abundance index 

After creating data with all combinations of year / month / latitude / longitude (using R's expand.grid 

function), we made a dummy data set limited to the month / latitude / longitude where the fishing was 

operated in the past. The predicted value was calculated for each submodel for the dummy data set, and 

the product of estimates from the two submodels (BSM and PCSM) was calculated. Since the expected 

value is biased when the log-normal distribution is restored, the predicted value was corrected by adding 

mean squared error (MSE) / 2 in the case of the positive catch submodel.  

Furthermore, the area weighting coefficient was calculated in consideration of the fact that the distance 

of 1 degree of longitude differs depending on the latitude and the number of 1 degree squares that SBT 

have been caught in the past within the 5 degree x 5 degree squares. The abundance index can be 

calculated by the following formula. 

Σ(predicted value of binomial submodel of dummy data set × predicted value of positive catch 

submodel of dummy data set × Area weighting coefficient) / Overall average value. 

 

2-5. Sensitivity analysis 

Various sensitivity analyses were performed along the way in selecting the datasets and methods. The 

same sets of sensitivity analyses performed at the final stage in 2022 were repeated in 2023 and 2024. We 

omitted some of the analyses where no substantial difference was observed. 

Model selection: In some cases, estimation did not converge, and in some cases, even if the AIC was 

low, the abundance index behaved significantly differently from the others, so a simple selection by AIC 

seemed inappropriate. For the binomial submodel, we tried the case where all the interactions were 

removed from the base case, the case where the two-way interaction was removed one by one, and the case 

where the three-way interaction was added one by one. For the positive catch submodel, we tried the case 

where all the interactions were removed from the base case, the case where the two-way interaction was 

removed one by one, and the case where the three-way interaction was removed one by one. 

Retrospective analysis: Excludes data from the last year up to the past 10 years. Mohn’s rho was 
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calculated as an index of retrospective bias (Hurtado-Ferro et al. 2015). 

Selection of k: Effect when k was increased by one step. 

Effect of changing age: Age-4 plus used in the base case, but limited to age-5 plus, or all ages were 

tried. 

 

2-6. Abundance indices by historical models 

We compared the newly created abundance index (GAM22) with other models used in CCSBT including 

the core vessel index by the conventional GLM (GLM_core).  

The GLM model is as follows (Itoh and Takahashi 2022): 

log(CPUE+0.2) = Intercept + Year + Month + Area + Lat5 + BET_CPUE + YFT_CPUE + 
(Month*Area) + (Year*Lat5) + (Year*Area) + Error,  

where year, month, area, lat5 were treated as factors. A Gaussian distribution was used for the error 

term. glm function of R was used. Note that the whole dataset was applied instead of restricted to the core 

vessel data. A Gaussian distribution was used for the error term. W0.8, which weighed indices of 80% 

Constant and 20 % Variable square hypotheses, was used for the index. 

 

2-7. Analysis of predicted value 

To each record of the dummy data set, the number of operations in actual fishery data was attached. 

Predicted values were calculated for each combination of variables by GLM (GLM_core) and GAM 

(GAM22), respectively (both area weighted). The dataset was classified into four groups based on the 

number of operations actually given. Group 0 has 0 operations, Group 1 has 1 to less than 5 operations, 

Group 2 has 5 to less than 10 operations, and Group 3 has 10 or more operations. 

A higher CPUE is expected in a space-time stratum with a higher number of operations. This is because 

there would be a high probability that a vessel does not stay in a space-time stratum with a low CPUE, 

and it is expected that operations are not conducted in a space-time stratum with a low CPUE through the 

accumulation of historical knowledge. Boxplot is used for visualization. 

 

 

3. Results 

3-1. Dataset used 

Data from 1969 to 2024 amounted to 803,697 records. Of these, 710,827 records included a catch of 

SBT age-4 plus, accounting for 88% of the total. A very high positive catch rate is characteristic of this 

dataset. By year, the positive catch rate dropped to about 60% in the mid-1990s and around 2010, but 

otherwise remained above 80% (Fig. 1). The percentage was high in 2024 as well as 2023, and few low 

values were observed in the aggregated month and 5-degree data (Fig. 1, center panel). The nominal 

CPUE of the positive catch dataset is high in the 1970s, low in the 1980s to 2000s, and high after 2010.  

The nominal CPUE in 2024 was the highest in the past 40 years. 

Similar figures are shown for other variables, including month, longitude, latitude, latitude and 

longitude maps (Fig. 2 and Fig. 3). There is no strong tendency for the month and longitude. For latitude, 

positive rate and CPUE in the positive catch data was low at 30S, high up to 35S (CPUE) or 40S (positive 

rate), and 45S was similar to 40S. Data of 30S exists only in the Pacific Ocean (Area 4 and Area 5). 

 

3-2. Cluster analysis 

The data were divided into four cluster groups. Relevant figures are shown in Fig. 4 to Fig. 8. Since 
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the eigenvalues are greatly reduced to 2 groups and the decrease to 4 groups is not so large, it may be 

appropriate to divide them into 2 groups. However, in the analysis of the data up to 2020, there was a 

problem that the BSM of GAM did not converge when divided into two groups (the data up to 2021 

converged in a short time). Therefore, we decided to analyze in 4 groups. Note that the case of 2 groups 

was carried out by sensitivity analysis in previous years. 

The fish species included five species: SBT, BET, YFT, ALB and SWO. At the stage of trial and error 

in the 2022 work, we also tried 3 species (SBT, BET and YFT) and obtained similar results as 5 species. 

But 3 species are few and cover all species that can be the main target of operation, it was decided by the 

CPUE working group to have 5 species (Itoh and Takahashi 2022). 

The latitudes of the four clusters differed (Fig. 7), however, there were no noticeable trends in year, 

month, longitude, number of hooks used, or hooks between floats (HBF). It was probable that HBF had 

a narrow range in the dataset and did not make a difference because it contained few data of deep longline 

targeting on BET. Such an effect may have been seen in the waters north of the Area 4-9. The main catch 

in the first cluster which is located southernmost was SBT. SBT and ALB were caught in the second 

cluster. The third cluster was a mixture of five species and the fourth cluster was a mixture of SBT, ALB. 

 

3-3. Standardization by GAM 

For the binomial submodel, the model including all main effects and two-way interaction terms was 

selected mainly from AIC in the 2022 work. There was a problem that the run did not converge when the 

three-way interaction term was included. For the positive catch submodel, the model including the main 

effect and all the two-way and three-way interaction terms was selected mainly from AIC. It was agreed 

in the ESC in 2022 that these models were used for the base case. 

The k value was examined independently for each submodel. The same sets of k used in the 2022 work 

were utilized (Table 1). Table 2 shows relevant statistics including the EDF value for k and the p value for 

k-index. The ti (lat) in the positive catch submodel has close EDF value to k’ (2.97 to 3) and p-value 0.03 

is below 5% can be a problem, however, k value for latitude has already reached the maximum. 

The diagnosis results are shown in Table 3, Fig. 9, and Fig. 10. The binomial submodel explained 73 .8% 

deviance, and the positive catch submodel explained 49.5%. For BSM, the QQ plot is generally good, 

although some parts do not fit at both ends. The residual histogram has a single peak and is skewed to near 

0 residual. For PCSM, the QQ plot is generally good, and the residual has a single peak. In the plot of the 

fit value and the response variable, there is a roughly upward-sloping relationship. Both are judged to be 

not bad fit. 

The residuals were further examined. Plots were made for year, month, latitude, and longitude (Figs. 11 

and 12). Note that these figures are not from gamVis, which uses simulation. There was too much data and 

gamVis caused a memory over and so we couldn't get any results. These are simple box plots of residuals. 

For BSM, the median residuals were positively biased in 2004-2007 in the year. There was a slight positive 

bias for month. At latitude, the negative bias was large at 30S, a slight positive bias was  seen at 35S, and 

the bias was small at 40S and 45S. At the western end of the longitude, there was a large negative bias.  

For PCSM, the bias was small by year and month. At latitude, the range was large at 30S. The bias of 

the longitude was small, but a negative bias was seen only at the eastern end. When made into a map, the 

area with zero residuals was greatly expanded in both submodels (Fig. 13). In some places, large residuals 

may occur in the peripheral waters. It has been confirmed in the 2022 work that the data in the area where 

these large residuals are seen has negligible impact on the abundance index. 

Box plots of predicted values for variables (year, month, latitude, longitude, latitude x longitude) in the 

dummy dataset are shown (Fig. 14, Fig. 15, Fig. 16, Fig. 17 and Fig. 18). No inconsistency was found in 
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comparison with the current knowledge of the distribution of SBT and changes in the abundance. The high 

predicted values in the southeastern waters of Australia (35S, 140E) are interesting (Fig. 18). Currently, 

there is no fishing operation in this area, but it was confirmed in the 2022 work that the fishing was operated 

in this area in the 1970s and 1980s. 

 

3-4. Calculation of abundance index GAM22 

The predicted value of the dummy data set was weighted by the area factor and normalized by the 

average value to obtain the abundance index as GAM22. To see the effect of area weighting, we compared 

it with a simple unweighted average (Fig. 19). As a result, it was found that they are similar to each other , 

and the influence of weighting is small. Since this method includes the interaction of years in the model, 

it is no longer necessary to obtain the conventional Constant / Variable square hypothesis and i ts 

intermediate index (see Hoyle (2022) for details). 

Figure 20 shows the obtained abundance index of GAM22. The values are shown in Table 4. It 

increased in many years from 2006 to 2024. In 2024, it is the highest value since 1969. 

 

3-5. Sensitivity analysis 

Model selection 

For BSM, a model (modA2) containing all two-way interactions was selected as the base case in the 

2022 work. Its AIC was lower than any other model with one term removed from modA2 (Table 5). On 

the contrary, in the model to which one three-way interaction term was added (e.g. modA2.p11), the AIC 

was low, but there was a problem that it did not converge sometimes. The difference on the abundance 

index was small in the models (Fig. 21 and Fig. 22). Therefore, it is considered appropriate to use modA2 

as the base case this year again. 

For PCSM, a model (modB3) containing all the two-way and three-way interaction terms was selected 

as the base case in the 2022 work. Its AIC was lower than any other model with one term removed from 

modB3 (Table 6). The modB3 was used as the base case this year again. The difference between the 

models in the abundance index is small (Fig. 23 and Fig. 24). Relatively large differences were seen in 

modB3.no9 and mdB3.no10 which excluding ti(year, lon) and ti(year, month), respectively. 

 

Retrospective analysis 

Figure 25 shows the results of retrospective analysis of the base case model. Figure 26 shows the results 

by each submodel. Differences were small in previous years. Mohn's rho was 0.11, less than the +0.20 

that indicates caution (Hurtado-Ferro et al. 2015). 

 

Selection of k 

For BSM, we examined the effect of adding +1 to k of the month, +5 to k of the year, and +5 to k of 

the longitude. The latitude has already reached the maximum value (k = 4). For PCSM, we examined the 

effect of increasing the year k by +5 and the longitude k by +5. The month and latitude are already at 

their maximum. 

As a result, there was very little effect on BSM (Fig. 27 and Fig. 28), however, there is some change 

when kA.year25 (ti(year, lon)) was changed from 10 to 15. It is suggested that k was large enough for 

most cases. For PCSM, there was a noticeable change when kB.year34 (ti (year, lon, month)) or kB.year33 

(ti (lat, lon, year)) was changed from 20 to 25 (Fig. 29, Fig. 30). It might be better to consider increasing 

these k-values associated with year in future. 
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Effect of changing age range 

The results are shown for the base case of age-4 plus, limited to age-5 plus (Fig. 31), and for all ages 

(Fig. 32). At the age-5 plus, the overall trajectory was similar to the base case up to 2023, but significantly 

lower in 2024 values. For all ages, the values for 1990-1994 and 2017-2023 were slightly higher, but that 

in 2024 was much higher. 

This sensitivity analysis is related to not only cohort strength but also release and discard. When fish 

is released and discarded from longline vessels, it is often a small fish, age-3 or age-4. The proportion of 

released fish will depend on the vessel’s IQ utilization strategy. If the proportion of released fish changes 

in a certain year in the future, the effect can be examined by calculating the abundance index for those 

ages other than 4 and comparing it with the abundance index for those age-4 plus. The proportion of the 

number of fish released from Japanese longliners has been monitored and calculated as 3.8% of total 

catch of age 4 plus in average (Itoh 2025). 

 

3-7. Analysis of predicted value 

Figure 33 shows the proportion of each group of the number of operations conducted in the dummy 

dataset by year. The value for 2024 is provisional and may increase as data input work progresses. The 

proportion has decreased since 1969, indicating a decrease in the proportion of time-space in which 

operations took place. While it was stable in the 1980s, the decline has continued since 1990. 

Figure 34 shows the predicted CPUE values by group in data all years combined, by GLM_core and 

GAM22. As expected, the time and space with higher operation numbers had higher CPUE. The same 

figure is shown in Fig. 35, including the boxplot outlier. It is apparent that there are anomalously high 

predicted outliers in GLM_core and fewer in GAM22. 

A similar figure is shown in Fig. 36 by year. From 1969 to 2007, the box part is wide and the CPUE 

increases according to the increase in the number of operations. From around 2008, outliers became higher 

as the box area was compressed in the figure. From 2018, the outliers were particularly  high in GLM_core, 

and it was significantly different from the figure by GAM22. Fig. 37 shows the change in outliers over 

time in the space-time without operations. Extremely large outliers are observed in 2018 and 2019 in 

GLM_core and lesser extent in 2022, 2023 and 2024 in GAM22. These came from Area 8 between June 

to September for GLM_core (Table 7) and Area 4 between July and September and Area 7 in April for 

GAM22 (Table 8). Outliers in GAM22 were not extremely high. 

 

 

4. Discussion 

The 2024 fishing data was added to the dataset. The method using GAM agreed at the 2022 ESC was 

able to obtain a convergent solution without changing the settings such as the k parameter  to the updated 

dataset. The distribution of the residuals for each variable and the overall fitting of the residuals in the 

base case were the same as in the previous work, and no problems were observed. The results of the 

sensitivity analysis were similar to those of the 2022, 2023 and 2024 works. 

High CPUE was predicted in 2022, 2023 and 2024 where fishing was not conducted. While this is not 

as significant an issue as the 2018 GLM_core, the predictions for the non-fished space-time will require 

careful interpretation and future monitoring. 
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Fig. 1.  Nominal value of positive catch rate and CPUE by year. 
Upper panel is the positive rate which is the total number of positive catch operations / the total number of all 

records.  Middle panels is boxplot based on the positive catch rate by year, month, 5 degree latitude and 5 degree 

longitude. Lower panel is CPUE in positive catch records. 

 

 

 

Fig. 2.  Nominal value of positive catch rate and CPUE by month, longitude and latitude. 
 Upper panels are the positive rate which is the total number of positive catch operations / the total number of all 

records.  Middle panels are boxplot based on the positive catch rate by year, month, 5 degree latitude and 5 

degree longitude. Lower panels are CPUE in positive catch records. 
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Fig. 3.  Nominal value of positive catch rate and CPUE in map. 
Left panel is the positive rate. Right panel is CPUE in positive catch records. Red is the higher value, followed 

by green, blue and white in the positive catch rate panel. 

 

 

 

 

 
Fig. 4.  Eigen values for the number of components in cluster analysis. 
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Fig. 5.  Dendrogram of the cluster analysis. 
 

 

 
Fig. 6.  Occurrence by species in each group in cluster analysis. 

ALB is albacore, BET is bigeye tuna, YFT is yellowfin tuna, SWO is swordfish and SBT is southern bluefin 

tuna. 
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Fig. 7.  Occurrence by variables of each group in the cluster analysis. 
 

 

 
Fig. 8.  Occurrence on map by group in the cluster analysis. 
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Fig. 9.  Diagnostic plots for the binomial sub-model in the base case run. 
 

 

 

 
Fig. 10.  Diagnostic plots for the positive catch sub-model in the base case run. 
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Fig. 11.  Residuals by variable in the binomial sub-model in the base case run. 
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Fig. 12.  Residuals by variable in the positive catch sub-model in the base case run. 
 

 

 
Fig. 13.  Residual on maps for both sub-models in the base case run. 
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Fig. 14. Predicted value by year in the base case run. 

Upper panel is the positive rate obtained from the binomial sub-model. Middle panel is CPUE obtained from the 

positive catch sub-model. Lower panel is the product of the two. 

 

 

 
Fig. 15. Predicted value by month in the base case run. 

See Fig. 14. 

 

 



CCSBT-OMMP/2507/06 

19 

 

 
Fig. 16. Predicted value by longitude in the base case run. 

See Fig. 14. 

 

 

 
Fig. 17. Predicted value by latitude in the base case run. 

See Fig. 14. 

 



CCSBT-OMMP/2507/06 

20 

 

 
Fig. 18. Predicted value on map in the base case run. 

See Fig. 14. 

 

 

 
Fig. 19. Comparison of area weighted abundance indices in the base case run. 

Red (M5) is area weighted abundance index of GAM22 which take into account that the longitude length 

changes over latitude and the number of 1x1 degree squares ever fished in a 5x5 degrees square. Black is the 

abundance index which weighting was not considered. 
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Fig. 20. CPUE abundance index for the base case. 
 

 

 
Fig. 21. Sensitivity analysis of model selection in the binomial sub-model for all runs. 
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Fig. 22. Sensitivity analysis of model selection in the binomial sub-model for each run. 

Full represents modA2. 

 

 

 

 
Fig. 23. Sensitivity analysis of model selection in the positive catch sub-model for all runs. 
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Fig. 24. Sensitivity analysis of model selection in the positive catch sub-model for each run. 

Full represents modB3. 

 

 

 

 
Fig. 25. Retrospective analysis for the base case model. 

Rho represents Mohn’s rho. 
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Fig. 26. Retrospective analysis for the base case model by sub-model. 

Upper panel is by binomial submodel, and lower panel is by positive catch submodel. Rho represents Mohn’s 

rho. 

 

 
Fig. 27. Sensitivity analysis of k-value in the binomial sub-model for all runs. 
 

 

 

 

 



CCSBT-OMMP/2507/06 

25 

 

 
Fig. 28. Sensitivity analysis of k-value in the binomial sub-model for each of run. 
 

 

 

 
Fig. 29. Sensitivity analysis of k-value in the positive catch sub-model for all runs. 
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Fig. 30. Sensitivity analysis of k-value in the positive catch sub-model for each of run. 
 

 

 
Fig. 31. Sensitivity analysis for the effect of age-5 plus instead of age-4 plus. 

Red is the base case, and green is the sensitivity run (age-5 plus). 
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Fig. 32. Sensitivity analysis for the effect of of all ages instead of age-4 plus. 

Red is the base case, and green is the sensitivity run (all ages). 

 

 

 

Fig. 33.  Proportion of actual data existed in the dummy dataset used for glm/gam prediction by year. 
The numbers of operations >0, >5 and >10 are shown in black, red and green, respectively. 
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Fig. 34.  Boxplot of CPUE predicted values by category group without outliers. 
Group 0 is the number of operations in actual data corresponded was 0. Group 1 is >=1 and < 5 operations. 

Group 2 is >=5 and < 10 operations and Group 3 is > 10 operations. Data in all years were combined. 

 

 

 

Fig. 35.  Boxplot of CPUE predicted values by category group with outliers. 
Group 0 is the number of operations in actual data corresponded was 0. Group 1 is >=1 and < 5 operations. 

Group 2 is >=5 and < 10 operations and Group 3 is > 10 operations. Data in all years were combined. 
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Fig. 36.  Boxplot of CPUE predicted values by category group and year with outliers. 

Group 0 is the number of operations in actual data corresponded was 0. Group 1 is >=1 and < 5 operations. 

Group 2 is >=5 and < 10 operations and Group 3 is > 10 operations. 
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Fig. 36.  (Cont’d) 

 

 



CCSBT-OMMP/2507/06 

31 

 

 
Fig. 36.  (Cont’d) 
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Fig. 36.  (Cont’d) 
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Fig. 37.  Boxplot of CPUE predicted values by year in group 0, which no actual data corresponded. 
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Table 1. The k values selected for each of sub-model. 
 

 
 

 
  

Submodel BSM PCSM

k.month11 5 6

k.lon11 20 20

k.lat11 4 4

k.year24 10 20

k.year25 10 20

k.year26 10 20

k.month22 5 6

k.month23 5 6

k.month26 5 6

k.lon21 10 20

k.lon23 10 20

k.lon25 10 20

k.lat21 4 4

k.lat22 4 4

k.lat24 4 4

k.year31 20

k.year33 20

k.year34 20

k.month31 6

k.month32 6

k.month34 6

k.lon32 20

k.lon33 20

k.lon34 20

k.lat31 4

k.lat32 4

k.lat33 4
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Table 2. Statistics of choosing k values in the two sub-models of GAM. 

 
 

 

 
Table 3. Diagnostic statistics of GAM. 

 

 
 

 

 

 

  

BSM

Term k' edf k-index p-value

ti(month) 4 3.72 1.0135 0.93

ti(lon.cnt) 19 18.66 0.9866 0.31

ti(lat) 3 2.27 0.9841 0.26

ti(lon.cnt,lat) 27 18.28 0.9468 0.04

ti(month,lat) 12 8.53 0.9514 0.03

ti(lon.cnt,month) 36 31.22 0.9976 0.55

ti(year,lat) 27 22.45 0.9556 0.12

ti(year,lon.cnt) 81 72.93 0.8712 0.00

ti(year,month) 36 33.42 0.9772 0.27

s(log(hook)) 9 8.33 0.9464 0.00

PCSM

Term k' edf k-index p-value

ti(month) 5 4.65 0.9938 0.31

ti(lon.cnt) 19 17.86 1.0112 0.79

ti(lat) 3 2.97 0.9735 0.03

ti(lon.cnt,lat) 42 33.44 1.0273 0.96

ti(month,lat) 14 10.93 0.9947 0.34

ti(lon.cnt,month) 94 72.12 1.0117 0.74

ti(year,lat) 57 44.68 1.0085 0.66

ti(year,lon.cnt) 333 248.29 0.9454 0.00

ti(year,month) 95 78.05 0.9823 0.10

ti(lat,month,year) 155 117.02 0.9751 0.07

ti(lat,lon.cnt,month) 90 69.20 1.0005 0.49

ti(lat,lon.cnt,year) 280 229.64 0.9579 0.01

ti(year,lon.cnt,month) 775 572.10 0.9526 0.00

s(log(hook)) 9 7.65 0.9974 0.47

Sub-model BSM PCSM

n.data 803,697 710,827

dev.expl 73.78% 49.53%

AIC 151,419 1,508,124

residual.df 803,418 709,259

REMLscore 1,414,104 380,011
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Table 4. Abundance index of GAM22 as the base case. 

 

 
  

Year Index Year Index

1969 2.40021 2001 0.45382

1970 1.89833 2002 0.53267

1971 1.66542 2003 0.55219

1972 1.79475 2004 0.42578

1973 1.24109 2005 0.47388

1974 1.49204 2006 0.33932

1975 1.08609 2007 0.34529

1976 1.32607 2008 0.47416

1977 1.26248 2009 0.72907

1978 0.94068 2010 1.02553

1979 0.99589 2011 0.98146

1980 1.03647 2012 0.96652

1981 0.90418 2013 1.15814

1982 0.73809 2014 1.23202

1983 0.80619 2015 1.56847

1984 0.71530 2016 1.28302

1985 0.53328 2017 1.45535

1986 0.42307 2018 1.80882

1987 0.42691 2019 2.06736

1988 0.39698 2020 1.49614

1989 0.38920 2021 1.41729

1990 0.42121 2022 2.16748

1991 0.43914 2023 1.93657

1992 0.54551 2024 2.43953

1993 0.83163

1994 0.86105

1995 0.65722

1996 0.47323

1997 0.51117

1998 0.48278

1999 0.50217

2000 0.47228
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Table 5. Results of sensitivity analysis for model selection in the binomial sub-model. 
 

 
 

 
Table 6. Results of sensitivity analysis for model selection in the positive catch sub-model. 

 

 
 

  

name term dev.expl AIC residual.df REMLscore dAIC

modA2 Main and 2 way interactions 73.78% 151,419 803,418 1,414,104 2,646

modA2.no5 -ti(lon, lat) 73.35% 153,900 803,436 3,629,272 5,127

modA2.no6 -ti(month, lat) 73.53% 152,855 803,426 3,468,809 4,082

modA2.no7 -ti(lon, month) 73.49% 153,068 803,449 1,584,605 4,295

modA2.no8 -ti(year, lat) 73.07% 155,492 803,437 2,719,582 6,719

modA2.no9 -ti(year, lon) 72.53% 158,498 803,491 1,197,277 9,725

modA2.no10 -ti(year, month) 72.92% 156,330 803,450 1,181,875 7,557

modA2.no15 -cl 70.97% 167,613 803,417 2,217,587 18,840

modA2.no16 -s(log(hook)) 73.38% 153,708 803,426 1,426,858 4,935

modA1 Main effects 67.66% 186,274 803,604 1,256,535 37,501

modA2.p11 +ti(lat, month, year) 74.16% 149,287 803,394 7,696,093 514

modA2.p12 +ti(lat, lon, month) 74.05% 149,940 803,390 335,983,501 1,167

modA2.p13 +ti(lat, lon, year) 74.02% 150,120 803,390 2,422,050 1,347

modA2.p14 +ti(year, lon, month) 74.26% 148,773 803,368 1,081,397 0

name term dev.expl AIC residual.df REMLscore dAIC

modB3 Full model 49.53% 1,508,124 709,259 380,011 0

modB3.no5 -ti(lon, lat) 49.51% 1,508,483 709,243 380,173 360

modB3.no6 -ti(month, lat) 49.50% 1,508,623 709,254 380,158 499

modB3.no7 -ti(lon, month) 49.46% 1,509,251 709,229 380,446 1,127

modB3.no8 -ti(year, lat) 49.53% 1,508,154 709,249 380,061 30

modB3.no9 -ti(year, lon) 49.37% 1,510,516 709,226 380,735 2,392

modB3.no10 -ti(year, month) 49.51% 1,508,374 709,262 380,084 250

modB3.no11 -ti(lat, month, year) 49.48% 1,508,671 709,321 380,071 547

modB3.no12 -ti(lat, lon, month) 49.47% 1,508,900 709,277 380,203 776

modB3.no13 -ti(lat, lon, year) 49.21% 1,512,293 709,416 380,826 4,170

modB3.no14 -ti(year, lon, month) 48.52% 1,521,131 709,789 382,492 13,007

modB3.no15 -cl 49.14% 1,513,606 709,256 381,393 5,482

modB3.no16 -s(log(hook)) 49.50% 1,508,634 709,261 380,139 510

modB1 Main effects 41.53% 1,609,783 710,733 402,802 101,659

modB2 Main and 2 way interactions 47.48% 1,534,536 710,194 385,174 26,412
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Table 7. Summary statistics of the estimates where CPUE predicted value > 1500, in group 0 in the GLM 
model. 

 

 
 

 
Table 8. Summary statistics of the estimates where CPUE predicted value > 800, in group 0 in GAM22. 
 

 
 

Year Area Month N Mean Max Sum

2018 8 6 4 1,555 1,555 6,218

2018 8 7 4 1,646 1,646 6,583

2018 8 8 4 1,913 1,913 7,654

2019 8 6 20 2,883 4,598 57,669

2019 8 7 12 3,805 4,866 45,655

2019 8 8 12 4,213 5,657 50,550

2019 8 9 8 1,754 1,754 14,030

Year Area Month N Mean Max Sum

2019 4 9 2 840 849 1,681

2022 4 8 2 836 845 1,673

2022 4 9 2 850 858 1,699

2023 4 8 2 811 820 1,623

2023 4 9 2 869 878 1,738

2024 4 7 2 850 859 1,700

2024 4 8 3 992 1,059 2,976

2024 4 9 4 1,098 1,254 4,391

2024 7 4 7 988 1,183 6,915


