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1 | INTRODUCTION

Understanding population dynamics is the central focus
of population ecology. Particularly, the vulnerability of
wild species to exploitation, such as in fisheries, must be
appropriately evaluated to conserve stocks while utilizing
them effectively. The “integrated-analysis model” is often
used as a fishery stock-assessment model; it employs the
joint log-likelihood of several data sources, such as catch
amounts, relative abundance indices, and size composi-
tion in the catch (Dichmont et al., 2016; Maunder &
Punt, 2013). Consistent and accurate information on
catch removal and the trends in stock abundance enable
precise estimation of the absolute biomass level. How-
ever, most wild population estimates contain errors due
to sampling limitation and model misspecification. Con-
sequently, estimating absolute biomass in a fishery stock
assessment model remains challenging (Deroba et al.,
2014; Maunder & Piner 2015; Punt et al., 2018).

Recently, the close-kin mark-recapture (CKMR)
method has attracted considerable attention (Bravington,
Skaug, & Anderson, 2016; Skaug, 2017; reviewed in
Bravington & Carroll, 2023; Casas & Saborido-Rey, 2023;
Waples & Feutry, 2021). It was first used to assess marine
fish stocks of southern bluefin tuna (SBT) and estimate
the abundance of spawning stock biomass (SSB)
(Bravington, Grewe, & Davies, 2016). Similar methods
have been applied to cetacean species since the beginning
of the 21st century (Nielsen et al., 2001; Skaug, 2001).
The CKMR method commonly focuses on kinship pairs,
including parent-offspring pairs (POPs), full-sibling pairs
(FSPs), and half-sibling pairs (HSPs). This is analogous to
the recapture of a marked individual using the traditional
mark-recapture method.

The probability of finding close-kin pairs in a wild
population can be employed to construct datasets for fish-
ery stock assessment models and create likelihood func-
tions to estimate the number of parents in the SSB using
POPs or the number of reproductively active individuals
of the population using HSPs (Bradford et al., 2018). We
introduce a simple equation that does not consider the
heterogeneity of fecundity among parents, such as age,
body size, or residence time in the spawning grounds. In
a wild population, the number of POPs found within a
sample (kpop) follows the binomial function:

2
kpop ~ Binom [np X ho, N} ) (1)

where np and ng are the sample sizes of the parents and
offspring, respectively, and N is the number of adult
males and females in the population. The expected prob-
ability 2/N is a trivial case of sexual reproduction because

every child must have exactly two parents in the popula-
tion. This formula provides an estimator of N in terms of
2npny/kpop and yields the likelihood function
(Bravington, Skaug, & Anderson, 2016). Fitting kpop,
which was conditioned by N (number of adults), to the
observed distribution provides information for estimating
the absolute scale of the integrated analysis.

Several studies have used CKMR to estimate the
number of adults in wild populations. Marcy-Quay et al.
(2020) and Prystupa et al. (2021) identified POPs in fresh-
water populations (brook trout and Arctic grayling) using
microsatellites as molecular markers. These studies
assumed a constant contribution to reproduction across
parental individuals, and consequently, the probability of
a sampled juvenile becoming a parent is homogeneous,
regardless of individual fertility. Conversely, some studies
have incorporated age- or body-size-specific fecundity
into the POP probability. This incorporation reduces the
likelihood of bias due to differences in reproductive con-
tribution by age or body length (Bravington, Grewe, &
Davies, 2016; Ruzzante et al., 2019; Sévéque et al., 2024;
Wacker et al., 2021). However, considering age-specific
fecundity typically requires precise age estimates for
adult samples or the inclusion of the uncertainty of age
estimates in the CKMR method (Petersma et al., 2024,
Trenkel et al., 2022). Converting age from length mea-
surement data with an age-length key is an alternative
and simple way to deal with this model. However, an
age-length key may introduce bias in age estimation,
especially for species with relatively long life histories
and flat-top growth curves. The use of the age-structured
CKMR method is desirable when applying the CKMR
method to wild species that have multiple spawning
cycles during their lifetime (i.e., iteroparous species) and
can be sampled over multiple cycles.

Additionally, introducing HSPs is useful not only for
estimating the number of adults but also for directly
determining biological parameters, such as mortality
rates (Bravington, Skaug, & Anderson, 2016). This is
because the probability of HSPs across different cohorts
depends on the turnover of parents due to mortality and
recruitment into the parental population. However, com-
pared with POPs, identifying HSPs in a wild population
is more difficult, requiring a larger set of markers to
detect a smaller proportion of alleles identical by descent,
and is complicated by the existence of other kin catego-
ries with similar degrees of genetic relatedness (Delaval
et al., 2022; Hillary et al., 2018; McDowell et al., 2022;
Patterson et al., 2022).

With the growing availability of next-generation
sequencing, genome-wide single-nucleotide polymor-
phisms (SNPs) have become molecular markers that can
be easily identified. Obtaining numerous SNP markers
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enhances the ability to statistically identify kin relation-
ships, even in the complex kin structure of a wild popula-
tion; however, the larger the number of SNPs, the more
physical linkages among them. Physically linked SNPs
are often inherited together on the same chromosome,
and this nonindependence means that the kinship infor-
mation from each linked SNPs is reduced relative to that
from independently segregating SNPs, which degrades
the ability to identify kinship. Based on the number of
molecular markers available, several methods use kin-
ship indicators, such as pairwise relatedness coefficients
(e.g., Huisman, 2017; Wang, 2022), pseudo-log-odds
(Hillary et al., 2018; Lloyd-Jones et al., 2023), or recon-
structed pedigree structures (Wang & Santure, 2009).
Recently, Delaval et al. (2022) reported differences in the
estimated number of HSPs using three identification
methods. They used the HSPs identified by one software
program, CKMRsim (Anderson, 2022), for downstream
analysis because its identification results were the most
conservative among the three methods. This indicates
that no clear guidelines exist for selecting a method for
kinship identification in CKMR studies of a specific tar-
get species.

In this study, we describe the kinship identification
results obtained wusing three different methods:
CKMRsim, the likelihood-ratio method applied in several
CKMR studies (Delaval et al., 2022; Prystupa et al., 2021);
COLONY (Jones & Wang, 2010), a family-based likeli-
hood method, and flexible relationship analyzer by ran-
dom forest (fraRF) (Nakamichi, 2024), a random forest
classification method that uses identity-by-descent (IBD)
information. We compared the methods using actual SNP
data obtained from Pacific bluefin tuna (PBF; Thunnus
orientalis) and simulated data generated to mimic the
genomic characteristics of the actual PBF SNP data. This
simulation test promotes an understanding of the advan-
tages and disadvantages of each software application
when applied to actual SNP data.

2 | MATERIALS AND METHODS

2.1 | PBF samples

The PBF is a highly migratory species, consisting of a sin-
gle stock with two or more spawning grounds
(Nakatsuka, 2020). It is a long-lived species with a life-
span of over 20 years, and individuals older than age
3 years can mature (Ashida et al., 2021; Bayliff, 1994).
Two major spawning grounds for PBF are as follows: one
in the waters around the Nansei Archipelago, hereafter
called “Nansei,” and the other on the west side of the Sea
of Japan, hereafter called “the SOJ.” According to

BB -WILEY-L =
histological studies of PBF gonads, the major spawning
season extends from April to July in Nansei (Ashida
et al., 2015) and from July to August in the SOJ (Okochi
et al., 2016). Longline fisheries in Nansei and purse-seine
fisheries in the SOJ catch adult PBFs during the spawn-
ing season. Troll fisheries mainly catch age-zero PBFs for
farming pens in nursery areas located around the spawn-
ing grounds. Although multiple spawning grounds gener-
ally make it difficult to apply the CKMR method, these
fisheries enable the collection of putative parents and off-
spring with spawning ground information.

Muscle tissue samples for kinship identification were
collected from harvests of each fishery in 2016. They
were preserved in 6M TNES-UREA buffers (Asahida
et al., 1996) immediately after sampling at the landing
ports. The time duration from fish death to preservation
depends on the characteristics of the fishery and the
operational strategy, and because sampling was
conducted voluntarily, some samples had relatively low-
quality DNA in terms of fragmentation and concentra-
tion. We analyzed more than 4000 samples from the Nan-
sei spawning grounds, in addition to a few samples from
the SOJ. We extracted genomic DNA using the Maxwell®
RSC Blood DNA kit (Promega Corporation, Madison,
USA) or the DNeasy Blood and Tissue DNA extraction
kit (Qiagen, Hilden, Germany) following the manufac-
turers’ instructions. DNA samples were quantified using
spectrophotometry (NanoDrop, Thermo Fisher Scientific,
Waltham, MA, USA).

In total, we sequenced muscle tissues from 2437 juve-
niles and 1509 adults from the Nansei spawning grounds
and 199 juveniles from the SOJ spawning grounds using
GRAS-Di analysis and obtained robust genome-wide
information from low-quality samples using random
PCR-based genotyping (Enoki & Takeuchi, 2018). We
outsourced the library preparation and next-generation
sequencing (NGS) for GRAS-Di to Eurofins Genomics
Inc. (Tokyo, Japan) and GeneBay Inc. (Kanagawa,
Japan). In both cases, NGS was performed on a NovaSeq
6000 platform in 150 base paired-end mode (NovaSeq
6000 S4 Reagent Kit).

2.2 | Genotyping and variant calling

GRAS-Di sequencing data were trimmed and filtered
using Trimmomatic ver 0.39 (Bolger et al., 2014) with the
following parameters: ILLUMINACLIP and NexteraPE-
PE. fa:2:30:10; HEADCROP: 5; SLIDING WINDOW:
4:20; MINLEN: 50. We used fastp ver 0.23.1 (Chen
et al., 2018) with the following parameters: adapter_fasta
NexteraPE-PE. fa, --average_qual 20, -q 20, -1 50, -t 5, and
-T 5. Cleaned data were mapped to a reference genome
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assembly (Accession No. DDBJ: BKCK01000001-
BKCK01000444) using BWA-mem2 ver 2.2.1
(Vasimuddin et al., 2019) with default parameters. SAM-
tools (Danecek et al., 2021) were used to sort and index
files from the binary alignment map before variant call-
ing. We performed variant calling using the Genome
Analysis Toolkit (GATK) HaplotypeCaller (McKenna
et al., 2010) in the Genomic Variant Call Format (GVCF)
mode for each sample. We then transferred the GVCF
files of the 4145 samples to the GenomicsDB workspace
using GenomicsDBImport and GenotypeGVCFs for joint
genotyping.

We filtered the resulting VCF data using the follow-
ing criteria: biallelic SNPs, QD < 2.0, MQ <40,
MQRankSum < —12.5, ReadPosRankSum < —8.0,
SOR > 4.0, and FS > 60.0. After removing some samples
suspected of artificial duplication/contamination or those
with few heterozygous alleles (total number of heterozy-
gous alleles < minor homozygous alleles), we filtered the
VCF data further using VCFtools (Danecek et al., 2011)
by setting the following parameters: --max-alleles
2, --min-alleles 2, --minGQ 50, --minDP 20, --hwe 0.05, --
-max-missing 0.7, --maf 0.001, --recode, --remove-filtered-
all, --non-ref-ac-any 1, --remove-indels, --exclude SNPs.
txt (which listed SNPs with observed heterozygos-
ity >0.5).

2.3 | Kinship-identification method

Two of the three methods used in this study have been
published previously. One is “CKMRsim,” which uses
likelihood-ratio methods to infer pairwise kinships and
has been published on GitHub (https://github.com/
eriqgande/CKMRsim/). The likelihood method is a tradi-
tional method of kinship identification that sets a thresh-
old. One of the features of CKMRsim is that the
threshold can be set at an arbitrary point between two
likelihood ratios to control the false-positive and
false-negative rates. The control of the false-positive
and false-negative rates contributes to reducing bias in
the final CKMR estimates of demographic parameters
(see details in the “Discussion” section). In this study, the
thresholds for identifications of interested kinships from
unrelated pairs were set at a false-positive rate of <0.0001
to minimize false-positive identification as much as
possible.

The likelihood ratio method determines kinship
based on the fraction of the likelihood of two kinship cat-
egories, such as whether the pair is POP or an unrelated
pair. This implies that CKMRsim must be applied multi-
ple times to the dataset to identify the three types of kin-
ship. As the comparison of log-likelihoods between

kinships of interest, especially for POPs from FSPs, can
lead to more precise identification (Thompson &
Meagher, 1987), we applied the sequential procedure in
the following order. First, all possible pairs were tested
to identify whether they were unrelated to or of interest
to kinship, that is, POP, FSP, and HSP. In this procedure,
a pair can be identified as having two or more specific
kinships in duplicate. For example, a pair could be identi-
fied as both a POP and an FSP. Therefore, we applied
subsequent identification for such pairs using a fraction
of the kinships of interest; for example, the log-likelihood
ratio between POP and HSP. In the comparison between
two interesting kinships, the threshold was set as a point
of intersection as no clear knowledge of the relative dif-
ference in appearance frequency between them was
available.

As the log-likelihood ratio is a summation across
markers, missing genotypes affect kinship identification
results. While the training data used to determine the
threshold were generated according to the maximum
number of SNPs in the dataset, the number of SNPs for
each pair varied according to the quality of the DNA
samples. This could be the cause of misidentification.
Therefore, we calculated some thresholds with fewer
markers, and the log-likelihood ratio at those thresholds
was linearly interpolated to predict the log-likelihood
ratio values of the thresholds in accordance with the
number of SNPs used in each pair (see details in
Appendix S1). This method was proposed by the main
developer of CKMRsim through personal communication
to handle SNP data with numerous missing genotypes.

Another method was “COLONY (v2.0.6.6)” which is
a family-based method that reconstructs the pedigrees in
a sample using genetic data to determine the number of
kinship pairs (Jones & Wang, 2010). The samples caught
at each spawning ground were assumed to be of the par-
ent generation, that is, both putative father and mother,
and all samples, including both adult and juvenile sam-
ples, were assumed to be possible offspring. Given the
characteristics of the dataset, which consisted of more
than 4000 samples and genome-wide markers, the pair-
wise likelihood method in COLONY was applied for this
analysis (Wang, 2012). This method required less time to
reconstruct families compared with other time-
consuming methods that may take a couple of weeks or
even months.

In the case of Bluefin tuna, the expected family size
(i.e., sibship size in COLONY) seemed small because of
the relatively high amount of biomass. Therefore, we set
the sibship size parameter to one under the constraint of
a strong prior. The remaining parameters were set to
default settings. Pairs with a probability of 100% were
considered to be target kinships in this study. In addition,
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we conducted 100 runs using different random seeds,
which controlled the initial conditions for the estimation
in the COLONY setting file, to find common pairs across
the runs. While it has been reported that COLONY can
lead to an increasing number of false-positive siblings as
the sample size increases (Almudevar & Anderson, 2011),
this procedure is recommended in the manual of this
software to reduce false-positive misidentification, espe-
cially for HSP (see details in Appendix S2).

The third method was developed using a different
approach. This method employs IBD relatedness as an input
variable for a random forest algorithm called the fraRF to
classify the pairs (Breiman, 2001; Nakamichi, 2024). Three
scores for pairwise IBD relatedness (IBDO, IBD1, and IBD2)
were calculated for each pair, using the maximum likeli-
hood method (Milligan, 2003). IBDO indicates the proportion
of markers that shared neither allele identical by descent,
whereas IBD1 and IBD2 are estimates of the proportions of
markers that shared either one or both alleles identical by
descent, respectively. An offspring inherits one of the alleles
from one parent; thus, IBD1 in POPs is theoretically 1.0,
whereas IBD0 and IBD2 are zero. As kinships with a sub-
stantial positive IBD2 score are rare, the explicit inclusion of
IBD2 as the input for the random forest would enhance the
ability of kinship identification, especially for distinguishing
FSPs from other kinships.

The random forest function used in this analysis was
in the R package “randomForest” (ver. 4.7-1.1). The
number of trees and variables for each tree were 1000
and 2, respectively. No other parameters were changed in
this function.

Although POPs and FSPs have relatively identifiable
IBD scores, HSPs are difficult to identify because of their
kinships with the same or similar IBD scores. For exam-
ple, if either HSP has an offspring, then the offspring and
the other HSP are half-sibling-derived uncle-nephews,
which has a relatively similar IBD score to the HSPs. To
distinguish distant kinships from HSPs, the random for-
est classification employed two distant kinship categories,
that is, half-sibling-derived uncle/aunt-nephew/niece
(hereafter referred to as half-thiatic pair [HTP]) and half-
sibling-derived cousin (hereafter referred to as half-
cousin pair [HCP]), in addition to the target kinships (see
the next section for details).

2.4 | Data generation for training data

The two methods, CKMRsim and fraRF, require training
data for identification, which involves the genetic charac-
teristics of PBF. For CKMRsim, the software originally
had a function to generate training data, namely, simula-
te_Qij. This illustrates the reference distribution of the

‘Ecology

HSP

N AP

HCP HTP

FIGURE 1 Schematic kin relationship of parent-offspring pair
(POP), full-sibling pair (FSP), half-sibling pair (HSP), half-sibling
derived cousin (HCP), and half-sibling derived thiatic pairs (HTP).
Closed circles are in each kin relationship.

log-likelihood according to genetic characteristics in
the input dataset. The threshold for identifying kinship
was determined based on the reference distribution of
training data. We generated 10,000 simulated samples as
training data for CKMRsim. Conversely, fraRF employs
an original data-generation protocol. The data generation
for fraRF uses a simple family simulator consisting of
two processes. The first process generated random geno-
types of independent individuals based on the observed
allele frequencies of the sample. The second process gen-
erated random haplotypes from the genotypes of the two
individuals and combined them to generate the offspring
genotype. In this generation, each locus was assumed to
be independent, with no linkage between SNPs in the
training data.

After generating the genotypes, we randomly selected
5% of the loci and replaced them with other random
genotypes to mimic genotyping errors in the fraRF train-
ing data. Using these processes, we generated genotypes
for POPs, FSPs, HSPs, and unrelated pairs (UP) in addi-
tion to two distant kinships (DKP), that is, HCP and HTP
(Figure 1), according to the following definitions:

POP: Two independent parents were generated and
mated to generate one offspring. One offspring and one
of their parents were designated as a POP.

FSP: Two independent parents were generated and
mated to generate two offspring. The POPs was desig-
nated as a FSP.

HSP: Three independent parents, A, B, and C, were
generated, and parent A mates with parents B and C to
generate one offspring each. This pair of offspring was
designated as the HSP.

HCP: Three independent parents, A, B, and C, were
generated. Parent A mates with parents B and C to
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generate offspring X and Y, respectively, which means
that X and Y are HSP. Two additional independent par-
ents, D and E, were generated, and offspring X mated
with parent D and offspring Y mated with parent E to
generate one grand offspring each. The pair of grand off-
spring, that is, half-sibling-derived cousins, is designated
as the HCP.

HTP: Three independent parents, A, B, and C, were
generated. Parent A is mated with parent B to generate
offspring X, and parent A is mated with parent C to gen-
erate offspring Y, meaning that X and Y are HSP. An
additional independent parent, D, mates with X to
generate a grand offspring. The pair between the grand
offspring and Y, that is, half-sibling-derived thiatic
(uncle-nephew, aunt-niece, etc.), is designated as
the HTP.

UP: Two independent individuals were generated and
designated as the UP.

Independent simulations were performed for each of
the following six kinship pairs: POP, FSP, HSP, DKP
(HCP and HTP), and UP. We generated 500 pairs for each
kinship type to be used as training data for fraRF with a
1% genotyping error. The number of generated pairs can
be set arbitrarily.

2.5 | Data generation for simulation test
We conducted a simulation test to facilitate the interpre-
tation of the identification results across the three soft-
ware packages. The input dataset for the simulation test
was generated in a two-step manner for the training data
in fraRF, whereas the generated SNP data had genetic
characteristics similar to those of the actual PBF genotyp-
ing data in terms of the missing rate, minor allele fre-
quency (MAF), and physical linkages. To account for the
physical linkage in SNP generation, the origin genotypes
in the first process of SNP generation contained informa-
tion on the chromosomes.

Cytological studies have reported 24 pairs of chromo-
somes in Thunnus species (Ida et al, 1991; Soares
et al., 2013). Based on the number of chromosomes, a
sex-specific genetic map of PBF with 24 linkage groups
was constructed using the draft genome (Uchino
et al., 2016, 2018). As a result, the average size of linkage
groups was 96.6 centimorgan (cM) for males and
105.7 cM for females, indicating that the recombination
would occur once at each chromosome across one gener-
ation. We assumed that the SNPs were uniformly distrib-
uted on the 48 chromosomes. During gamete formation,
each pair of chromosomes generates four haplotypes.
Recombination occurred in two of the four haplotypes at
a certain site. The position of the recombination site in
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FIGURE 2 Linkage equilibrium decay plot for the dataset of

Pacific bluefin tuna. Shaded gray points and black line indicate raw
values and 200 base pair averaged values, respectively.

each haplotype was randomly determined using a uni-
form probability distribution. One of the four haplotypes
is randomly inherited from a parent (either the father or
mother) to the next generation. This process, which
incorporates chromosomal information, can simulate the
physical linkages of SNPs.

The allele frequency in the original genotypes and
missing rates in genotyping across samples and markers
were adjusted to be as similar as possible to the observed
values. In addition, the existence rates of specific kinships
(POPs, FSPs, and HSPs) were assumed to be the same as
the average probability identified in the actual PBF iden-
tification across the three software packages.

3 | RESULTS

3.1 | Genotyping results

Genotyping using GRAS-Di and data filtering resulted in
62,946 polymorphic SNPs in 4111 samples with missing
genotyping data. Some of the SNPs in such large numbers
were physically linked to each other, which reduced the
accumulation of statistical power for kinship identifica-
tion with each additional SNP. The relationship between
genetic  distance  and  linkage  disequilibrium
(LD) between the remaining SNPs was investigated
(Figure 2). As a result, SNPs with LD, that is, those with
r* > 0.01, and those with a distance of less than 5000 base
pairs (bp) were filtered out using PLINK v. 1.90 (Purcell
et al., 2007) with the following parameters: --indep-
pairwise 1000 100 0.01 and --thin 5000. In addition, SNPs
with MAF of less than 0.05 were excluded to avoid
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genotyping errors in the dataset. Finally, three samples = TABLE 1 Number of parent-offspring pairs (POPs), full-sibling

were removed from this analysis because they showed
exceptionally high heterozygosity, with F-values (the
inbreeding coefficient) less than —0.5, which were calcu-
lated using PLINK. The filtered genotyped data contained
5029 SNPs from 4108 samples remaining for kinship
identification.

The histogram of missing genotype rates across the
samples showed a trimodal distribution, with peaks at
approximately 0%, 5%, and 35% (Figure 3). This indicated
that more than half of the samples had good DNA quality
with few missing genotypes, whereas the rest had frag-
mented DNA, resulting in moderate missing rates across
the markers (Figure 3a). The histogram of missing rates
across the markers also showed a skewed distribution,
indicating that some loci were specifically lacking and
that the missing loci were not randomly distributed in
the obtained SNPs. Moderate and biased missing patterns
affect the kinship identification results.

3.2 | Kinship identification in PBF

The COLONY method identified 23 POPs, whereas fraRF
and CKMRsim identified 26 and 25 POPs, respectively
(Table 1). The multiple runs using different random seeds
in COLONY lost one pair in POP identification. The
23 pairs were identically classified as POPs across
the three different models and no unique pair was pre-
sent in COLONY identification, whereas one pair was
uniquely identified as POPs by fraRF, and two pairs were
identified as POPs by fraRF and CKMRsim (Figure 4).
One of two pairs identified as POPs by fraRF and
CKMRism was dropped by COLONY over the course of
multiple runs. Interestingly, offspring in these two candi-
date POPs was the same, suggesting that both the mother
and father were caught in different years and different

pairs (FSPs), and half-sibling pairs (HSPs) inferred by the three
different algorithms in the Pacific bluefin tuna samples.

Kinship CKMRsim COLONY fraRF
POP 25 23 26
FSP 13 14 14
HSP 296 351 324

ports. The lack of sex information of parent samples and
the assumption that parent samples are both father and
mother candidates might disturb the identification of
these pairs in COLONY. In addition, one pair identified
as POP by only fraRF was identified as HSP by the other
two methods. The IBDO value in this pair was approxi-
mately 0.30, which was likely too high to be POP, sug-
gesting fraRF may be wrong.

There were slight differences in the identification
results for the FSPs: 13 for CKMRsim and 14 for fraRF
and COLONY (Table 1). FSP identification by different
random seeds in COLONY was consistent across 100 runs.
Thirteen of the 14 FSPs were consistently identified by all
software and were pairs of age-zero fish born in the same
year. The other FSP in COLONY and fraRF was identi-
fied as HSPs by CKMRsim, which was also a pair of age-
zero fish born in the same year (Figure 4). The IBD2
value of this pair was 0.13. This was a substantial value
for IBD 2, although it was lower than the theoretical
value of the FSP. Identification of the FSP showed rela-
tively comparable performance across the software prob-
ably due to the unique genetic characteristics.

Furthermore, the differences in the number of
inferred HSPs were larger than those in POPs and FSPs
(Table 1). CKMRsim identified 296 HSPs, whereas COL-
ONY and fraRF identified 351 and 324 HSPs, respec-
tively. In terms of the multiple runs using different
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FIGURE 4 Venn diagram of the inferred number of (a) parent-offspring pair (POP), (b) full-sibling pair (FSP), and (c) half-sibling pair

(HSP) by three software.

random seeds in COLONY, no runs inferred less than
390 HSPs, supporting the idea that COLONY with a sin-
gle run tends to overestimate sibships. The number of
common pairs across different random seed settings grad-
ually decreased naturally, and finally, 351 HSPs remained
after 100 runs. However, the number of HSPs in COL-
ONY was still the highest among the three software. The
number of common pairs could further decrease by other
random seeds (see detail in Appendix S2). Significant dif-
ferences in HSP identification can lead to considerable
differences in the estimated adult population sizes among
the three methods. CKMRsim produced the lowest values
for both FSPs and HSPs, whereas kinship identification
with the likelihood ratio method often employs addi-
tional adjustment of the number of HSPs using the false-
negative rate (Bravington, Skaug, & Anderson, 2016) (see
details in the “Discussion” section).

3.3 | Kinship identification in
simulation test

Based on the genotyping and kinship identification
results for the PBF samples, a pseudo-genotyping dataset
was generated using 2000 samples and 6000 SNPs for the
simulation test. The MAF for the generated data was
assumed to be the same as the SNPs used for the actual
PBF identification. As the missing rates across the sam-
ples and markers were skewed, we employed a three-step
procedure to mimic those in the actual sample. First, half
of the markers had a uniform missing rate of 0%-1%, and
the remaining markers had a uniform missing rate of
1%-30%. Half of the samples had low probabilities
of missing genotyping data, 20% had moderate probabili-
ties, and the remainder had high probabilities. Finally,
the missing genotypes at each locus were assigned to
each sample according to their weighted values
(Figure 5). The number of kinship pairs was assumed to

be close to the average values across the three methods:
six for POPs, three for FSPs, and 80 for HSPs. We
assumed that the samples contained the same number of
HCPs and HTPs as HSPs.

A simulation test using the generated genotypes
showed that fraRF and COLONY correctly identified all
POPs and FSPs (Table 2), whereas CKMRsim had one
false-negative misidentification of both POPs and FSPs.
However, every software program misidentified the HSPs
for both false-negative and false-positive results, indicat-
ing the difficulty of HSP identification, even with numer-
ous SNPs. Sixty-eight pairs were correctly identified as
HSP by CKMRsim, 72 using COLONY, and 74 using
fraRF. The number of pairs identified as HSP, including
misidentifications, was 74, 79, and 82 for CKMRsim,
COLONY, and fraRF, respectively. No software could
perform HSP identification perfectly.

4 | DISCUSSION

For fishery stocks, sampling generally relies on harvests
from commercial fisheries. Collecting well-preserved
samples from commercial fisheries is difficult; thus, sam-
ple quality tends to be moderate. There is a trade-off
between sample size and quality because CKMR studies
generally require a massive effort to find the target num-
ber of kinship pairs according to the size of the wild pop-
ulation, although the accuracy of kinship identification is
highly dependent on sample quality. In this study on
PBF, we prioritized the use of as many samples as possi-
ble, rather than selecting good-quality samples, to
increase the number of candidate pairs. Owing to the
GRAS-Di technique, we obtained many markers even
from relatively low-quality samples, and there were many
missing genotypes.

Including low-quality samples reduced the number of
common markers used in each pairwise comparison. As
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TABLE 2 Number of parent- Kinship CKMRsim COLONY fraRF True number
offspring pairs (POPs), full-sibling pairs
(FSPs), and half-sibling pairs (HSPs) POP 50, -1 6(0, -0) 6(0, ~0) 6
inferred by the three different FSP 2(0, —1) 3(0, —0) 3 (0, —0) 3
algorithms in the generated data for HSP 74 (6, —12) 79 (7, —8) 82 (8, —6) )

simulation test.

Note: The positive number in the parenthesis indicates the number of false-positive identifications, and the
negative one indicates the false-negative identifications.

COLONY uses the maximum likelihood method to
reconstruct the family and fraRF uses it to calculate the
IBD values, a smaller number of markers would make
the inference uncertain, however, not biased. On the
other hand, the log-likelihood ratio method in CKMRsim
calculates the sum of the ratio over the used marker, and
hence, the estimated values from different numbers of
used markers must be biased. Therefore, we applied
dynamic thresholds that varied linearly with the number
of markers used for each pair. This enhanced the kinship
identification ability of CKMRsim. However, multiple
calculations were required to generate knots for linear
interpolation. In this study, we conducted five or six cal-
culations for each comparison, for example, POP versus
UP and HSP versus HTP. The multiple calculations
would lose one of the great advantages of the log-
likelihood ratio method, that is, the time-saving method
(see details in Appendix S1).

Concerning the trade-off between false-positive and
false-negative rates, the false-positive rate should be suffi-
ciently low for the application of CKMR to a large popu-
lation as there are far larger numbers of non-target
kinships (e.g., unrelated pairs) than target pairs
(i.e., POPs and HSPs). Therefore, the number of false-
positives is naturally much higher than that of false-
negatives under the assumption of the same false-positive
and false-negative rates. Setting the threshold for
false-positive rate to 0.0001 for CKMRsim, which is the

minimum value for the default options, can be consid-
ered reasonable in this study with the PBF, which seems
to have a large population. However, even with this strict
threshold, there would be several false-positive misidenti-
fied pairs because 4108 samples made approximately 8.5
million pairs; thus, more than 850 false-positive misiden-
tifications could theoretically occur. Although a lower
false-positive rate might be desirable according to the
number of samples, moderate false-negative misidentifi-
cations were observed for POPs and FSPs in the simula-
tion test. False-negative misidentification is unavoidable
to some extent.

Despite the complexity of the threshold issue, one of
the advantages of defining it is that the theoretical false-
negative rate can be theoretically conditioned and prelimi-
narily estimated (Bravington, Skaug, & Anderson, 2016).
Recently, CKMR modeling, which considers the false-
negative rate, has been applied to demographic parameter
estimates when it is assumed that there are no or few
false-positive misidentifications (Patterson et al., 2022;
Punt et al., 2024). Explicit consideration of the false-
negative rates, for example, dividing the identified number
by one minus the false-negative rate, would improve the
accuracy of the identification. However, no parameters or
settings were available to control for false-positive and
false-negative rates for COLONY and fraRF. Only
CKMRsim can control the false identification rates among
the three software in this study.

850807 SUOWILIOD BAEa.D 8|qeol(dde au Aq peusenob afe sejone VO ‘8sn Jo sejn. Joj Ariq1T8ulUQ AB|1IM UO (SUO T IPUOD-PUe-SLLIBY/LID A3 1M AeIq 1 BulUO//:Sdny) SUOnIpUOD pue swie 1 8y} 88s *[6Z0z/c0/2T] Uo AriqiTauluo 8|1 ‘Ueder aUeyo0D Ad G0ZZT X0BE-8EYT/Z00T OT/I0pAW0D A8 1M Afelq 1 jpul|uo'S [euIno -658//:5dny Wouy pepeojumod ‘0 ‘X0BESELT



10 | Wl LEY— Population

TSUKAHARA ET AL.

Ecology

By contrast, COLONY and fraRF showed slightly bet-
ter identification results in the simulation test for all kin-
ships of interest. At least, COLONY and fraRF identified
POPs and FSPs correctly. As previously mentioned, COL-
ONY tends to overestimate sibships when the population
size is large. In this case, despite assuming a large popula-
tion in the simulation test, the common pairs across
100 runs with different random seeds reduced false-
positive identifications, whereas every run showed over-
estimation with false-positive misidentifications. While
COLONY tended to overestimate the number of HSPs in
each run, seeking common pairs across different random
seed settings would reduce the degree of overestimation,
even for large populations with sparse sampling. How-
ever, overlooking HSPs in any run can lead to false-
negative misidentification. This method requires many
runs to find a stable bottom-out and can be time-
consuming.

fraRF showed equivalent performance in the simula-
tion test compared with the other two software. The iden-
tified numbers of POPs and HSPs were exact, even with
many missing genotyping data points. This method uses
a set of pairwise IBD values calculated from the available
SNPs of each pair and a maximum likelihood estimation,
which converts raw genetic information into a statistical
indicator. Owing to the high classification power of the
random forest, fraRF with simply three IBD values
showed comparable results with the other software in the
simulation tests by only a one-time calculation. However,
this method has overestimated HSPs so far, due to mod-
erate misidentification of HTP and HSP (see details in
Appendix S3). According to the PBF life history and
maturity schedule, there should be HTP in the wild
population.

Despite the current simple design of fraRF with IBD
values and random forest, the simulation test revealed
that the identification ability of fraRF was not much dif-
ferent from the other methods. This could be a candidate
method to use the kinship identification for the CKMR
study at least for the POP and FSP as well as the other
software. To enhance the identification ability, particu-
larly for HSP, fraRF could be modified by including some
new input variables even if they are not genetic informa-
tion. For example, loglikelihood ratio values and the
number of markers used are candidates to improve
the performance of this software.

In this study, we have generated 1000 individuals and
500 pairs for each kinship in training data. The number of
training data was smaller than that for CKMRsim, while
increasing the amount of training data can lead to having
pairs with rare but not extreme IBD values, resulting in a
more representative training dataset. The dataset for PBF
in this study had a large number of SNPs for the IBD

values to be distinguishable enough. Also, the calculation
of IBD values is computationally intensive. These were the
reasons the number of training data was set to 500 in this
study. However, if the number of available SNPs or other
information for fraRF is limited, the number of training
data should be raised accordingly for fraRF to avoid inac-
curacies. Implementing an efficient method to reduce the
calculation for training data, such as importance sampling
(Anderson & Garza, 2006), might be useful to enhance the
usability of the fraRF for other cases.

This simulation test did not include grandparent-
grand offspring kinship (GG), which should disturb the
identification of HSP due to the same IBD values as
HSPs. The degradation of the identification performance
for the actual PBF dataset is inevitable because of the
existing GG pairs in the actual samples. This is a limita-
tion of this software, and identification would require
more information to distinguish HSPs from GG. External
biological information, such as age gaps or sizes between
individuals in pairs, can help identify them. Although
additional simulation models are necessary to generate
training data with combined genetic and biological infor-
mation, including these nongenetic variables in the ran-
dom forest may enhance the identification performance.

The identification results of the actual PBF samples
exhibited a similar tendency to those of the simulation
tests (Table 1). CKMRsim had smaller numbers of POP,
FSP, and HSP, which may have been due to its strict
threshold. For HSP, the three methods showed large dis-
crepancies similar to the simulation results. CKMRsim
underestimated the number of HSPs as intended, while it
had some false-positive misidentifications. On the other
hand, COLONY and fraRF accepted a somewhat bal-
anced number of false-negative and false-positive mis-
identifications, resulting in the seemingly close to the
true number. It should be noted that no software could
get the correct number of HSPs, indicating the difficulty
of identifying this relationship even with the high num-
ber of SNPs. The physical linkage among the SNPs
reduced the identification power of every three software.
Using the number of HSP in the CKMR estimation, the
user should consider the uncertainty of the kinship iden-
tification and post hoc approach, for example, adjustment
by false-negative rate, would enhance the accuracy of
kinship identification.

CKMR can be used for many fishery stock assess-
ments in the near future. Kinship identification is a key
technique used in CKMR applications. However, this
process is strongly affected by upstream analysis, such as
genotyping, and impacts downstream analysis. In this
study, the quality of the PBF data was generally ade-
quate, although poor for DNA sequencing in some sam-
ples. As a result, the missing rate of genotypes made
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kinship identification more difficult. In addition, no soft-
ware correctly estimated the number of HSP in this simu-
lation test using the mimicked physical linkage and
missing rate. Based on the findings in this study, the kin-
ship identification method should be appropriately used
in accordance with the genetic characteristics of the tar-
get species for CKMR studies.
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