ミナミマグロ1歳魚の曳縄指数: グリッドタイプ曳縄指数の更新 2025 年

Trolling indices for age-1 southern bluefin tuna: update of the grid type trolling index in 2025

伊藤智幸

Tomoyuki ITOH

水産研究·教育機構 水産資源研究所

Fisheries Resources Institute,

Japan Fisheries Research and Education Agency

要約

オーストラリア南西岸において実施したミナミマグロ1歳魚の科学加入量調査の曳縄漁獲データから、1996年から現在までの20年以上に及ぶ加入量指数を求めた。本文書では、2025年調査データを追加して計算した結果を示す。ピストンライン曳縄指数 (TRP) は、既定の調査定線(ピストンライン)上における探索距離 100km 当たりの漁獲をモデルベースの標準化はせずに求めた。グリッドタイプ曳縄指数 (TRG) は、より広範な海域のデータを使用してデルタログノーマルアプローチで一般化線形モデルで標準化して計算した。2025年の TRG は 2024年よりも増加し、28年間の平均値の 90%であった。

Summary

From the trolling catch data of the scientific recruitment monitoring surveys for the age-1 southern bluefin tuna (SBT) on the southwestern coast of Australia, the recruitment index for more than 20 years since 1996 to the present was calculated. This document shows updated indices by adding the 2025 survey data. The piston-line trolling index (TRP) was derived from catch per 100 km search distance on a pre-determined transect line (called piston-line) without model-based standardization. The grid-type trolling index (TRG) was calculated based on data from wider area and standardized by the generalized linier model with delta lognormal approach. TRG in 2025 increase from 2024 and 90% of the 28-year average.

Introduction

Trolling survey for southern bluefin tuna (*Thunnus maccoyii* SBT) is a scientific research survey which aims to provide recruitment indices of the stock at age-1. The survey has been carried out in the southern coast of Western Australia since 2006, except 2015. It has provided an index named the piston-line trolling index (TRP) which have been reported to CCSBT since 2006 (Itoh and Kurota 2006, Itoh 2007, Itoh and Sakai 2007, 2008, 2009, 2010, Itoh et al. 2011, 2012, 2013, Itoh and Tokuda 2014, Itoh and Tsuda 2016, Tsuda and Itoh 2017, 2018, 2019, Itoh and Tsuda 2020, Itoh 2021, 2022, 2023, 2024). TRP is derived from catch per 100 km search distance on a pre-determined transect line (called piston-line) without model-based standardization. In addition, another recruitment index, the grid-type trolling index (TRG) which used data from wider area and standardized by the generalized linier model (GLM) has developed and has been reported to CCSBT since 2014 (Itoh and Takahashi 2014).

In 2021, while the trolling survey was conducted, the survey area was limited to off Esperance only due to the influence of COVID-19, which resulted in no surveys on the piston-line. We presented the updated TRG and provided a variation of TRG (TRG_esp) limited to the area off Esperance. In 2022, the trolling survey was carried out in full range scale including piston-line, though still under the influence of COVID-19 in some extent. Since 2023, the trolling survey has been able to be carried out in the same specification as before 2020. In this document, we provide updated TRP and TRG as of 2025.

Materials and methods

1. Piston-line Trolling Index TRP

For TRP, data used were the trolling catch data on the piston-line in the acoustic survey in 2005 and 2006 and that in the trolling survey from 2006 to 2014, 2016 to 2020, and 2022 to 2025. Details of the survey were described in other papers that submitted every year (e.g. Itoh 2025). It contains data in a total of 246 times on the piston-line (Table 1). Data of another 12 times were not included because the line was incomplete due to mainly rough sea conditions. Datasets were separated between the acoustic survey and trolling survey because there were differences in the two surveys, such as survey design, a vessel used especially in size and specification of trolling gears. Trolling operations on the piston-line were repeated from 8 to 20 times per year.

The piston-line was set off Bremer Bay, in the middle of the whole area for the acoustic and trolling surveys (Fig. 1). The exact locations and length of the line have been changed a few times since its first determination in 2005. The offshore part of the piston line, which had caught a small number of fish over the past years, was cut and extended towards the coast in

which available to enter for the small vessels used in the trolling survey in 2007. The data in 2005 and 2006 where locate offshore than the 2007 end points were eliminated (no SBT were caught in the eliminated data). The locations of the piston-line have been almost the same since 2008 to the present. Figure 2 shows the piston-line in 2025. The vessel proceeded almost without deviation on the piston line for all of 10 times.

The summary of data is shown in Table 2. It reached a total of 659 hours in search time and 8,263 km in search distance. The number of age-1 SBT caught was 834 individuals.

TRP was calculated as a catch of age-1 SBT per 100 km search distance. There were five types of catch definition and TRPs were calculated for each of them.

- (1) School of age-1 SBT. A catch of age-1 SBT that apart from 2 km in distance from last catch of age-1 SBT is defined as a different school. TRP from this definition is "TRI_2km."
- (2) School of age-1 SBT. A catch of age-1 SBT that apart from 20 minutes in time from last catch of age-1 SBT is defined as a different school. TRP from this definition is "TRI_20min."
- (3) School of age-1 SBT. A catch of age-1 SBT that apart from 30 minutes in time from last catch of age-1 SBT is defined as a different school. TRP from this definition is "TRI_30min."
- (4) Number of times age-1 SBT caught. All the catches even it was likely to be from the same school were counted as different. TRP from this definition is "TRI_Times.
 - (5) Number of age-1 SBT individuals. TRP from this definition is "TRI_ind."

Confidence intervals of TRP were calculated from data sampled 1000 times by bootstrap method, and the results were shown by median, 5% and 95% points.

2. Grid-type Trolling Index TRG

For TRG, data used were the trolling catch in the acoustic survey between 1996 and 2003, 2005 and 2006, and in the trolling survey between 2006 and 2014, and between 2016 and 2025. While the surveys were carried out from December in some years, the year was referred to that include January in the survey (e.g. the survey extended from December 2008 to January 2009 was referred to be the 2009 survey) in this analysis.

Search distance of trolling, catch of age-1 SBT and CPUE (catch/100km searched) were aggregated by survey type (acoustic survey / trolling survey), year, month, day, hour, longitude (0.1 degree), latitude (0.1 degree) and four area types (described later). Data west of 117.5E were eliminated.

Time intervals of a recording of latitude and longitude during the surveys differed by year.

Up to the 2005 acoustic survey, latitude and longitude were only recorded when any events occurred, including hourly environmental observation, catch, detection of anything in sonar, the arrival of transect reflection point, CTD observation, etc. Then, locations at every one minute were calculated by interpolating two points of records available. Since the 2006 surveys, locations were recorded in a short interval such as 10 or 15 seconds by GPS logger devises and mean locations by one minute were used for analysis.

In the acoustic survey, it was planned that trolling was operated in the daytime from 6 AM to 6 PM. Actual times of start and end of trolling were not recorded. Some records of catch before 6 AM and after 6 PM were eliminated. In the trolling survey, all the times of start and end of trolling operations were recorded.

Catch was limited for age-1 SBT (estimated from fork length of 40-63 cmFL) in the analysis. Catch was defined as a fish school and schools were defined as that successive catches more than 30 minutes apart were from different schools. Other definition of a school (e.g. 20 minutes apart, 2 km apart) can be possible, however, it has already confirmed that it caused little difference in the previous analysis.

In the research area, SBT distribution was distinctly different by area type which categorized as follows (Fig. 1).

lump: Small seamounts or small islands. Its center position was measured on nautical charts.

shelfedge: A range near 200 m isobath. The range was determined from observing SBT catch records that 3.0 km toward inshore and 0.5 km toward offshore.

onshelf: the northern area of the shelfedge.

offshore: the southern area of the shelfedge.

The area for each grid was classified as follows. When a part of the shelfedge zone is included in the grid, it is classified as shelfedge, the coastal side is classified as onshelf, and the offshore side is classified as offshore. After that, those whose center position of any lump is included in the grid are classified as lump. Furthermore, in the case of four lumps (Figure of eight Island, Investigator Island, etc.) where the lump is large or the center of the lump is near the edge of the grid, the adjacent grid that is likely to be affected by the lump is also classified as lump. In the 2021 analysis, the number of lumps to be referred to was increased (170), so the data classification was different from the previous data.

Delta log-normal GLM was applied for CPUE standardization because of a high percentage of zero catch observations (Lo et al. 1992, Li and Jiao 2013). The delta model handles zero catch data and positive catch data in two separate sub-models, i.e. one sub-model to estimate

the probability of catching SBT age-1 with an assumption of binomial distribution and logit link function (binomial sub-model), and the other to fit the positive catch data with an assumption of lognormal distribution (CPUE sub-model).

Binomial sub-model:

```
\log(p/(1-p)) \sim \text{year} + \text{month} + \text{hour} + \text{area} + \text{survey} + \text{offset}(\log(\text{distance})) + \text{error}
error \sim \text{binomial}
```

CPUE sub-model:

```
log(catch) ~ year + month + hour + area + survey + offset(log(distance)) + error error ~ gaussian
```

where p is the probability of positive catch, survey is either acoustic or trolling surveys, explanatory variables of year, month, hour, area and survey are treated as factors.

In this GLM standardization, the explanatory variables for the optimum model were selected based on the AIC using MuMIn package in R software v4.4.1 (R-core team 2012). The MuMIn package calculates the AIC for models of all combinations of the explanatory variables. The lowest AIC model containing the year explanatory variable was selected as the best model. Product of estimates from these two sub-models gives the final estimate of the TRG. Furthermore, the bootstrap method was applied to obtain a range of the estimate. 1000 datasets were made through stratified sampling by year.

Because the survey area in 2021 was limited to the offshore of Esperance due to the survey design temporarily revised in response to the situation of COVID-19, another TRG that limited to the off Esperance (TRG_esp) was calculated. Eliminated data before 2012 when there is little data for this calculation, the area east of longitude 121.4E was used. There are two types of areas, onshelf and lump. As with TRG, we used a delta model consisting of a binomial submodel and a CPUE sub-model. The model structure used was similar except for the survey.

Binomial sub-model for TRG_esp:

```
\log(p/(1\text{-}p)) \sim \text{year} + \text{month} + \text{hour} + \text{area} + \text{offset}(\log(\text{distance})) + \text{error} error \sim binomial
```

where p is the probability of positive catch.

CPUE sub-model for TRG_esp:

```
log(catch) ~ year + month + hour + area + offset(log(distance)) + error
```

error ~ gaussian

Results

1. Piston-line Trolling Index: TRP

Summary of data on piston-line is shown in Table 2. Figure 3 and Table 3 show the five types of estimated TRP by different school/catch definition. Figure 4 shows the median of the five types of indices that adjusted to the mean of each. Small differences were observed among the five type indices except 2013 where there was a large difference between school indices (TRI_20min, 30min and 2km) and catch indices (TRI_times and ind.). The relative index of TRI_30min was consistent with the index from the acoustic survey in 2006. The fluctuation in TRI_30min overtime was smaller among the five types of indices. Therefore, the TRI_30min index which was submitted to CCSBT data exchange is used as TRP. SBT age-1 of 43 individuals were caught in the 10 piston lines in 2025. The TRP in 2025 increased from 2024.

2. Grid-type Trolling Index: TRG

Summary of data aggregated by grid is shown in Table 4. It consists of 11,641 records in total that reach about 62,972 km search distance and 1,065 age-1 schools. One record with anomalously high CPUE (>2000) with a short distance was removed for analysis. Quite a large part of data was zero catch (90.9%).

Distributions of effort, catch and CPUE in 2025 are shown in Fig. 5. Those in previous years are available in previous document (e.g. Itoh 2024). It covers the area from Esperance to Albany through Bremer Bay as usual years. Probability of catch is different by the area type distinctively, the largest in lump (17%), followed by onshelf and shelfedge, and lowest in offshore (2.7%) (Table 5). In the positive catch, there is small difference in CPUE by area type.

Nominal CPUE is shown in Fig. 6. Note that a substantial part of the effort was made up offshore where few SBT caught from 1996 to 2005 in which to be expected to underestimate compared to the latter half period. In 2025, the nominal CPUE increased from 2024 and higher than the range in the past eight years.

The selected GLM models for TRG based on the AIC were as follows (Table 6):

Binomial sub-model:

$$\log(p/(1-p)) \sim \text{year} + \text{month} + \text{area} + \text{offset}(\log(\text{distance})) + \text{error}$$

CPUE sub-model:

$$\log(\text{catch}) \sim \text{year} + \text{area} + \text{survey} + \text{offset}(\log(\text{distance})) + \text{error}$$

Relationships between the probability of catch and various variables and between CPUE and various variables in terms of least square mean are shown in Fig. 7 and Fig. 8, respectively. The estimated values of each variable are shown in Table 7 and Table 8. QQ plot of CPUE submodel is shown in Fig. 9, which shows good fit in the lower and middle part though lack of fits in high values. LS-means of year trend in each sub-model are shown in Table 9 and Table 10. Indices of both sub-models and point estimation of TRG are shown in Table 11 and Fig. 10.

Table 12 and Figure 11 show TRG with confidence interval calculated through 1000 times bootstrap. TRG showed considerable low levels in 2000-2002, then increase in 2005-2008 and relatively high level in 2006-2016 with fluctuation from year to year. TRG values in recent eight years (2017-2024) have returned to relatively low levels, similar to those in 2000-2002. TRG value for 2025 increased from 2024, while the median is 90 % of the mean over 28 years.

3. Comparison among indices

We compared among TRG, TRP and TRG_esp. Trolling index from grid data limited to off Esperance (TRG_esp) was calculated between 2013 and 2025 (Fig. 12). From the full models, following models were selected by AIC.

Binomial sub-model:

$$\log(p/(1-p)) \sim \text{year} + \text{offset}(\log(\text{distance})) + \text{error}$$

CPUE sub-model:

$$log(catch) \sim year + offset(log(distance)) + error$$

The TRG_esp in 2025 was in the middle of the variation among TRG_esp in 12 years. Figure 13 shows comparison between TRG and TRG_esp. Two indices are significantly correlated (Pearson's correlation coefficient, r=0.716, p < 0.05) and general trends are similar to each other, while the increase in 2023 was distinct in TRG_esp. It is suggested that the index derived from the survey area, reduced temporarily in 2021 only off Esperance, represents that from all survey areas.

Figure 14 shows comparison between TRG and TRP. Two indices are significantly correlated to each other (Pearson's correlation coefficient, r=0.900, p < 0.001).

Discussion

The present paper provided updated Piston line trolling index (TRP) and Grid-type trolling index (TRG) of age-1 SBT recruitment indices. Both trolling indices are based on catch that is the number of schools. When we encountered SBT school in the survey, the numbers of fish

individuals caught and catch times could have increased if we handled the trolling line well and/or the vessel moved well to catch up or attract the fish school. The numbers of fish individuals caught and catch times were decreased when a suspended fishing operation such as several trolling lines was tangled at one catch and we needed several minutes to solve the tangling. The numbers of fish individuals or catch time can be depends on such crew skills of trolling. The number of schools was selected as a catch to avoid the influence of crew skill. However, the definition of catch as a school for index means to set an assumption that the probability distribution of the size of school (the number of individuals per school) is consistent over years.

TRG is a comprehensive index that includes not only on the piston-line but also all the area surveyed. TRG enabled to extend the years to as long as 28 years, by adding the trolling data in the acoustic survey from 1996 to 2003. The acoustic survey and the trolling survey were not originally designed to obtain TRG. However, because the acoustic survey was well designed to cruise randomly in the research area for sonar detection, the trolling catch operated simultaneously in the daytime is expected to be a random sampling in the area. While the survey area was concentrated on the piston-line in 2006 and 2007, the trolling survey was also operated in the larger area since 2008 intending development of TRG. When trolling was operated on a lump, we tried to operate trolling also in the area out of the lump so that collect data to evaluate the SBT distribution difference in area types.

In GLM standardization, the delta method which frequently used for data with a high percentage of zero observation was used. Area type was highly significant in the binomial submodel. It is well known the effect of sea bottom topography, such as lumps, on SBT distribution (Hobday and Campbell 2009). It should fully consider the effect of lumps and islands on SBT distribution for survey design. On the other hand, as Tsuda and Itoh (2017) showed, weather conditions have a negligible effect on the standardization of TRG.

Acknowledgment

We thank skippers and crew of the vessels engaged in the survey and Mr. Totterdell in MIRG for his help. We thank AFMA given us scientific research permission in the Australian coastal waters (#1006167).

References

Hobday, A. J. and Campbell, G. (2009) Topographic preferences and habitat partitioning by pelagic fishes off southern Western Australia. Fish Res. 95: 332-340.

- Itoh, T. and Kurota, H. (2006) Report on the piston-line trolling survey in 2005/2006. CCSBT-ESC/0609/38.
- Itoh, T. (2007) Some examination on the recruitment index derived from the trolling survey. CCSBT-ESC/0709/35.
- Itoh, T. and Sakai, O. (2007) Report on the piston-line trolling survey in 2006/2007. CCSBT-ESC/0709/34.
- Itoh, T. and Sakai, O. (2008) Report on the piston-line trolling survey in 2007/2008. CCSBT-ESC/0809/41.
- Itoh, T. and Sakai, O. (2009) Report on the piston-line trolling survey in 2008/2009. CCSBT-ESC/0909/32.
- Itoh, T. and Sakai, O. (2010) Report of the piston-line trolling survey in 2009/2010. CCSBT-ESC/1009/25.
- Itoh, T. Fujioka, K. and Sakai, O. (2011) Report of the piston-line trolling survey in 2010/2011. CCSBT-ESC/1107/29.
- Itoh, T. Sakai, O. and Tokuda, D. (2012) Report of the piston-line trolling survey in 2011/2012. CCSBT-ESC/1208/33.
- Itoh, T. Sakai, O. and Tokuda, D. (2013) Report of the piston-line trolling survey in 2012/2013. CCSBT-ESC/1309/27.
- Itoh, T. and Tokuda, D. (2014) Report of the piston-line trolling survey in 2013/2014. CCSBT-ESC/1409/33.
- Itoh, T and Takahashi, N. (2014) Trolling indices for age-1 southern Bluefin tuna: update of the piston line index and preliminary analysis of the grid type trolling index. CCSBT-ESC/1409/34.
- Itoh, T. and Tsuda. Y. (2016) Report of the piston-line trolling survey for the age-1 southern Bluefin tuna recruitment index in 2015/2016. CCSBT-ESC/1609/26.
- Itoh, T. and Tsuda. Y. (2020) Trolling indices for age-1 southern bluefin tuna: update of the piston line index and the grid type trolling index in 2020. CCSBT-ESC/2008/20
- Itoh, T. (2021) Trolling indices for age-1 southern bluefin tuna: update of the grid type trolling index in 2021 CCSBT-ESC/2108/30.
- Itoh, T. (2022) Trolling indices for age-1 southern bluefin tuna: update of the grid type trolling index in 2022 CCSBT-ESC/2208/20.
- Itoh, T. (2023) Trolling indices for age-1 southern bluefin tuna: update of the grid type trolling index in 2023 CCSBT-ESC/2308/21.
- Itoh, T. (2024) Trolling indices for age-1 southern bluefin tuna: update of the grid type trolling index in 2024 CCSBT-ESC/2409/24.
- Itoh, T. (2025) Report of the piston-line trolling monitoring survey for the age-1 southern bluefin tuna recruitment index in 2025. CCSBT-ESC/2508/22.
- Li, Y. and Jiao, Y. (2013) Modeling seabird bycatch in the U.S. Atlantic pelagic longline fishery:

- fixed year effect versus random year effect. Ecological Modelling 260, 36-41.
- Lo, N. C., Jacobson, L. D. and Squire, J. L. (1992) Indices of relative abundance from fish spotter data based on delta-lognormal models. Can. J. Fish. Aquat. Sci. 49, 2515-2526.
- Tsuda, T. and Itoh, T. (2017) Standardization of Grid-type Trolling index using environmental factors. CCSBT-ESC/1708/24.
- Tsuda, T. and Itoh, T. (2018) Trolling indices for age-1 southern Bluefin tuna: update of the piston line index and the grid type trolling index. CCSBT-ESC/1809/27.
- Tsuda, Y. and Itoh, T. (2019) Trolling indices for age-1 southern Bluefin tuna: update of the piston line index and the grid type trolling index. CCSBT-ESC/1909/26.

Table 1. Number of times piston-line surveyed

Year	Total	Used for index	Incomplete and not used for index
Acoustic Survey			
2005	21	20	1
2006	22	18	4
Trolling Survey			
2006	16	12	4
2007	14	14	
2008	10	10	
2009	11	10	1
2010	11	11	
2011	12	12	
2012	14	14	
2013	13	13	
2014	14	14	
2016	14	14	
2017	10	10	
2018	9	9	
2019	8	8	
2020	10	10	
2022	15	13	2
2023	12	12	
2024	12	12	
2025	10	10	
Total	258	246	12

Table 2. Summary data of the piston-line survey

Acoustic survey

Year	Value	Search	Search	Date	Start	End	sch20min	sch30min	sch2km	hit.times	number	Index	Index	Index	Index	Index
		hours	distance		time	time					SBT	sch20min	sch30min	sch2km	hit.times	numbser
			(km)													SBT
2005	min	1:57	30.3	2005/1/15	5:45	8:10	0	0	0	0	0	0.00	0.00	0.00	0.00	0.00
	max	2:26	30.3	2005/2/15	12:23	14:23	2	2	3	5	11	6.61	6.61	9.92	6.53	6.36
	mean	2:09	30.3	2005/1/30	8:38	10:47	0.70	0.60	0.80	1.00	2.00	2.31	1.98	2.64	3.31	6.61
	total	43:17	605.0				14	12	16	20	40					
2006	min	1:52	29.7	2006/1/15	6:11	8:14	0	0	0	0	0	0.00	0.00	0.00	0.00	0.00
	max	2:50	29.7	2006/2/13	14:54	16:50	3	2	6	12	27	10.11	6.74	20.22	40.43	90.97
	mean	2:07	29.7	2006/1/27	10:13	12:21	1.61	1.39	2.50	4.33	7.89	5.43	4.68	8.42	4.60	6.58
	total	38:16	534.2				29	25	45	78	142					

Trolling survey

Year	Value	Search	Search	Date	Start	End	sch20mi	sch30mi	sch2km	hit.times	number	Index	Index	Index	Index	Index
		hours	distance (km)		time	time	n	n			SBT	sch20mi n	sch30mi n	sch2km	hit.times	numbse SBT
2006	min	2:08	26.8	2006/1/23	5:15	7:30	0	0	0	0	0	0.00	0.00	0.00	0.00	0.00
	max	2:47	29.8	2006/1/30	11:07	17:45	4	3	4	7	16	13.77	11.52	13.77	23.58	61.42
	mean	2:24	28.6	2006/1/26	8:26	11:59	1.42	1.25	1.58	3	6	4.98	4.41	5.59	9.66	21.54
	total	28:37	349.2 28.7	2007/4/22	6:46	9:46	15	13	17 0	26 0	62	0.00	0.00	0.00	0.00	0.00
2007	min max	3:15	36.1	2007/1/22 2007/1/28	11:31	18:18	5	5.1.43	6	7	21	16.63	16.63	18.11	23.49	69.83
	mean	2:44	32.5	2007/1/25	8:53	13:41	1.93	20	2.36	3	7	6.13	4.55	7.51	9.84	22.53
	total	38:24	455.0				27		33	43	98					
2008	min	2:32	31.6	2008/1/21	6:55	9:53	1	1	1	1	1	2.81	2.81	2.81	2.81	2.89
	max	3:14	35.9	2008/1/31	14:26	18:05	3	3	3	3	7	8.61	8.61	8.61	8.89	19.72
	mean total	2:47 27:50	34.6 346.4	2008/1/25	9:22	13:37	1.70 17	1.70 17	1.90 19	2.10 21	4.70 47	4.92	4.92	5.49	6.07	13.52
2009	min	2:16	30.7	2009/1/18	6:23	8:46	0	0	0	0	0	0.00	0.00	0.00	0.00	0.00
	max	3:55	35.9	2009/1/28	12:06	17:04	3	3	3	5	114	9.76	9.76	9.76	14.59	32.11
	mean	2:41	34.3	2009/1/21	8:19	12:28	1.30	1.20	1.30	1.70	3.70	3.87	3.58	3.87	5.02	10.86
	total	26:52	343.2	001011100			13	12	13	17	37					
2010	min max	2:27 3:04	33.7 36.3	2010/1/20 2010/1/31	5:22 13:32	8:02 16:06	0 2	0	0	0	0 11	0.00 5.93	0.00 5.93	0.00 8.69	0.00 23.72	0.00 31.85
	mean	2:40	34.7	2010/1/31	8:17	11:57	1.00	0.91	1.18	2.09	3.36	2.88	2.62	3.41	6.10	9.77
	total	29:22	381.5	2010/1/20	0.11		11	10	13	23	37	2.00	2.02	0	00	0
2011	min	2:20	27.6	2011/1/26	5:28	8:28	0	0	0	0	0	0.00	0.00	0.00	0.00	0.00
	max	3:20	35.3	2011/2/8/	10:32	17:46	4	4	6	10	18	14.47	14.47	18.00	30.01	65.12
	mean	2:46	33.6	2001/1/31	7:41	12:22	2.08	1.67	2.25	3.08	5.92	6.33	5.11	6.77	9.37	18.52
2012	total min	33:17 2:31	402.8 33.8	2012/1/25	5:21	5:21	25 0	20	27 0	37 0	71	0.00	0.00	0.00	0.00	0.00
2012	max	3:27	36.2	2012/1/23	13:27	13:27	2	2	2	2	5	5.77	5.77	5.77	5.77	14.42
	mean	2:52	35.3	2012/1/31	7:50	7:50	0.57	0.57	0.64	0.64	0.93	1.63	1.63	1.83	1.83	2.66
	total	40:07	493.6				8	8	9	9	13					
2013	min	2:38	33.8	2013/1/19	5:56	5:56	0	0	0	0	0	0.00	0.00	0.00	0.00	0.00
	max	3:21	36.0	2013/1/31 2013/1/24	12:21	12:21	2	2	3	13	18	5.69	5.69	8.42	37.72 10.26	52.23
	mean total	2:49 36:43	35.2 458.0	2013/1/24	8:34	8:34	1.54 20	1.31 17	1.69 22	3.62 47	7.38 96	4.34	3.70	4.78	10.26	20.95
2014	min	2:30	34.3	2014/1/26	6:04	8:55	0	0	0	0	0	0.00	0.00	0.00	0.00	0.00
	max	3:04	35.7	2014/2/7	11:54	14:29	3	2	4	7	7	8.41	5.83	11.21	19.62	20.23
	mean	2:46	35.0	2014/1/31	1:53	5:23	1.14	1.00	1.36	1.71	2.36	3.26	2.86	3.88	4.88	6.74
0010	total	38:45	490.0	00404407	5.40	0.00	16	14	19	24	33	0.00	0.00	0.00	0.00	0.00
2016	min max	2:22 2:53	33.1 35.2	2016/1/27 2016/2/8	5:40 12:30	8:09 16:54	0	0	0	0	0	0.00 8.74	0.00 8.74	0.00 8.74	0.00 8.74	0.00 25.60
	mean	2:37	34.6	2016/2/2	8:14	11:40	1.50	1.36	1.57	1.71	3.57	4.33	3.92	4.54	4.95	10.26
	total	36:42	484.5				21	19	22	24	50					
2017	min	2:12	33.4	2017/1/31	6:22	9:12	0	0	0	0	0	0.00	0.00	0.00	0.00	0.00
	max	2:35	37.0	2017/2/7	9:05	11:40	2	2	2	2	5	5.76	5.76	5.76	5.76	14.96
	mean total	2:24 24:07	34.9 349.2	2017/2/2	3:48	7:08	0.60	0.60 6	0.60	0.60	1.90 19	1.71	1.71	1.71	1.71	5.44
2018	min	2:16	33.2	2018/2/4	6:15	9:16	0	0	0	0	0	0.00	0.00	0.00	0.00	0.00
2010	max	2:35	35.4	2018/2/12	14:53	17:12	0	0	0	0	0	0.00	0.00	0.00	0.00	0.00
	mean	2:23	34.6	2018/2/7	10:59	13:33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	total	21:27	311.1				0	0	0	0	0					
2019	min max	2:37 4:10	34.8 36.2	2019/2/3 2019/2/11	5:55 13:14	8:40 17:21	0	0	0	0	0	0.00	0.00	0.00	0.00	0.00
	mean	3:00	35.5	2019/2/11	8:29	11:29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	total	24:00	284.2		0.20	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.50
2020	min	2:23	34.1	2020/2/1	6:17	9:15	0	0	0	0	0	0.00	0.00	0.00	0.00	0.00
	max	2:58	36.7	2020/2/11	13:41	16:22	2	2	2	2	8	5.86	5.86	5.86	5.86	22.76
	mean	2:37	35.1 351.3	2020/2/6	9:05	12:33	0.60	0.60	0.60	0.70 7	2.00	1.72	1.72	1.72	2.01	5.75
2022	total min	26:11 1:48	351.3	2022/2/13	6:38	9:00	0	0	0	0	20	0.00	0.00	0.00	0.00	0.00
2022	max	4:44	36.1	2022/2/20	16:14	18:08	1	1	1	2	5	3.11	3.11	3.11	5.54	13.85
	mean	2:30	33.9	2022/2/16	1:23	3:54	0.31	0.31	0.31	0.38	1.00	0.90	0.90	0.90	1.11	2.89
	total	32:37	441.2				4	4	4	5	13					
2023	min	2:06	29.7	2023/2/2	5:55	8:18	0	0	0	0	0	0.00	0.00	0.00	0.00	0.00
	max	4:35 2:56	36.3	2023/2/10 2023/2/5	13:34 9:07	16:02 12:04	0.08	0.08	0.08	1	0.08	2.88 0.24	2.88	2.88 0.24	2.88 0.24	2.88
	mean total	35:18	34.0 408.5	2023/2/3	9.07	12.04	0.08	0.08	0.08	0.08	1	0.24	0.24	0.24	0.24	0.24
2024	min	2:41	34.4	2024/2/2	6:10	9:00	0	0	0	0	0	0.00	0.00	0.00	0.00	0.00
	max	6:44	36.4	2024/2/12	13:31	17:02	2	2	3	3	5	5.50	5.50	8.25	8.25	14.25
	mean	3:44	35.2	2024/2/6	8:46	12:31	0.33	0.33	0.42	0.42	1.00	0.93	0.93	1.16	1.16	2.82
0000	total	44:55	423.0	000=10.15	0.00		4	4	5	5	12		0.00		0.00	
2025	min	2:26 6:05	34.5 35.4	2025/2/7 2025/2/16	6:32 11:53	8:58 15:47	0	0	0	0 4	0 17	0.00 8.55	0.00 8.55	0.00 8.55	0.00 11.40	0.00 48.01
	max		35.4 35.1	2025/2/16	8:50	12:06	0.80	0.70	1.20	1.40	4.30	2.28	1.99	3.41	3.98	12.21
	mean	3:15														

A part of data not used for TRP has already excluded.

Table 3. Piston-line Trolling Index value

index	Survey	Year	Minimum	5%	Median	95%	Maximum
sch20min	Acoustic Acoustic	2005 2006	0.496 3.369	1.322 4.493	2.314 5.429	3.471 6.364	4.297 7.113
	Trolling	2006	2.279	3.373	4.867	6.854	8.597
	Trolling	2007	2.826	4.244	6.149	8.186	10.487
	Trolling	2008	3.161	3.979	4.929	5.920	6.672
	Trolling	2009	1.134	2.310	3.837	5.519	7.904
	Trolling	2010	1.045	1.843	2.884	3.953	4.931
	Trolling	2011	1.699	4.598	6.333	8.346	9.972
	Trolling Trolling	2012	0.414	0.811	1.622	2.440	3.275 5.641
	Trolling	2013 2014	2.580 1.226	3.478 2.247	4.346 3.257	5.180 4.294	5.271
	Holling	2014	1.220	2.241	3.231	4.234	5.271
	Trolling	2016	1.450	2.845	4.349	5.796	6.984
	Trolling	2017	0.000	0.836	1.702	2.826	3.470
	Trolling	2018	0.000	0.000	0.000	0.000	0.000
	Trolling	2019	0.000	0.000	0.000	0.000	0.000
	Trolling	2020	0.000	0.849	1.723	2.850	4.059
	Trolling	2021 2022	0.000	0.000	0.896	1.547	2.067
	Trolling Trolling	2022	0.000	0.239 0.000	0.890	0.719	1.199
	Trolling	2024	0.000	0.236	0.932	1.849	3.267
	Trolling	2025	0.000	0.855	2.276	3.700	5.702
sch30min	Acoustic	2005	0.331	1.157	1.983	2.975	3.801
	Acoustic	2006	3.182	3.931	4.680	5.429	5.990
	Trolling	2006	1.968	3.127	4.297	5.429	6.294
	Trolling	2007	1.524 3.119	2.796 3.989	4.461 4.894	6.660	9.465
	Trolling Trolling	2008 2009	1.141	2.280	3.582	5.880 5.079	6.631 6.788
	Trolling	2010	0.534	1.584	2.623	3.650	4.721
	Trolling	2011	1.957	3.416	5.085	6.791	9.192
	Trolling	2012	0.397	0.811	1.618	2.432	3.269
	Trolling	2013	2.379	2.841	3.697	4.562	5.027
	Trolling	2014	1.225	2.030	2.859	3.690	4.335
	T00	2015	1 440	0.070	4.040	F 000	7.004
	Trolling Trolling	2016 2017	1.440 0.279	2.679 0.839	4.046 1.711	5.333 2.848	7.091 4.017
	Trolling	2017	0.279	0.839	0.000	0.000	0.000
	Trolling	2019	0.000	0.000	0.000	0.000	0.000
	Trolling	2020	0.000	0.842	1.718	2.623	4.066
	Trolling	2021					
	Trolling	2022	0.000	0.239	0.887	1.559	2.036
	Trolling	2023	0.000	0.000	0.240	0.719	1.439
	Trolling	2024	0.000	0.236	0.932	1.862	2.764
sch2km	Trolling Acoustic	2025 2005	0.000	0.848 1.322	1.991 2.644	3.422 3.967	5.416
SCHZKIII	Acoustic	2005	5.054	6.364	8.236	10.670	13.478
	Trolling	2006	2.314	3.421	5.151	6.952	8.815
	Trolling	2007	2.825	4.978	7.591	10.118	12.226
	Trolling	2008	3.532	4.565	5.450	6.482	7.502
	Trolling	2009	1.154	2.300	3.819	5.584	7.080
	Trolling	2010	0.793	2.098	3.413	4.753	6.888
	Trolling Trolling	2011 2012	3.127 0.596	4.604 1.007	6.656 1.835	9.284 2.828	11.686 3.873
	Trolling	2012	2.619	3.693	4.780	5.851	6.704
	Trolling	2014	1.627	2.643	3.862	5.298	7.278
		2015	1.021	2.0.0	0.002	0.200	1.2.0
	Trolling	2016	1.640	3.130	4.561	5.832	6.821
	Trolling	2017	0.000	0.849	1.709	2.819	4.036
	Trolling	2018	0.000	0.000	0.000	0.000	0.000
	Trolling	2019	0.000	0.000	0.000	0.000	0.000
	Trolling	2020 2021	0.000	0.586	1.723	2.620	3.763
	Trolling Trolling	2021	0.000	0.239	0.899	1.562	2.243
	Trolling	2023	0.000	0.000	0.240	0.719	1.199
	Trolling	2024	0.000	0.236	0.949	2.320	3.909
	Trolling	2025	0.000	1.431	3.411	5.144	7.383
hit.times	Acoustic	2005	0.331	1.653	3.306	5.124	7.107
	Acoustic	2006	7.488	9.921	14.414	19.468	25.083
	Trolling	2006 2007	3.394 2.939	5.484 6.440	9.628 9.719	13.706 13.388	17.193 15.746
	Trolling Trolling	2007	3.721	4.818	6.050	7.295	8.442
	Trolling	2009	1.451	2.882	4.903	7.331	11.517
	Trolling	2010	1.039	3.109	6.070	9.891	15.019
	Trolling	2011	2.903	5.700	9.007	13.378	16.874
	Trolling	2012	0.397	1.005	1.824	2.837	3.669
	Trolling	2013	4.116	6.261	9.959	15.029	18.748
	Trolling	2014 2015	1.846	3.031	4.697	7.126	9.059
	Trolling	2015	2.073	3.493	4.956	6.589	8.206
	Trolling	2017	0.270	0.836	1.709	2.835	3.460
	Trolling	2018	0.000	0.000	0.000	0.000	0.000
	Trolling	2019	0.000	0.000	0.000	0.000	0.000
	Trolling	2020	0.277	0.863	1.997	3.185	4.927
	Trolling	2021 2022	0.000	0.400	4 440	1.070	2 000
	Trolling Trolling	2022	0.000	0.426 0.000	1.110 0.240	1.976 0.719	3.032 1.199
	Trolling	2023	0.000	0.000	1.159	2.535	3.909
	Trolling	2025	0.000	1.709	3.988	6.511	8.511
number SBT	Acoustic	2005	0.661	3.140	6.446	10.578	15.371
	Acoustic	2006	12.355	18.157	26.394	35.753	52.039
	Trolling	2006	5.616	11.017	18.836	27.063	35.499
	Trolling	2007	8.904	14.059	22.285	31.846	41.926
	Trolling Trolling	2008 2009	7.960 1.852	10.538 5.726	13.522 10.456	16.220 16.452	17.449 22.357
	Trolling	2009	2.574	5.726	9.551	14.879	18.782
	Trolling	2010	5.347	9.269	18.249	28.709	42.850
	Trolling	2012	0.404	1.206	2.622	4.513	5.788
	Trolling	2013	9.448	14.846	20.892	27.582	35.290
	Trolling	2014	2.421	4.138	6.661	9.600	12.271
	T	2015	0.54-	0.04-	40.0==	440:-	40.4:-
	Trolling	2016 2017	3.515 0.000	6.612 2.471	10.276	14.342	18.443
	Trolling Trolling	2017	0.000	0.000	5.353 0.000	8.595 0.000	11.456 0.000
	Trolling	2018	0.000	0.000	0.000	0.000	0.000
	Trolling	2020	0.277	2.003	5.521	9.489	13.765
	Trolling	2021					
	Trolling	2022	0.000	0.922	2.892	5.180	7.660
	Trolling Trolling	2023 2024	0.000	0.000 0.687	0.240 2.575	0.719 5.194	1.439 8.026
	Trolling	2024	0.859	4.791	11.901	21.267	27.478

Table 4. Data summary for Grid-type Trolling Index (TRG)

C	V	N. Danaud	Time Min	Time Man		Range				
Survey	Year	N_Record	Time_Min	Time_Max	South	North	West	East		
Acoustic	1996	385	21 Jan. 1996 06:00	13 Feb. 1996 17:00	-35.2	-34.4	118.2	121.7		
	1997	459	26 Jan. 1997 09:00	26 Feb. 1997 12:00	-35.3	-34.0	117.5	121.8		
	1998	469	19 Jan. 1998 06:00	24 Feb. 1998 17:00	-35.4	-34.4	117.7	121.7		
	1999	596	21 Jan. 1999 06:00	14 Mar. 1999 17:00	-35.4	-34.0	118.0	121.8		
	2000	626	19 Jan. 2000 06:00	14 Mar. 2000 14:00	-35.4	-34.0	117.5	122.5		
	2001	686	22 Jan. 2001 06:00	14 Mar. 2001 16:00	-35.4	-33.9	117.5	121.9		
	2002	578	22 Jan. 2002 06:00	14 Mar. 2002 15:00	-35.4	-33.9	117.5	121.9		
	2003	463	25 Dec. 2002 08:00	28 Jan. 2003 15:00	-35.3	-33.9	117.9	121.9		
	2005	806	14 Jan. 2005 06:00	04 Mar. 2005 16:00	-35.3	-33.9	117.5	121.9		
	2006	756	12 Jan. 2006 06:00	18 Feb. 2006 13:00	-35.4	-34.0	117.5	121.9		
Trolling	2006	180	22 Jan. 2006 08:00	31 Jan. 2006 15:00	-34.8	-34.1	119.3	121.3		
	2007	181	21 Jan. 2007 10:00	29 Jan. 2007 07:00	-34.8	-34.1	119.3	121.3		
	2008	294	20 Jan. 2008 09:00	01 Feb. 2008 08:00	-35.5	-34.1	117.6	121.3		
	2009	317	03 Dec. 2008 10:00	29 Jan. 2009 07:00	-35.5	-34.1	117.5	121.3		
	2010	334	19 Jan. 2010 08:00	04 Feb. 2010 17:00	-35.5	-34.1	117.7	123.4		
	2011	334	25 Jan. 2011 08:00	11 Feb. 2011 10:00	-35.5	-34.1	117.8	121.8		
	2012	332	24 Jan. 2012 08:00	10 Feb. 2012 11:00	-35.5	-34.0	117.9	121.9		
	2013	354	19 Jan. 2013 06:00	04 Feb. 2013 12:00	-35.5	-33.9	117.9	122.1		
	2014	360	25 Jan. 2014 08:00	11 Feb. 2014 10:00	-35.4	-34.0	117.6	123.2		
	2016	344	26 Jan. 2016 08:00	12 Feb. 2016 12:00	-35.5	-34.0	117.7	122.3		
	2017	321	27 Jan. 2017 06:00	13 Feb. 2017 11:00	-34.9	-33.9	118.8	122.4		
	2018	382	31 Jan. 2018 06:00	17 Feb. 2018 13:00	-34.9	-33.9	118.8	122.3		
	2019	325	31 Jan. 2019 07:00	18 Feb. 2019 12:00	-35.5	-34.0	117.7	122.5		
	2020	299	30 Jan. 2020 07:00	15 Feb. 2020 10:00	-35.3	-34.0	117.8	122.2		
	2021	173	03 Feb. 2021 06:00	20 Feb. 2021 14:00	-34.4	-33.9	121.5	122.2		
	2022	293	31 Jan. 2022 06:00	26 Feb. 2022 15:00	-34.9	-33.9	119.3	122.2		
	2023	332	31 Jan. 2023 07:00	14 Feb. 2023 10:00	-35.3	-33.9	117.8	122.2		
	2024	384	30 Jan. 2024 07:00	16 Feb. 2024 10:00	-35.5	-33.9	117.8	122.2		
	2025	278	04 Feb. 2025 07:00	21 Feb. 2025 12:00	-35.3	-33.9	117.8	122.2		

0	Year		Distan	ce searched (km)		ODT O-1-b
Survey	rear	Total	Offshore	Shelfedge	On Shore	Lump	SBT Catch
Acoustic	1996	2,765	1,498	1,192	75		21
	1997	3,134	1,589	1,019	438	88	38
	1998	3,214	1,657	1,184	324	49	34
	1999	3,961	2,080	1,317	493	71	56
	2000	4,049	1,906	1,375	685	82	17
	2001	4,388	1,809	1,125	954	501	20
	2002	3,783	1,699	1,055	815	214	9
	2003	2,865	854	1,220	649	143	29
	2005	5,054	1,418	1,624	1,348	665	62
	2006	3,884	1,380	1,584	817	103	84
Trolling	2006	911	237	380	252	42	27
	2007	903	192	401	300	9	33
	2008	1,149	213	408	347	181	44
	2009	1,402	245	479	398	280	41
	2010	1,499	262	465	309	463	56
	2011	1,392	252	461	332	347	58
	2012	1,394	214	393	469	318	38
	2013	1,516	226	401	464	426	50
	2014	1,597	176	427	540	454	50
	2016	1,508	258	365	420	464	68
	2017	1,471	131	194	465	681	27
	2018	1,734	319	270	596	549	26
	2019	1,445	155	156	360	774	16
	2020	1,342	212	265	376	489	34
	2021	916			147	769	19
	2022	1,352	296	263	368	426	16
	2023	1,449	303	283	319	544	28
	2024	1,659	299	232	427	702	27
	2025	1,233	138	165	267	663	37
Total		62,972	20,015	18,703	13,756	10,498	1,065

SBT Catch is the number of school with the definition of 30 minutes is necessary to be a different school from last catch.

Table 5. Summary data by area type

Area	N_records	Catch	(CPUE	
Alea	All	positive catch	% positive	Mean	SD
Lump	2,003	345	17.22%	23.9	36.6
Offshore	3,516	94	2.67%	28.2	32.4
OnShelf	2,834	298	10.52%	28.0	37.5
Shelfedge	3,288	328	9.98%	24.1	24.5
Total	11,641	1,065	9.1%		

Table 6. AIC and selected models for two sub-models in TRG

	model	AIC		Model
Binomial sub-model	full		6184.4	pn~fyear + fmonth + fhour + farea + survey + offset(log(dist))
	AIC selected		6168.6	pn~fyear + fmonth + farea + offset(log(dist))
CPUE sub-model	full		2268.4	catch~fyear + fmonth + fhour + farea + survey + offset(log(dist))
	AIC selected		2245.3	catch~fyear + farea + survey + offset(log(dist))

Table 7. Estimated value by GLM for binomial sub-model of TRG

	Estimate	Std. Error	z value	Pr (> z) Significance
(Intercept)	-3.53404	0.25675	-13.76460	4.16.E-43 ***
fyear1997	0.33749	0.29320	1.15105	2.50.E-01
fyear1998	0.30552	0.29469	1.03672	3.00.E-01
fyear1999	0.84537	0.27752	3.04618	2.32.E-03 **
fyear2000	-0.69018	0.34007	-2.02954	4.24.E-02 *
fyear2001	-0.65306	0.33193	-1.96749	4.91.E-02 *
fyear2002	-1.24352	0.41317	-3.00968	2.62.E-03 **
fyear2003	-0.17453	0.32031	-0.54487	5.86.E-01
fyear2005	0.06354	0.27114	0.23434	8.15.E-01
fyear2006	0.91584	0.25636	3.57253	3.54.E-04 ***
fyear2007	1.32124	0.31941	4.13654	3.53.E-05 ***
fyear2008	1.17949	0.30021	3.92884	8.54.E-05 ***
fyear2009	0.81879	0.30555	2.67972	7.37.E-03 **
fyear2010	1.02817	0.28848	3.56408	3.65.E-04 ***
fyear2011	1.28225	0.28118	4.56029	5.11.E-06 ***
fyear2012	0.74222	0.29697	2.49927	1.24.E-02 *
fyear2013	0.90412	0.28963	3.12168	1.80.E-03 **
fyear2014	0.85409	0.28552	2.99138	2.78.E-03 **
fyear2016	1.34596	0.27821	4.83788	1.31.E-06 ***
fyear2017	0.00985	0.32004	0.03077	9.75.E-01
fyear2018	-0.04635	0.31975	-0.14496	8.85.E-01
fyear2019	-0.61544	0.36164	-1.70183	8.88.E-02
fyear2020	0.59131	0.30591	1.93292	5.32.E-02
fyear2021	-0.04635	0.35120	-0.13197	8.95.E-01
fyear2022	-0.29535	0.36149	-0.81704	4.14.E-01
fyear2023	0.31028	0.31608	0.98166	3.26.E-01
fyear2024	-0.02540	0.31861	-0.07971	9.36.E-01
fyear2025	0.58095	0.30773	1.88785	5.90.E-02
fmonth2	-0.05079	0.08704	-0.58347	5.60.E-01
fmonth3	-0.84708	0.25788	-3.28479	1.02.E-03 **
fmonth12	0.29316	0.32479	0.90263	3.67.E-01
fareaOffshore	-2.02954	0.13629	-14.89091	3.78.E-50 ***
fareaOnShore	-0.51278	0.09635	-5.32209	1.03.E-07 ***
fareaShelfedge	-0.75419	0.10062	-7.49568	6.60.E-14 ***

Significances are *** < 0.001, ** < 0.01 and * < 0.05.

Table 8. Estimate values by GLM for CPUE sub-model of TRG

	Estimate	Std. Error	t value	Pr (> t) Significance
(Intercept)	-0.15296	0.16519	-0.92595	3.55.E-01
fyear1997	-0.59720	0.19496	-3.06313	2.25.E-03 **
fyear1998	-0.72380	0.19477	-3.71620	2.13.E-04 ***
fyear1999	-0.43928	0.18021	-2.43769	1.50.E-02 *
fyear2000	-0.24410	0.23078	-1.05768	2.90.E-01
fyear2001	-0.69883	0.22474	-3.10951	1.93.E-03 **
fyear2002	-0.69703	0.28270	-2.46562	1.38.E-02 *
fyear2003	-0.27548	0.20201	-1.36367	1.73.E-01
fyear2005	-0.36663	0.17855	-2.05338	4.03.E-02 *
fyear2006	-0.62823	0.17153	-3.66257	2.63.E-04 ***
fyear2007	-0.99907	0.25241	-3.95810	8.08.E-05 ***
fyear2008	-0.77524	0.24471	-3.16795	1.58.E-03 **
fyear2009	-1.18650	0.24538	-4.83543	1.54.E-06 ***
fyear2010	-0.99827	0.24064	-4.14843	3.63.E-05 ***
fyear2011	-0.84915	0.23868	-3.55774	3.91.E-04 ***
fyear2012	-1.12400	0.24892	-4.51560	7.06.E-06 ***
fyear2013	-0.99425	0.24368	-4.08012	4.86.E-05 ***
fyear2014	-1.18648	0.24279	-4.88689	1.19.E-06 ***
fyear2016	-0.99773	0.23707	-4.20862	2.80.E-05 ***
fyear2017	-1.25719	0.26247	-4.78985	1.92.E-06 ***
fyear2018	-0.88182	0.26325	-3.34981	8.39.E-04 ***
fyear2019	-0.97199	0.28895	-3.36391	7.97.E-04 ***
fyear2020	-1.30097	0.25271	-5.14800	3.16.E-07 ***
fyear2021	-1.43769	0.27655	-5.19869	2.43.E-07 ***
fyear2022	-0.83755	0.28618	-2.92669	3.50.E-03 **
fyear2023	-1.28770	0.25993	-4.95410	8.52.E-07 ***
fyear2024	-1.02405	0.26100	-3.92349	9.32.E-05 ***
fyear2025	-1.16466	0.25196	-4.62240	4.28.E-06 ***
fareaOffshore	0.06558	0.09130	0.71829	4.73.E-01
fareaOnShore	0.02548	0.05999	0.42484	6.71.E-01
fareaShelfedge	-0.10428	0.06614	-1.57665	1.15.E-01
surveyTR	0.48508	0.15518	3.12590	1.82.E-03 **

Significances are *** < 0.001, ** < 0.01 and * < 0.05

Table 9. Year trends of binomial sub-model of TRG

Year	Mean	Mean-SE	Mean+SE
1996	0.1232	0.0910	0.1553
1997	0.1617	0.1267	0.1968
1998	0.1577	0.1233	0.1922
1999	0.2356	0.1949	0.2763
2000	0.0676	0.0476	0.0875
2001	0.0699	0.0502	0.0895
2002	0.0405	0.0252	0.0559
2003	0.1063	0.0814	0.1313
2005	0.1298	0.1040	0.1556
2006	0.2473	0.2097	0.2849
2007	0.3209	0.2636	0.3783
2008	0.2941	0.2436	0.3445
2009	0.2313	0.1888	0.2737
2010	0.2667	0.2211	0.3122
2011	0.3134	0.2649	0.3620
2012	0.2191	0.1764	0.2617
2013	0.2453	0.2017	0.2889
2014	0.2370	0.1945	0.2795
2016	0.3257	0.2772	0.3743
2018	0.1185	0.0886	0.1483
2019	0.0723	0.0498	0.0947
2020	0.1963	0.1550	0.2376
2021	0.1185	0.0854	0.1516
2022	0.0958	0.0670	0.1247
2023	0.1583	0.1214	0.1953
2024	0.1206	0.0906	0.1506
2025	0.1948	0.1534	0.2361

Table 10. Year trends of CPUE sub-model of TRG

Year	Mean	Mean-SE	Mean+SE
1996	2.3889	2.1949	2.5828
1997	1.7917	1.6270	1.9563
1998	1.6651	1.4986	1.8315
1999	1.9496	1.8027	2.0965
2000	2.1448	1.9380	2.3516
2001	1.6900	1.4933	1.8867
2002	1.6918	1.4292	1.9544
2003	2.1134	1.9397	2.2871
2005	2.0222	1.8786	2.1659
2006	1.7606	1.6426	1.8787
2007	1.3898	1.2193	1.5603
2008	1.6136	1.4572	1.7700
2009	1.2024	1.0451	1.3596
2010	1.3906	1.2418	1.5394
2011	1.5397	1.3940	1.6855
2012	1.2649	1.1032	1.4266
2013	1.3946	1.2425	1.5467
2014	1.2024	1.0513	1.3535
2016	1.3911	1.2498	1.5325
2018	1.5070	1.3251	1.6889
2019	1.4169	1.1987	1.6350
2020	1.0879	0.9208	1.2549
2021	0.9512	0.7500	1.1523
2022	1.5513	1.3355	1.7671
2023	1.1012	0.9236	1.2788
2024	1.3648	1.1847	1.5449
2025	1.2242	1.0586	1.3898

Table 11. Point estimates of TRG

Year	Prob*Pos	Standardized
1996	0.2942	1.1068
1997	0.2898	1.0901
1998	0.2626	0.9880
1999	0.4593	1.7278
2000	0.1449	0.5450
2001	0.1181	0.4441
2002	0.0685	0.2578
2003	0.2247	0.8454
2005	0.2625	0.9875
2006	0.4354	1.6379
2007	0.4460	1.6779
2008	0.4745	1.7850
2009	0.2781	1.0460
2010	0.3709	1.3951
2011	0.4826	1.8155
2012	0.2771	1.0423
2013	0.3421	1.2871
2014	0.2850	1.0721
2016	0.4531	1.7046
2018	0.1786	0.6718
2019	0.1024	0.3851
2020	0.2135	0.8032
2021	0.1127	0.4240
2022	0.1487	0.5593
2023	0.1743	0.6559
2024	0.1646	0.6191
2025	0.2384	0.8969

Table 12. TRG with confidence intervals calculated by 1000 times bootstrap

95 pecentile	75 percentile	Median	25 percentile	5 percentile	Year
1.329	1.197	1.103	1.017	0.893	1996
1.300	1.172	1.082	1.002	0.901	1997
1.201	1.067	0.983	0.908	0.799	1998
2.017	1.830	1.721	1.608	1.455	1999
0.648	0.593	0.543	0.497	0.435	2000
0.550	0.485	0.443	0.405	0.353	2001
0.313	0.279	0.258	0.235	0.204	2002
0.986	0.905	0.844	0.791	0.706	2003
					2004
1.143	1.045	0.985	0.927	0.851	2005
1.841	1.718	1.635	1.552	1.433	2006
1.893	1.768	1.673	1.586	1.458	2007
2.009	1.875	1.780	1.700	1.574	2008
1.187	1.104	1.044	0.982	0.896	2009
1.550	1.458	1.394	1.325	1.229	2010
1.983	1.890	1.817	1.753	1.642	2011
1.183	1.095	1.042	0.988	0.889	2012
1.442	1.355	1.290	1.223	1.132	2013
1.194	1.121	1.070	1.017	0.942	2014
					2015
1.909	1.794	1.711	1.613	1.475	2016
0.625	0.569	0.525	0.484	0.431	2017
0.787	0.717	0.665	0.623	0.562	2018
0.438	0.407	0.386	0.364	0.330	2019
0.947	0.860	0.798	0.745	0.663	2020
0.510	0.462	0.423	0.387	0.335	2021
0.699	0.615	0.565	0.511	0.436	2022
0.795	0.714	0.656	0.603	0.514	2023
0.739	0.668	0.621	0.570	0.494	2024
1.028	0.954	0.902	0.848	0.772	2025

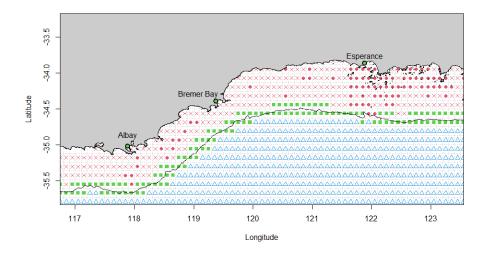


Fig. 1. Map and area classified.

Red cross denotes on shore, red solid circle denotes lump, green solid square denotes shelf-edge, and open blue triangle denotes offshore.

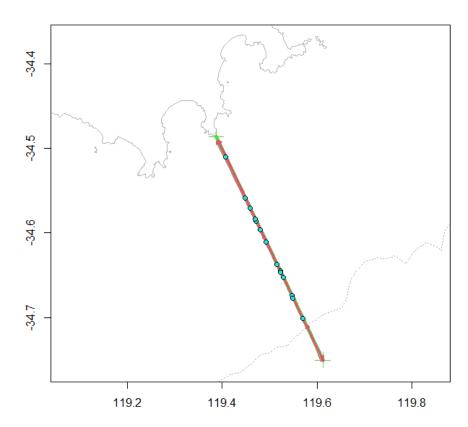


Fig. 2. Locations of the piston-line off Bremer Bay in the 2025 survey.

Green cross marks are defined end points of the piston line. Red arrow denotes each of piston line and direction. Circles denote location where age-1 SBT caught. Dotted line is the 200 m isobath.

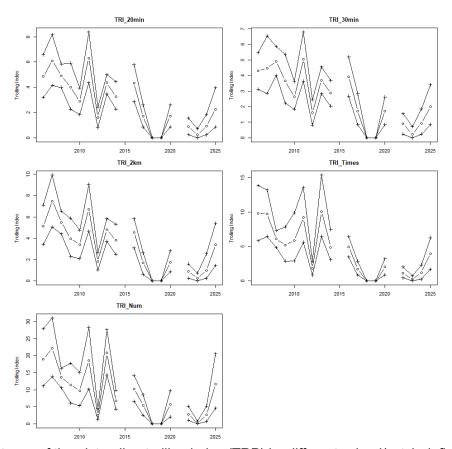


Fig. 3. Five types of the piston-line trolling index (TRP) by different school/catch definition. Showing median, 5 and 95 percentiles.

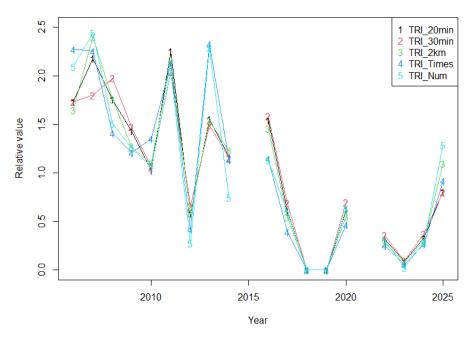


Fig. 4. Comparison of the median from five types of piston-line trolling index (TRP) by different school/catch definition.

Standardized with the mean of each index.

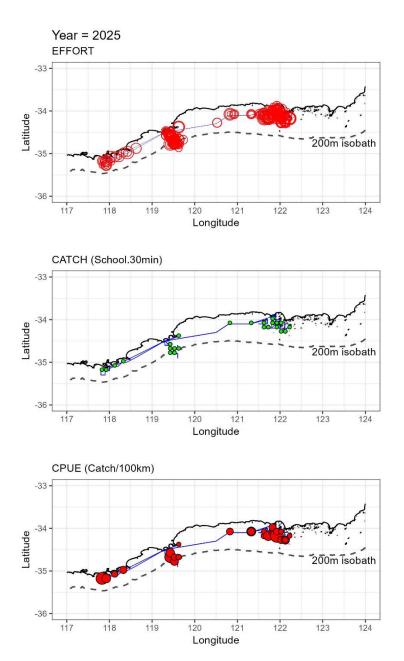


Fig. 5. Distributions of effort, age-1 SBT catch and CPUE in the 2025 survey

Blue line is the trajectory of the vessel while trolling.

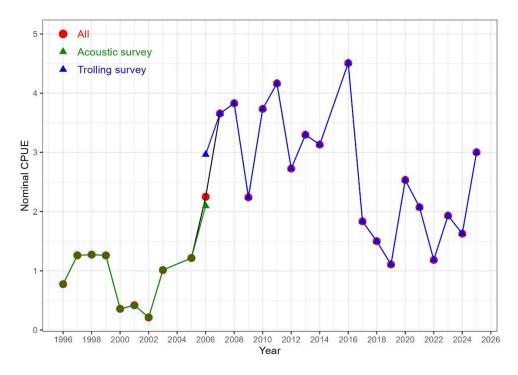


Fig. 6. Nominal CPUE of TRG.

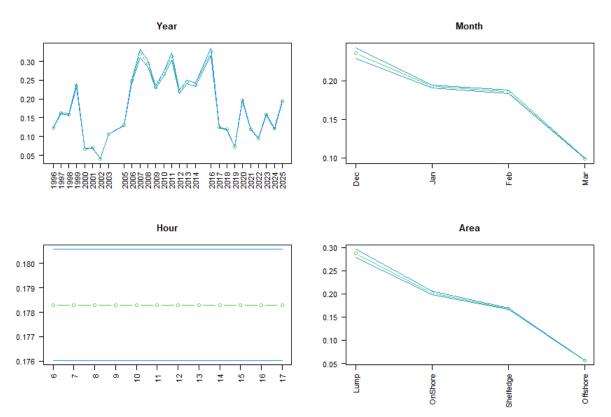


Fig. 7. Least square means of variables in binomial sub-model for TRG.

Green is mean and blue is mean \pm SD. Catch was defined as schools with a definition of 30 minutes is necessary for a different school. Note that hour term was not selected in the optimal model formula.

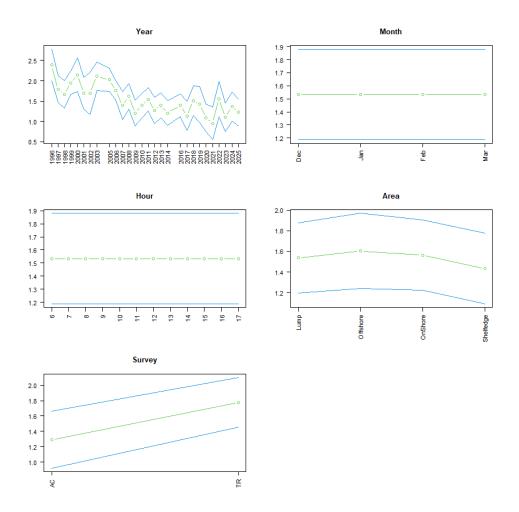


Fig. 8. Least square means of variables in catch in the CPUE sub-model for TRG.

Green is mean and blue is mean±+SD. Catch was defined as schools with a definition of 30 minutes is necessary for a different school. Note that month and hour terms were not selected in the optimal model formula.

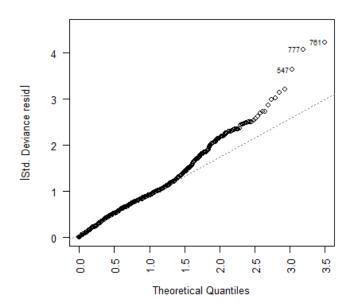


Fig. 9. QQ plot of GLM for CPUE sub-model for TRG.

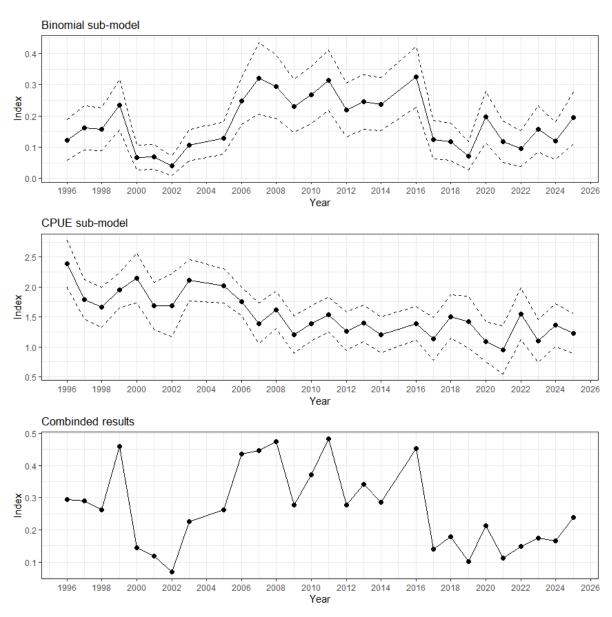


Fig. 10. Binomial sub-model, CPUE sub-model, and combined index from two sub-models (point estimation standardized TRG).

Upper panel shows the year trend from the binomial sub-model. Mean \pm 1SD. The middle panel shows the year trend form the CPUE sub-model. Mean \pm 1SD. Lower panel shows TRG which is a product of two sub-models.

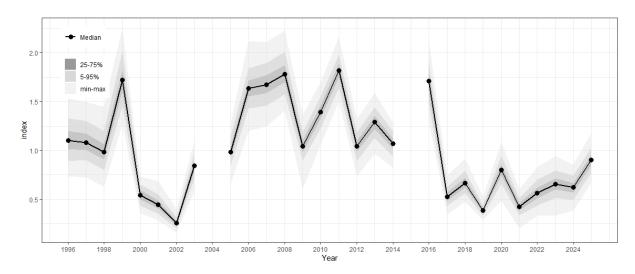


Fig. 11. TRG with confidence intervals.

Estimate was simulated with 1000 times bootstrapping.

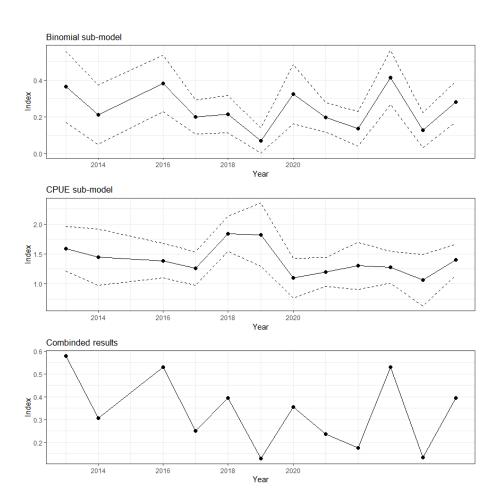


Fig. 12. TRG off Esperance only (TRG_esp) with confidence intervals.

Upper panel shows the year trend from the binomial sub-model. Mean ± 1 SD. The middle panel shows the year trend form the CPUE sub-model. Mean ± 1 SD. Lower panel shows TRG_esp which is a product of two sub-models.

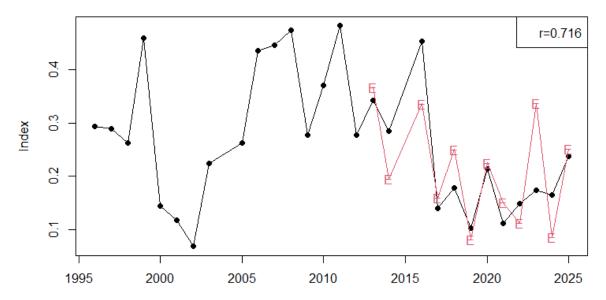


Fig. 13. Comparison between TRG and TRG_esp where data are limited off Esperance only.

Values of TRG_esp are standardized to the mean of TRG between 2013 and 2025. Pearson's correlation *r* is 0.716 (p<0.05).

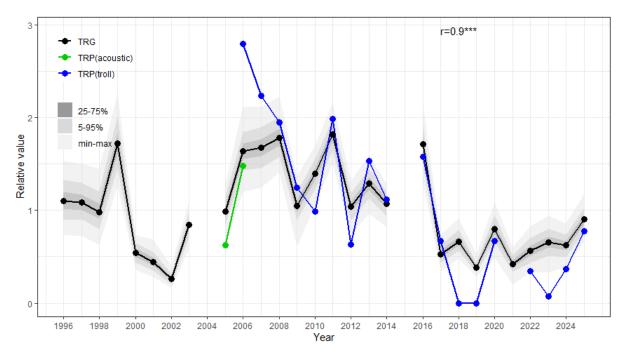


Fig. 14. Comparison between TRG and TRP.

r is Pearson's correlation.