Questions regarding CCSBT's close-kin mark-recapture work from Japan

CCSBT の近縁遺伝子解析作業への日本からの質問

伊藤智幸 Tomoyuki ITOH

国立研究開発法人水産研究·教育機構 水産資源研究所 Fisheries Resources Institute, Japan Fisheries Research and Education Agency

要約

最近公表された CKMR のソフトウェアに対するシミュレーションテストの論文 (Tsukahara et al. 20205) からは、いくつかの示唆が想起された。CCSBT における CKMR の理解を深めるため、またサンプリングを含めた潜在的な問題の改善のため、いくつかの質問を記述した。それらは推定値の不確実性、推定バイアス、サンプリング方法の潜在的問題についてである。CSIRO 担当者及びサンプリング担当者から回答をいただければ幸いである。

Summary

Recently published paper (Tsukahara et al. 2025) of smulation tests for softwares of CKMR raised some suggestions. To promote understanding of CKMR in CCSBT, we described several questions. These include uncertainties in the estimates, estimation bias, and potential problems with sampling methods. We would appreciate receiving responses from CSIRO and sampling personnel.

1. Introduction

CCSBTではCKMRが継続して行われている(Farley et al. 2024)。手法を開発し分析を実施する CSIRO、若齢魚のサンプリングを実施するオーストラリアのポートリンカーンの関係者、親魚のサンプリングを実施するインドネシアのバリ島ベノア港の関係者らの多大な努力が投じられている。CKMRの結果は管理方式でのTAC計算のインプットデータであり、極めて重要である。

最近、CKMR に関連した論文が公表された (Tsukahara et al. 2025)。その記述からは、CCSBT における CKMR について、いくつかの示唆が想起された。我々は CCSBT の CKMR について、いくつかの質問をする。関係者の CKMR への適切な理解が進むよう、遺伝子分野に深い知識を持たない科学者やステークホルダーにも理解できるように意図した回答を、CSIRO 担当者及びサンプリング担当者からいただければ幸いである。

CCSBT has been conducting close-kin mark-recapture (CKMR) (Farley et al. 2024). Great efforts are being made by relevant in CSIRO, which develops methods and performs analysis, Port Lincoln, Australia, which samples juvenile fish, and Benoa, Bali, Indonesia, which samples adult fish. The results of CKMR provide inputs to the TAC calculation in the Management Procedure and are extremely important.

Recently, a paper related to CKMR was published (Tsukahara et al. 2025). The description of the paper raised some suggestions about CKMR in the CCSBT. We ask some questions about CKMR in the CCSBT. We would appreciate receiving responses from CSIRO and sampling personnel to questions that are intended to ensure that CKMR is properly understood by scientists and stakeholders who do not have extensive knowledge in the genetic field.

2. CKMR に関連した質問 CKMR related questions

Tsukahara et al. (2025)では、太平洋クロマグロの CKMR データを利用してシミュレーションテストを行い、CKMR に用いられている 3 つのソフトウェアの試験を行った。CKMRsim (Anderson, 2022), COLONY (Jones & Wang, 2010), a family-based likelihood method, and flexible relationship analyzer by random forest (fraRF) (Nakamichi, 2024)である。彼らの結果においては、COLONY と fraRF は、parent-offspring pair (POP) と full-sibling pair (FSP) の値については完ぺきだったが、一方で half-sibling pair (HSP) を正しく推定できたソフトは無かったとしている(See Fig. 4 and Table 2 of their paper)。CCSBT において用いているソフトはCKMRsim に用いた尤度比法の考え方を発展させた PLOD (Pseudo log odds-ratio) という統計値を用いたソフトウェアかと仮定する。

この結果から、我々はソフトやアルゴリズム、仮定によって POP や HSP の推定値には不確実性があることを認識すべきである。過度に信頼するべきではなく、また過度に悲観的になる必要は無い。彼らの結果では完ぺきな推定をできるソフトが存在しなかったという状況を踏まえて、CSIRO は、現在、CCSBT で用いているアルゴリズムが、POP と HSP それぞれの不確実性をどの

程度捉えて、それをどう扱っているのか、説明いただきたい。

Tsukahara et al. (2025)では、CMMRsim には推定バイアスがあると指摘している。the log-likelihood ratio method in CKMRsim calculates the sum of the ratio over the used marker, and hence, the estimated values from different numbers of used markers must be biased (page 9). CSIRO は、もしも PLOD を使用しているのだとしたら、このバイアスの影響をどう評価しているか。

Tsukahara et al. (2025)は、鮮度の悪い魚からの筋肉のサンプリングでは、DNA が断片化してしまい、分析に使用できない問題点を指摘している。The time duration from fish death to preservation depends on the characteristics of the fishery and the operational strategy, and because sampling was conducted voluntarily, some samples had relatively lowquality DNA in terms of fragmentation and concentration. (page 3) DNA の抽出の失敗には、筋肉採取量が少量であることにも起因しているらしい(塚原 per com)。

CCSBT での作業においては、品質管理(QC)のプロセスでは他個体のコンタミがあった場合、SBT 以外の魚種であった場合、degraded samples であった場合に除外するとしている。CCBST におけるサンプルでの DNA 抽出失敗に限定した割合は示されていない。Farley et al.(2024)においてはクォリティーコントロールを経た後のサンプル数が Table 2 に示されている。Table 1 で示されたサンプル採集数と比較した QC 経過後の割合(成功率)は 2016 年から 2018 年には 47%から 65%と低かったが、改善がなされ、2019 年以降は 90%以上の高い成功率となっている。それでもいくらかのサンプルのロスが存在しており、またポートリンカーンでの若齢魚のサンプリングでは 2021 年、2022 年に成功率の低下がみられる。

QCで除外した原因別の個体数を示すことは可能か?主な原因を踏まえた上で、成功率を高めるのに有効は方策は何であろうか。1個体からの筋肉採取量を増やすのは有効な方法であろうか。ポートリンカーン及びインドネシアのバリでのサンプリングプログラムに対して、もしも改善点があるなら、QCの結果を示した上で次回のサンプリングを改善するフィードバックを行うことは有効と思われるが、現在はどのように実施しているのか。

Tsukahara et al. (2025) conducted a simulation test using CKMR data for Pacific bluefin tuna *Thunnus orientalis* and tested three software programs for CKMR: CKMRsim (Anderson, 2022), COLONY (Jones & Wang, 2010), and a family-based likelihood method, and flexible relationship analyzer by random forest (fraRF) (Nakamichi, 2024). Their results showed that COLONY and fraRF were perfect for parent—offspring pair (POP) and full-sibling pair (FSP) values, but no software could correctly estimate half-sibling pair (HSP) values (See Fig. 4 and Table 2 of their paper). The software used by CCSBT is thought to be PLOD (Pseudo log odds-ratio) which is similar to and advanced from likelihood ratio method in CKMRsim.

From this result, we should be aware that there is uncertainty in the estimates of POPs and HSPs depending on the software, algorithms, and assumptions. We should not place too much

trust in them, but we also need not be overly pessimistic. Given that their results show that there is no software that can provide perfect estimates, we would like CSIRO to explain to what extent the algorithms currently used by CCSBT capture the uncertainties of POPs and HSPs, and how uncertainties are handled.

Tsukahara et al. (2025) point out that CMMRsim has estimation bias. the log-likelihood ratio method in CKMRsim calculates the sum of the ratio over the used marker, and hence, the estimated values from different numbers of used markers must be biased (page 9). If CSIRO is using PLOD which is advanced from CMMRsim, how does it assess the impact of this bias?

Tsukahara et al. (2025) point out that when sampling muscle from stale fish, the DNA fragments and cannot be used for analysis. The time duration from fish death to preservation depends on the characteristics of the fishery and the operational strategy, and because sampling was conducted voluntarily, some samples had relatively low-quality DNA in terms of fragmentation and concentration. (page 3) The failure to extract DNA is also likely due to the small amount of muscle collected (Tsukahara per com).

In the work of CCSBT, the quality controll (QC) process excludes samples that are contaminated with other individuals, are of fish species other than SBT, or are degraded samples. The percentage of samples in the CCBST that were specifically DNA extraction failures is not shown. In Farley et al. (2024), the number of samples that passed quality control is shown in Table 2. The percentage of samples that passed QC (success rate) compared to the number of samples collected shown in Table 1 was low, ranging from 47% to 65% from 2016 to 2018, but has improved, and the success rate has been high at over 90% since 2019. Nevertheless, some sample losses have occurred, and a decrease in the success rate of sampling juvenile fish in Port Lincoln has been observed in 2021 and 2022.

Is it possible to show the number of individuals excluded by each cause during QC? Taking into account the main causes, what is an effective measure to increase the success rate? Would increasing the amount of muscle collected from each individual be an effective method? If there are areas for improvement in the sampling programs in Port Lincoln and Bali, Indonesia, it would be effective to provide feedback to improve the next sampling by showing the results of QC. How is this currently being done?

References

Anderson, E. C. (2022). CKMRsim. https://github.com/erigande/CKMRsim/

Farley, J., Eveson, P., and Gunasekera R. 2024. Update on the SBT close-kin tissue sampling, processing and kin finding 2024. CCSBT-ESC/2409/09.

- Jones, O., & Wang, J. (2010). COLONY: A program for parentage and sibship inference from multilocus genotype data. Molecular Ecology Resources, 10, 551–555. https://doi.org/10.1111/j.1755-0998.2009.02787
- Nakamichi, R. (2024). Supplementary information for: Comparison of kinship-identification methods for robust stock assessment using close-kin mark-recapture data for Pacific bluefin tuna. https://zenodo.org/records/13383270
- Tsukahara, Y., Nakamichi, R., Matsuura, A., Akita, T., Fujiwara, A., and Suzuki, N. (2025)

 Comparison of kinship identification methods for robust stock assessment using close kin mark-recapture data for Pacific bluefin tuna. Population Ecology 1-13. (CCSBT-ESC/2508/Info/01)

Table 1 Proportion of number of samples used for kin-finding analyses. Figures were extracted from Farley et al. (2024)

Table 1 of Farley et al. (2024) N of samples collected

Table 2 of Farley et al. (2024)

Number of fish used in the kin-finding analyses

n of samples collected			number of fish used in the kin-finding analyses				
Year	Adults	Juveniles	Year	Adults	Juveniles	p.Adalts	p.Juveniles
		_	2006	0	1,317		
			2007	0	1,325		
			2008	0	1,356		
			2009	0	1,347		
			2010	972	1,315		
			2011	958	963		
			2012	536	876		
			2013	959	903		
			2014	922	899		
2014/15	1500	1600	2015	0	953		
2015/16	1500	1600	2016	951	854	63%	53%
2016/17	1500	1600	2017	971	948	65%	59%
2017/18	1500	1600	2018	700	756	47%	47%
2018/19	1500	1600	2019	1,440	1,449	96%	5 91%
2019/20	1500	1600	2020	1,421	1,512	95%	95%
2020/21	1500	1600	2021	1,431	1,384	95%	87%
2021/22	(1600	2022	0	1,176		74%
2022/23	148	3 1600	Total	11,261	19,333		
2023/24	236	1600					
				min		47%	47%
					max	96%	95%
					average	77%	5 72%