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Executive Summary 

Background and Objectives 

The Commission for the Conservation of Southern Bluefin Tuna (CCSBT) has historically relied on 

catch per unit effort (CPUE) indices from the Japanese longline fishery as a primary indicator of 

southern bluefin tuna (SBT) abundance. Previous analytical approaches using generalized linear 

models (GLMs) encountered difficulties due to increasing spatial and temporal aggregation of fishing 

effort, leading to sparse data and parameter estimation problems, particularly in recent years. These 

problems were resolved via the development of GAM-based approaches using spatial-temporal 

smoothing. Nevertheless, concerns remain that increasing effort concentration may reduce the 

accuracy and precision of SBT abundance indices.  

This analysis has developed joint CPUE indices using operational longline data from Australian, New 

Zealand, and Korean fleets, combined with aggregated Japanese fleet data, to address limitations of 

single-fleet approaches and with the aim of improving the reliability of abundance indices for stock 

assessment. 

Methods 

The study incorporated longline catch and effort data from four fishing fleets spanning different time 

periods. Fleet-specific data processing addressed differences in data formats, coordinate systems, 

and species reporting. Hierarchical cluster analysis was applied to operational fleet data to identify 

distinct fishing strategies based on species composition, which may reflect different catchability 

patterns. 

Standardization employed generalized additive models (GAMs) implemented through the R package 

mgcv, using a delta-lognormal approach to handle zero-inflated catch data. The models incorporated 

spatial, temporal, and operational covariates, with fleet-specific effects to account for differences in 

catchability between fishing operations. 

Key Findings 

Data characterization described the substantial differences in fishing patterns among fleets, 

including variations in temporal coverage, spatial distribution, gear configurations, and target 

species composition. Cluster analyses identified between 2-5 distinct fishing strategies within each 

operational fleet, and meaningful differences in SBT catchability that warranted separate treatment 

in standardization models. 

Preliminary model results suggest that joint fleet analyses can provide abundance indices that 

maintain consistency with historical patterns while potentially offering improved precision and 

reduced sensitivity to fleet-specific operational changes. 

mailto:simon.hoyle@hoyleconsulting.co.nz
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Implications and Limitations 

The multi-fleet approach represents a methodological improvement that may provide more robust 

abundance indices for southern bluefin tuna stock assessment. The improved spatial and temporal 

coverage afforded by incorporating multiple fleets could help mitigate biases associated with 

increasing effort concentration and sparse data in single-fleet analyses. 

However, several limitations should be acknowledged. The analysis relies on the assumption that 

standardization models adequately account for differences in catchability between fleets and fishing 

strategies. The quality and consistency of data reporting across fleets may vary, potentially affecting 

model performance. Combining aggregated and operational data in a single analysis is a novel but 

flawed approach, and the resulting indices should not be seen as representative of stock trends. 

Representative indices should be based on operational data from all fleets.  

Recommendations 

Further validation of the joint modeling approach through simulation testing and retrospective 

analysis would strengthen confidence in the resulting indices. Continued testing and refinement of 

clustering methods and consideration of additional operational variables could improve the 

identification of distinct fishing strategies.  

The joint CPUE approach developed in this analysis provides a foundation for enhanced abundance 

monitoring of southern bluefin tuna, though continued evaluation and refinement of methods will 

be important as additional data become available and fishing patterns continue to evolve.  
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Introduction 
The CPUE standardization methods used for SBT have been updated to address problems with 

recent CPUE estimates. Analytical problems arose from increasing aggregation of fishing effort, 

together with a method that relied on data availability in all strata. Sparse data caused parameter 

estimation problems (ESC 25, para 37).  

A new approach has been developed and adopted (Hoyle, 2021; Hoyle, 2022; Hoyle, 2020; Itoh and 

Takahashi, 2022) that uses generalized additive models (GAMs) implemented with the R package 

mgcv (Wood, 2011). The principal GAM models produced unbiased estimates with simulated data, 

while GLM models and less flexible GAM smoothers provided biased indices. This bias was 

particularly pronounced at the end of the time series as effort became more concentrated, and data 

became sparse (Hoyle, 2022).  

However, simulations indicated that biased indices would result from increasing effort concentration 

through time, as vessels focused effort on areas with higher CPUE. This effect was strongest at the 

end of the time series when concentration was greatest. This bias may be due to loss of information 

from the dataset rather than model failure. ESC 27 concluded that it may be helpful to increase 

available information via models that include data from other fleets in addition to Japan.  

Work for 2023 involved exploring the spatio temporal effort distributions of fleets other than Japan, 

to help understand whether they might usefully contribute to maintaining coverage of the SBT 

population distribution through time, thereby reducing the risk of parameter estimation difficulties. 

Results showed that data from other fleets can significantly improve coverage throughout the time 

series, particularly in recent years. Catch rates of most other fleets showed similar trends to indices 

from the Japanese fleet.  

Joint analysis using data from multiple fleets fishing on the same stock is increasingly applied as a 

way to increase the coverage and representativeness of CPUE indices (Hoyle et al., 2024; Hoyle et 

al., 2018; Hoyle et al., 2015; Kitakado et al., 2021). Such analyses require significant work to prepare 

data and ensure they are compatible for a joint analysis. Different fishing methods are used by 

different fleets, and by different groups and vessels within fleets, resulting in variation in 

catchability.  

There is likely considerable catchability variation within fleets other than Japan, given the diversity of 

vessel size, experience, equipment, bait use, and targeting practices within domestic fleets 

compared to distant water fishing fleets. These sources of variability can be addressed using a 

combination of techniques, such as the inclusion of vessel ids, identification of targeting practices, 

and auxiliary analyses using additional covariates. These analyses require operational data. 

Before jointly analysing national datasets, each dataset needs to be thoroughly explored and 

characterised to identify factors that may need to be accounted for during the standardization, and 

to eliminate sources of data conflict. It is also necessary to remove effort where there may be issues 

with reporting quality or the representativeness of the sampling frame.  

Work for 2025 involved obtaining, preparing, and analysing operational data for the Australian, 

Korean, and New Zealand fleets, and combining it with Japanese data to develop joint indices. The 

specific objectives of this analysis were to: 

1. Characterize the fishing patterns and data quality of each fleet 

2. Identify distinct fishing strategies within fleets through cluster analysis 

3. Develop standardized CPUE indices that account for fleet-specific catchability differences 

4. Evaluate the performance and robustness of the joint modeling approach 
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Methods 

Data Sources and Processing 
This analysis incorporated longline catch and effort data from four fishing fleets targeting Southern 

Bluefin Tuna (SBT) in the southern hemisphere. Operational data were provided by the data 

management agencies for the Australian, New Zealand, and Korean fleets. Aggregated data for the 

Japanese fleet were obtained from CPUE inputs file provided by the CCSBT.  

The operational datasets provided set-level information including species-specific catch, effort, 

spatial and temporal details, and vessel identifiers, while the Japanese dataset consisted of 

aggregated catch and effort data by stratum. 

Fleet-Specific Data Processing 
Korean Fleet (KR): Operational data were obtained from CSV files covering the period 1996-2023. 

Initial processing involved coordinate conversion from degree-minute format with hemisphere 

indicators (NS: 1=North, 2=South; EW: 1=East, 2=West) to decimal degrees. Longitudes were 

standardized to ensure proper range (-180° to 180°).  

Species catch data included Southern Bluefin Tuna (SBT), Albacore (ALB), Bigeye (BET), Yellowfin 

(YFT), Swordfish (SWO), and billfish species (Blue Marlin, Black Marlin, Striped Marlin). Processing 

approaches were based on the approach in Hoyle et al. (2022).   

New Zealand Fleet (NZ): Data were processed from CSV files with set-level information including 

precise datetime stamps in the Pacific/Auckland time zone. Coordinate conversion from truncated 

positions to decimal degrees was performed, followed by calculation of 1° and 5° grid references.  

Species mapping included conversions from CCSBT codes (STN=SBT, BIG=Bigeye, YFN=Yellowfin, 

BKM=Black Marlin, BEM=Blue Marlin, STM=Striped Marlin, MAK=Shortfin Mako). 

Australian Fleet (AU): Data integration involved merging three Excel files: effort, catch, and bait 

information. Complex temporal processing included time zone lookup using coordinates, sunrise 

time calculations relative to set times, and lunar illumination calculations for moon phase effects.  

Spatial processing involved longitude transformation (adding 360° to longitudes between -180° and -

100°) to maintain continuity across the fishing domain. Vessel identification used unique bt_id 

values, and species data processing included handling of retained and discarded catch separately. 

Japanese Fleet (JP): Aggregated data were processed from text files with stratum-level (month × 5° 

grid cell) information. The dataset included total hooks and SBT catch by stratum, with CPUE 

calculated as catch per 1000 hooks. Longitude adjustment involved adding 360° to negative 

longitudes to generate spatial continuity across the 180° boundary. 

Data Filtering and Quality Control 
Data filtering was applied to ensure data quality and analytical consistency across fleets: 

Effort and catch-based filters: 

• Minimum hooks: 200 (AU, NZ), 500 (KR) hooks per set (fleet-specific thresholds) 

• Maximum hooks: 4,500 (KR, AU, NZ), hooks per set to remove outliers 

• Hooks Between Floats (HBF): 3-50 floats where available, with correction of obvious data 

entry errors 

• At least 50 sets per vessel  
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Spatial filters: 

• Valid coordinates: latitude within ±90°, longitude within ±180° or 0°-360°.  

• CCSBT statistical areas 4-9 only (core SBT fishing grounds) 

• Latitude > -50° (southern boundary of analysis area) 

• Area 9 restriction: latitude <= -35° OR not in area 9 (excluding northern portion) 

Temporal filters: 

• Operational months 4-9 (April-September, core SBT fishing season) 

• Years > 1985 (JP), 1990 (NZ, KR), 2000 (AU) 

• Valid date information required for all records 

CPUE-based filters: 

• Maximum CPUE: catch per 1000 hooks < 200 (AU, NZ, KR) or 120 (JP) to remove extreme 

outliers 

Vessel-based filters: 

• Valid vessel identification required 

• Consistent vessel codes within fleets 

• Minimum activity: vessels with >= 50 sets total, >= 2 years fishing.  

• CPUE distribution: vessels with p(positive) >= 0.05 and <= 0.975.  

Data Standardization and Harmonization 
All datasets were transformed to a common structure with standardized variable names and units: 

Coordinate Processing and Spatial Transformations: All fleet datasets required coordinate 

processing to ensure spatial consistency and compatibility with CCSBT area definitions. Longitudes 

were transformed to maintain spatial continuity across the Pacific domain. For Australian and New 

Zealand datasets, longitudes between -180° and -100° were converted by adding 360° (e.g., -175° 

became 185°). This transformation prevents artificial discontinuities across the 180° meridian where 

fishing grounds extend across the line. 

CCSBT Statistical Area Assignment: All datasets were assigned to CCSBT statistical areas using a 

standardized lookup function. CCSBT areas 1-15 cover the full range of fishing grounds, with areas 4-

9 representing the core SBT fishing areas that were retained for analysis. 

Temporal standardization: 

• Operation date (op_date) as Date class 

• Operation year (op_yr), month (op_mon), and quarter (op_qtr) as integers 

• Year factor (year_factor) for categorical modeling 

Effort standardization: 

• Log-transformed hooks (log_hooks) for modeling 

• Hooks Between Floats (HBF) where available 

Species standardization: 

• Species catch in numbers of fish 

• CPUE calculated as SBT per 1000 hooks 

• Binary catch indicator (cpue_binary: 0/1) 

• Log-transformed CPUE (log_cpue) for positive catches only 

Fleet identification: 

• Fleet codes: AU, NZ, KR, JP 

• Vessel identifiers: anonymized and fleet prefix added (e.g., "AU_123") 

• Fleet-specific factors created for modeling 
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The standardization process resulted in a harmonized dataset with consistent variable definitions, 

units, and coding schemes across all fleets, enabling joint analysis while preserving fleet-specific 

characteristics important for CPUE standardization. 

Data Characterization 
Fleet-specific data characterization examined temporal coverage, spatial distribution, effort 

characteristics, and species composition patterns. Temporal trends in fishing effort (number of sets, 

vessels, and hooks) were analysed to identify changes in fleet activity over time. Spatial distributions 

were mapped to understand fishing ground usage and potential range shifts. Operational 

characteristics including hook numbers, hooks between floats (HBF), and other gear configurations 

were summarized to identify fleet-specific practices. 

Cluster Analysis 
Cluster analysis was conducted to identify distinct fishing strategies within each operational fleet 

based on species composition. This approach recognizes that different targeting strategies result in 

different catchability coefficients for SBT, which must be accounted for in CPUE standardization. 

Individual fishing sets were aggregated to 10-day trips using vessel and temporal identifiers to 

reduce the influence of short-term operational decisions and focus on strategic targeting choices. 

Species catch data were converted to proportions relative to total catch within each trip to 

standardize for different trip durations and catch magnitudes. 

Species were selected for clustering based on their prevalence in each fleet's dataset (minimum 5% 

of trips) and their importance in the fishery. Core species included Southern Bluefin Tuna (SBT), 

Bigeye Tuna (BET), Albacore (ALB), Yellowfin Tuna (YFT), Swordfish (SWO), and other billfish species, 

where they were present in sufficient quantities. 

Clustering Methodology 

Principal Component Analysis (PCA) was first applied to species proportion data using fourth-root 

transformation to stabilize variance and reduce the influence of rare species. The optimal number of 

principal components was determined using the Kaiser criterion and scree plot analysis. 

Hierarchical clustering was performed using Ward's linkage method (ward.D2) on Euclidean 

distances calculated from the transformed species proportions. The optimal number of clusters was 

determined based primarily on silhouette analysis (Rousseeuw, 1987), while also using the Calinski-

Harabasz Index (Caliński and Harabasz, 1974) and the elbow method for validation. Final selection 

also considered biological interpretability and statistical robustness.  

Alternative clustering methods (K-means and CLARA) were evaluated for comparison and validation. 

The hierarchical clustering approach was selected as the primary method based on superior 

interpretability and consistency with previous analyses in the region. The CLARA method provided 

higher silhouette scores in all cases and may be explored in future.  

Each cluster was characterized by its mean species composition, spatial and temporal distribution, 

operational characteristics (mean hooks per trip, HBF), and SBT catch rates.  

CPUE Standardization 

Model Framework 

CPUE standardization was conducted using a delta-lognormal approach implemented with 

Generalized Additive Models (GAMs). This approach consists of two components: a binomial model 

for the probability of catching SBT (presence/absence) and a lognormal model for positive catch 
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rates when SBT was caught. The final standardized index was calculated by multiplying predictions 

from both components. 

Model specifications 

Three model configurations were evaluated.  

Base model (Model 1): cluster effects as factors.  

Fixed vessel model (Model 2): Base model + vessel effects as factors.  

Random vessel model (Model 3): Base model + vessel effects as random effects.  

The GAM models were implemented using the R package mgcv (Wood, 2017) with the following 

general structure: 

Binomial component (presence/absence): 

cpue_binary ~ year_factor + cluster_factor + ti(lon, k=20) + ti(lat, k=4) +  

                    ti(op_mon, k=5) + ti(log_hooks) + ti(lon, lat, k=c(10,4), bs="cs") +  

                    ti(op_mon, lat, k=c(5,4), bs="cs") + ti(lon, op_mon, k=c(10,5), bs="cs") +  

                    ti(op_yr, lat, k=c(3,4), bs="cs") + ti(op_yr, op_mon, k=c(3,5), bs="cs") +  

                    ti(lon, op_yr, k=c(10,3), bs="cs") 

Positive component (lognormal): 

log(cpue) ~ year_factor + cluster_factor + ti(lon, k=20) + ti(lat, k=4) +  

                       ti(op_mon, k=6) + ti(log_hooks) + ti(lon, lat, k=c(20,4), bs="cs") +  

                       ti(op_mon, lat, k=c(6,4), bs="cs") + ti(lon, op_mon, k=c(20,6), bs="cs") +  

                       ti(op_yr, lat, k=c(20,4), bs="cs") + ti(op_yr, op_mon, k=c(20,6), bs="cs") +  

                       ti(lon, op_yr, k=c(20,20), bs="cs") + ti(lat, lon, op_mon, k=c(4,4,4), bs="cs") + 

                       ti(op_yr, lon, op_mon, k=c(4,4,4), bs="cs") + ti(lat, lon, op_yr, k=c(4,4,4), bs="cs") + 

                       ti(lat, op_mon, op_yr, k=c(4,3,3), bs="cs") 

The positive model includes four three-way tensor product interactions to capture complex spatio-

temporal relationships in SBT catch rates when present. The binomial model uses only two-way 

interactions to avoid convergence issues while maintaining adequate model complexity for 

presence/absence patterns.  

Where: 

• year_factor: categorical year effect (the target abundance signal) 

• cluster_factor: fishing strategy clusters from species composition analysis 

• ti(): tensor product interactions using cubic splines with shrinkage (bs="cs") 

• k: basis dimension controlling smoothness 

• op_yr, op_mon: continuous operation year and month 

• log_hooks: log-transformed hook numbers 

Model Implementation 

Models were fitted using the mgcv package in R (Wood, 2017), with restricted maximum likelihood 

(REML) estimation for both components. Following Wood's recommendations for multi-level 

interactions, all terms were specified using tensor product interactions (ti()) to ensure proper 

separation of main effects and interactions. 

Binomial models included effort (log_hooks) to account for the effect of effort on the probability of 

encountering SBT. Both models used cubic spline smooths with shrinkage (bs="cs"), allowing 

automatic variable selection by penalizing terms to zero when not supported by the data. 
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Both model components were fitted with a gamma=2 smoothing parameter multiplier to increase 

the smoothing penalty and reduce overfitting.  

binomial_model <- mgcv::gam(formula, family = binomial(),  

                           data = data, method = "REML", gamma = 2) 

positive_model <- mgcv::gam(formula, family = gaussian(),  

                           data = positive_data, method = "REML", gamma = 2) 

 

Model Selection and Evaluation 

Multiple model configurations were tested, varying in the inclusion of: 

• Cluster assignments (included vs. excluded) 

• Vessel effects (fixed vs. random) 

• Interaction complexity 

Model selection was based on multiple criteria including: 

• Akaike Information Criterion (AIC) 

• Deviance explained 

• Residual diagnostics 

• Biological plausibility of trends 

Index Calculation 

Standardized annual indices were calculated by predicting abundance in each fished stratum (year × 

month × 5° spatial cell) and aggregating across strata weighted by ocean area. Reference conditions 

for prediction included median values for continuous variables and the most common observation 

for factors. 

Ocean areas for each 5° × 5° grid cell were calculated following Hoyle and Langley (2020), with 

predictions limited to cells that were fished during the study period. Annual indices were normalized 

to have a geometric mean of 1.0 across the time series. 

Uncertainty Estimation 

Standard errors for annual indices were calculated using the delta method to propagate uncertainty 

from both model components. Confidence intervals were constructed assuming log-normal 

distributions for the annual index values.  

Diagnostic Assessment 

Model diagnostics included examination of: 

• Residual patterns (temporal, spatial, by fitted values) 

• Quantile-quantile plots for distributional assumptions 

• Influence measures for outlier detection 

• Partial effects plots for smooth terms 

• Basis dimension adequacy using gam.check() 

Sensitivity Analysis 

Sensitivity of the standardized index was evaluated by varying reference conditions for key variables 

including: 

• Reference month (seasonal baseline) 

• Reference hook numbers (effort baseline) 

• Reference spatial location (geographic baseline) 

• Cluster assignment (targeting strategy baseline) 
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Software and Packages 

All analyses were conducted in R version 4.3.3 using the following primary packages: 

• mgcv (Wood, 2017): GAM model fitting and diagnostics 

• tidyverse (Wickham et al., 2019): data manipulation and visualization 

• cluster: clustering algorithms and validation 

• factoextra (Kassambara and Mundt, 2017): cluster visualization and assessment 

• fastcluster (Müllner, 2013): rapid implementation of hclust in particular.  

• corrplot: correlation analysis and visualization 

• viridis: color palettes for visualization 

• lubridate (Grolemund and Wickham, 2011): date and time manipulation 

• gridExtra and ggpubr: plot arrangement and publication formatting 

 

Additional packages for specialized analyses included DHARMa (Hartig, 2020) for model diagnostics, 

gratia and visreg (Breheny and Burchett, 2017) for GAM visualization, and future for parallel 

processing of computationally intensive model fitting procedures. 

Models were run using the OpenBLAS library to improve the efficiency of matrix calculations (Xianyi 

et al., 2012).  

Results  

Characterization 

Temporal Coverage and Fleet Characteristics 

Data from Australia, New Zealand and Korea were available since 2000, 1990, and 1994 respectively 

(Figure 1). After cleaning the final dataset included 17742, 68507, and 9588 sets from Australia, New 

Zealand, and Korea respectively (Table 1), and 3642 strata in the aggregated Japanese dataset. The 

number of fish caught by species and fleet are provided in Table 2.  

Operational patterns and targeting behaviour 

Much of the effort in the Australian and New Zealand datasets had low SBT catch rates (Figure 2) 

and was likely targeted towards species other than SBT. Hooks per set tended to be lower in the 

relatively small-scale vessels operating in the Australian and New Zealand fleets, compared to the 

Korean fleet (Figure 3).  

Fishing seasonality varied among fleets, as expected given differences in targeting approaches and 

fishing locations (Figure 4). The number of active vessels in the Australian fleet declined considerably 

from 2000 to 2010, while the Korean fleet was relatively stable through time, and the New Zealand 

fleet showed more variability (Figure 5). The Australian and New Zealand fleets showed significant 

variability in the proportions of positive sets, while the relatively targeted Korean and Japanese 

fleets were much more stable (Figure 6).  

Species composition patterns 

Species compositions differed between fleets (Figure 7). The Australian and New Zealand fleets 

caught high proportions of albacore, which increased through time in the Australian fleet but 

declined from 2005 in the New Zealand fleet. The Korean fleet showed a large increase in the 

proportion of albacore catch between approximately 2006 and 2015, almost inversely related to 

SBT, with the exception of a pulse of yellowfin tuna in 2004-2005.  
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Yellowfin tuna was significant for the Australian fleet but declined as a proportion from about 2011 

as SBT catch increased. SBT catch also increased substantially in the NZ fleet, from a low point in 

2006, to reach its highest proportion in the most recent year.  

Fleet participation and spatial distribution 

Fleet participation by vessels revealed distinct patterns (Figure 8). There was an early loss of vessels 

in the Australian fleet with limited replacement, relatively steady turnover in the NZ fleet, and 

numerous KR vessels with very short periods of participation. These differences likely reflect the 

differing natures of the fleets and the data provision process.  

The domestic Australian and New Zealand fleets tend to continue fishing in the same jurisdictions 

and areas (Figure 9), and the longline effort provided was not restricted to vessels that caught SBT. 

Vessels in the distant water Korean longline fleet may be less constrained to fishing in the same 

parts of the ocean or to targeting SBT. Importantly, the KR longline effort provided included only 

vessels that caught some SBT in a given year.  

Cluster analysis  
Silhouette scores and Calinski-Harabasz indices suggested 2-3 clusters for the Australian fleet and 2-

4 clusters for the New Zealand fleet (Figure 10). A minimum selection of three clusters was applied, 

because overestimating the number of clusters is preferable to underestimating when accounting 

for targeting heterogeneity. Five clusters were supported for the Korean fleet.  

SBT catch rates differed substantially between clusters, particularly in the Australian and New 

Zealand datasets (Figure 11). These differences demonstrate meaningful variation in SBT targeting 

intensity among operational strategies within each fleet. 

In the Australian dataset, cluster 3 with high SBT catch rates was dominated by SBT and albacore 

(Figure 12). Cluster 2 was dominated by albacore, while cluster 1 was dominated by yellowfin tuna.  

In the New Zealand dataset, the cluster 2 had high SBT catch rates and was similar to the Australian 

cluster 3 in being dominated by SBT and albacore. The other two clusters were dominated y albacore 

(cluster 1) and swordfish (cluster 3).  

In the Korean dataset, clusters 1, 2, and 5 were all dominated by SBT, while clusters 3 and 4 were 

dominated by yellowfin and albacore respectively.  

The temporal patterns of cluster allocation (Figure 13) reflect the patterns of species composition 

seen in Figure 7. The Australian SBT-focused cluster 3 expanded starting in 2013. The NZ SBT-focused 

cluster 3 contracted through 1995 and then expanded from 2011 to 2022. The KR SBT-focused 

cluster 1 became the only cluster represented in that dataset from 2016 onward.  

Modeling 

Model fitting and selection 

All three model configurations fitted successfully. Model fitting times varied considerably. In Model 

1 base, the binomial  took 3 minutes to converge while the positive model took 25 minutes. For 

Model 2 vessel fixed, the binomial model fitted in 21 minutes, and the positive model took 58 

minutes. For Model 3 vessel random, the binomial model took 14 minutes to converge, and the 

positive model took 60 minutes.  

The model with fixed vessel effects was selected as the preferred model because it had the best AIC 

value in both the binomial and positive components (Table 3). All model components were highly 

significant (Tables 4 to 7).  
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Model performance and diagnostics 

Model diagnostics were expected to show some lack of fit, given the dataset included both 

operational and aggregated data. These data types have different error distributions, and the error 

distribution of aggregated data is always problematic because strata with higher CPUE tend to have 

more sets, and therefore smaller variance.  

The binomial model fit was relatively good with only minor deviations from expected patterns 

(Figure 14). The positive model showed greater signs of variation, with particular differences by 

fleet, which was anticipated given the heterogeneity in fishing operations spatial distribution, and 

data aggregation across fleets.  

Plots showing expected values and partial effects of individual covariates, while holding other 

parameters constant (Figure 15), showed very strong spatial patterns, particularly in the binomial 

component. Clusters also had a large explanatory effect. There were surprising and somewhat 

inconsistent patterns in the vessel effects, with higher rates of positive catches for the Australian 

fleet. This may reflect the relative confounding between vessels and clusters at the fleet level. These 

patterns were not observed in the same plots for model 3 which used random rather than fixed 

effects for the vessel ids. However, these issues are not expected to affect the indices.  

Residual boxplots for latitude, longitude, month, and year (Figure 16) showed substantial patterns 

associated with longitude, and minor patterns associated with latitude and month in the positive 

component. The longitude patterns may indicate that more flexibility is needed in the basis 

dimensions (k values) used in the model. There was insufficient time to explore a range of k values 

for the main effects and the interaction terms.  

DHARMa residual plots by variable (Figure 17) were consistent with the box plot diagnostics, 

showing moderate departure from model assumptions for the positive component.  

Plots of the smooth model components are provided in figures 18 (binomial) and 19 (positive). They 

include similar information to Figure 15, but without the partial effects and with the addition of the 

interaction terms.  

Standardized indices from the 3 model configurations are presented in Figure 20. Results are very 

similar across all three models, indicating relatively small impact associated with the treatment of 

vessel effects. However, substantial uncertainty is evident at the end of the time series, reflecting 

reduced data coverage and increased fleet concentration in recent years. 

The estimated trend appears to differ from the Japanese index for the period 1990-2022 (Itoh and 

Takahashi, 2025). These differences likely reflect the influence of the Australian and New Zealand 

datasets. improved spatial and temporal coverage provided by the multi-fleet approach, but require 

careful interpretation given the methodological differences between the analyses. 

Discussion 
This analysis, which combines data from multiple fleets in a single standardization analysis, was 

motivated by the progressive spatial and temporal concentration of the Japanese fleet through time. 

This increasing concentration reduces the amount of information available to the model by reducing 

the number of strata with information about catch rates. Loss of information can also cause 

instability in model estimates (e.g., Hoyle, 2021) and tends to increase uncertainty in the indices of 

abundance, as estimates increasingly rely on information sharing among adjacent strata.  

A further concern is the theoretical risk that vessels are partly achieving this greater effort 

concentration by increasingly using information obtained from one another, from remote sensing, 
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and from oceanographic models If so, this technological enhancement may improve their ability to 

focus on areas with higher catch rates and avoid areas likely to have low catch rates. Such a process 

would tend to positively bias CPUE estimates over time.  

Combining information from multiple fleets, rather than relying on data from Japan alone, has the 

potential to the improve the analysis by increasing the number of informative strata available to the 

analysis. The multi-fleet approach also provides additional spatial and temporal coverage that can 

help maintain representativeness of the fishing grounds throughout the time series. 

Several unique difficulties were associated with this analysis. The first challenge was the highly 

distinct spatial coverage of each dataset. The New Zealand dataset is based entirely in the New 

Zealand region in the far east of the spatial domain. The Australian dataset covers an even smaller 

areas based in eastern Australia and largely north of 40°S. The Korean dataset has broad coverage in 

the west but has no spatial overlap with either the Australian or the New Zealand datasets. The 

Japanese aggregated dataset has by far the broadest overage, covering almost all spatial cells 

covered by the other datasets, plus additional areas.  

Lack of overlap between the operational datasets was problematic for the analysis, because overlap 

throughout the dataset is needed to avoid singularities and ensure that parameters are estimable. 

Spatial overlap makes it possible to estimate the relative catch rates among areas without making 

unreasonable assumptions. This problem was resolved by including the aggregated Japanese data in 

the analysis, which provided the necessary spatial connectivity.  

A further difficulty was the need to jointly analyse operational and aggregated data in the same 

model, which raised issues around parameter estimability and data weighting. The aggregated 

dataset lacked vessel ids and cluster allocations, which were assigned as dummy values. All Japanese 

effort was allocated the same vessel id and cluster factor, which initially led to lack of identifiability 

due to perfect collinearity in the vessel-as-factor model. This was resolved by using the Japanese 

vessel and cluster as the reference levels for each factor in the GAM, which set their values to zero.  

Calibrating data weights between datasets was also problematic. Equal weights were initially given 

to all sets and to all strata, although each row of aggregated data is more informative about catch 

rates than individual operational sets, because aggregated data combines catch rates from multiple 

sets. However, aggregated data rows are not necessarily more informative in binomial regression, 

because each stratum provides only one piece of information: whether the aggregated stratum is 

zero or non-zero. Effort-dependent data weights were therefore omitted from the binomial model, 

though they should be considered in future in the positive model.  

Estimation difficulties occurred when fitting the binomial model, associated with vessels with 

extreme catch success rates (100%, very high proportions, very low proportions, or 0% of non-zero 

catches). Vessels that either always or never catch something are problematic in fixed-effect 

binomial models because they have infinite parameter values and provide no useful information to 

the model. Vessels that almost always or almost never catch something are also problematic, 

because they can cause numerical instability, and they provide little useful information to the model. 

This separation problem was resolved by restricting the data set to vessels making at least 50 sets, 

fishing in at least 2 years, and with between 5% and 97.5% positive catches. However, vessels with 

more than 97.5% positive catches may provide useful information to the positive model, and their 

inclusion should be considered in future analyses.  

The basis dimensions (k values) were initially set to the same values used in the Japanese GAM (Itoh 

and Takahashi, 2025), with reductions for the op_yr effects to allow for the shorter time series. 



14 
 

However, the positive model failed to converge (still running after 5+ hours) until the initial degrees 

of freedom (k values) in the three-way interaction terms were reduced considerably. This problem 

may have been caused by variation through time in the spatial distribution of data among fleets. For 

example, non-zero data from the Australian fleet were particularly sparse until about 2010. 

Restricting the flexibility of the three-way interactions allowed the model to fit successfully, but 

further model exploration is recommended.  

Model diagnostics were expected to show some lack of fit given that the dataset included both 

operational and aggregated data. These data types have different error distributions, and the error 

distribution of aggregated data is inherently problematic because strata with higher CPUE tend to 

have more sets and therefore smaller variance. The fit of the binomial model was relatively good 

with only minor deviations from expected patterns. The positive model showed greater signs of 

variation, with particular differences by fleet, which was anticipated given the heterogeneity in 

fishing operations across fleets. 

Cluster assignments showed large explanatory effects, confirming the importance of accounting for 

different targeting strategies in multi-fleet analyses. Spatial patterns were very strong, particularly in 

the binomial component. Vessel effects showed some unexpected patterns, with higher rates of 

positive catches for the Australian fleet. This may reflect confounding between vessels and clusters 

at the fleet level. Notably, these patterns were not observed in Model 3, which used random rather 

than fixed effects for vessel identifiers. Residual patterns indicated that additional flexibility may be 

needed in the longitude terms, but time constraints prevented full exploration of alternative basis 

dimensions for the main effects and interaction terms. 

The resulting indices are to some extent different from the Japanese indices (Itoh and Takahashi, 

2025) during the same period, with variation at different times and a larger increase at the end of 

the time series. Some differences are expected given the different data inputs, but more validation is 

needed to make sure that the results are credible. The combination of aggregated and operational 

data in a single analysis, while necessary for spatial connectivity, represents a methodological 

compromise. Representative indices would ideally be based on operational data from all fleets, 

though this is not currently feasible given data availability constraints. A likely contributor to the 

differences is the relatively low statistical weighting given to the Japanese data, since each Japanese 

stratum receives the same weight as a single set from the other 3 fleets. It would be useful to 

explore giving higher weights to the aggregated data, since each of these strata represents between 

4 and 1600 sets, with an average of 88 sets.  

These analyses were made feasible by using OpenBLAS libraries, which speed up matrix operations 

considerably compared to the standard Basic Linear Algebra Subprograms (BLAS) libraries. 

Otherwise, GAM analyses of such large datasets take far longer and can be impractical. OpenBLAS, 

Intel MKL, and the BLAS implementation used in Microsoft R Open are all optimized 

implementations. Microsoft R Open is no longer being developed, and the most recent version is 

based on R 4.0.2 from September 2020.  

This project has successfully developed a new R codebase for joint analysis of longline CPUE data 

using GAMS; and used it to generate joint indices of abundance by combining data from multiple 

fleets. Further testing and development will be required if the CCSBT decides to continue down this 

path. Ideally, the aggregated Japanese data should be replaced with operational data. The index may 

have a long-term role as a comparator to the Japanese index, or it may be developed as a 

replacement if its performance is found to be superior.  
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Recommendations for Future Work 
1. Enhanced data analyses: Work towards developing collaborations that can use operational 

data from all fleets, to eliminate the need for mixed data types.  

2. Model refinement: Further explore clustering methods, basis dimensions, model complexity, 

and data weighting approaches to optimize fit while maintaining stability.  

3. Simulation testing: Validate the multi-fleet approach through simulation studies to better 

understand potential biases.  

4. Compare GAM approach with alternative spatiotemporal models such as tinyVAST or 

sdmTMB.  

 

Declaration of generative AI use 

A generative artificial intelligence (AI) assistant, Anthropic Claude Sonnet 4.0, was used to parse R 

code during model development. It was also used to provide a first draft of the methods section.  
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Tables 

Table 1: Number of records available by fleet before and after filtering, quality control, and removal of records outside the 
key period of April to September and SBT areas 4 to 9.  

 AU NZ KR 
Initial records 45758 114802 33518 
After filtering  112880 33507 
After QC 45507 112098 33504 
After area/month 21975 73770 23806 
After 5% - 97.5% 
positive vessels 17742 68507 9588 

 

Table 2: Number of fish recorded by fleet and by species in the final dataset  

 AU NZ KR 
sbt 112,643 282,299 147,083 
alb 314,834 1,457,321 78,759 
bet 45,371 57,157 9,884 
yft 197,829 7,100 33,399 
swo 39,623 142,171 1,414 
mls 9,499 2,057 36 
bsh 972   
sma 7,349 65,671  
ceo 21,612   
dol 11,013   

poa 45,894   

blm   10 

bum   19 

 

Table 3: Comparison of AIC values across the three alternative models. 

Model AIC 
Positive  

AIC 
Binomial  

AIC  
Total 

dAIC 

model1_base 125944.04 56331.27 182275.31 1370.3 

model2_vessel_fixed 125054.97 55850.04 180905.01 0 

model3_vessel_random 125206.16 55912.17 181118.33 213.32 

 

  



18 
 

Table 4: Summary of parametric terms and associated statistics from the binomial sub-model of model 2. 

Term df Chi-square p-value 

year_factor 32 1581 <0.001 

cluster_factor 11 2129 <0.001 

vessel_factor 290 1034 <0.001 

 

Table 5: Summary of smooth terms and associated statistics from the binomial sub-model of model 2 fixed.  

Term edf Ref.df Chi-square p-value 

ti(lon) 16.017 17.345 542.32 <0.001 

ti(lat) 2.603 2.804 933.98 <0.001 

ti(op_mon) 3.826 3.953 1197.81 <0.001 

ti(log_hooks) 1.003 1.007 178.15 <0.001 

ti(lon,lat) 16.675 27 633.00 <0.001 

ti(op_mon,lat) 7.865 12 376.29 <0.001 

ti(lon,op_mon) 23.861 36 428.97 <0.001 

ti(op_yr,lat) 4.895 6 78.95 <0.001 

ti(op_yr,op_mon) 6.469 8 85.43 <0.001 

ti(lon,op_yr) 14.006 18 623.48 <0.001 

 

Table 6: Summary of parametric terms and associated statistics from the positive sub-model of model 2 fixed. 

Term df F p-value 

year_factor 32 63.875 <0.001 

cluster_factor 10 290.620 <0.001 

vessel_factor 291 5.373 <0.001 

 

Table 7: Summary of smooth terms and associated statistics from the positive sub-model of model 2 fixed.  

Term edf Ref.df F p-value 

ti(lon) 14.945 16.206 51.894 <0.001 

ti(lat) 2.796 2.919 153.023 <0.001 

ti(op_mon) 4.711 4.901 131.063 <0.001 

ti(lon,lat) 36.405 57 13.987 <0.001 

ti(op_mon,lat) 7.939 15 15.405 <0.001 

ti(lon,op_mon) 21.837 36 9.712 <0.001 

ti(op_yr,lat) 27.861 33 13.403 <0.001 

ti(op_yr,op_mon) 25.626 44 7.000 <0.001 

ti(lon,op_yr) 50.752 72 8.367 <0.001 

ti(lat,lon,op_mon) 4.005 27 1.852 <0.001 

ti(op_yr,lon,op_mon) 18.455 27 12.586 <0.001 

ti(lat,lon,op_yr) 12.815 27 7.539 <0.001 

ti(lat,op_mon,op_yr) 4.713 12 5.511 <0.001 
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Table 8: • Annual indices and standard errors (SE) for each year, presented for Model 1 base, Model 2 fixed, and Model 3 
random. 

 Model 1  Model 2  Model 3  

Year Index SE Index SE Index SE 

1990 0.4294 0.0106 0.4001 0.0085 0.4352 0.0102 

1991 0.3218 0.0062 0.3411 0.0058 0.3323 0.0061 

1992 0.3682 0.0057 0.4086 0.0057 0.3763 0.0055 

1993 0.4071 0.0063 0.4454 0.0063 0.4151 0.0062 

1994 0.7369 0.0120 0.6799 0.0107 0.7398 0.0118 

1995 0.6574 0.0106 0.6597 0.0104 0.6783 0.0108 

1996 0.5248 0.0096 0.4966 0.0089 0.5225 0.0095 

1997 0.4973 0.0088 0.5203 0.0087 0.5140 0.0087 

1998 0.5018 0.0097 0.5232 0.0091 0.5166 0.0094 

1999 0.5337 0.0103 0.5330 0.0090 0.5408 0.0097 

2000 0.5127 0.0097 0.5178 0.0084 0.5217 0.0090 

2001 0.5381 0.0098 0.5220 0.0081 0.5382 0.0090 

2002 0.4941 0.0085 0.4900 0.0072 0.5026 0.0080 

2003 0.3999 0.0074 0.3839 0.0060 0.4049 0.0070 

2004 0.3573 0.0071 0.3440 0.0057 0.3637 0.0067 

2005 0.3973 0.0084 0.3758 0.0065 0.3979 0.0076 

2006 0.3860 0.0086 0.3519 0.0061 0.3768 0.0074 

2007 0.4339 0.0096 0.4089 0.0068 0.4243 0.0080 

2008 0.7404 0.0150 0.6883 0.0105 0.7264 0.0126 

2009 0.6960 0.0134 0.6533 0.0099 0.6928 0.0118 

2010 0.7438 0.0138 0.7168 0.0114 0.7520 0.0130 

2011 0.7959 0.0141 0.7668 0.0122 0.8044 0.0136 

2012 0.9608 0.0170 0.9497 0.0158 0.9839 0.0167 

2013 1.0987 0.0223 1.1011 0.0216 1.1239 0.0219 

2014 1.3907 0.0348 1.3800 0.0335 1.4048 0.0334 

2015 1.6993 0.0485 1.7192 0.0467 1.7332 0.0460 

2016 2.0210 0.0698 2.0080 0.0644 2.0159 0.0636 

2017 1.8352 0.0730 1.8048 0.0647 1.8152 0.0648 

2018 2.0700 0.0950 2.0752 0.0828 2.0714 0.0835 

2019 1.5098 0.0973 1.4869 0.0825 1.4724 0.0834 

2020 1.7516 0.1601 1.7410 0.1378 1.7131 0.1373 

2021 2.7194 0.4100 2.7961 0.3715 2.6826 0.3578 

2022 4.4697 1.1229 4.7103 1.0731 4.4071 0.9981 

 



Figures 

 

Figure 1: Time series plots showing number of sets per year for operational fleets (AU, KR, NZ).  
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Figure 2: Frequency histograms of CPUE (SBT per 1000 hooks) for operational fleets (AU, KR, NZ) by individual set and aggregated Japanese (JP) fleet by stratum.  
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Figure 3: Frequency histograms showing distribution of hooks per set for operational fleets (AU, KR, NZ).  



23 
 

 

 

Figure 4: Bar plots showing monthly distribution of sets for operational fleets (AU, KR, NZ) and for the aggregated Japanese (JP) fleet, aggregated across all years. Japanese set counts are 
calculated based on 3000 hooks per set.  
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Figure 5: Time series plots showing number of active vessels per year for operational fleets (AU, KR, NZ). 
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Figure 6: Time series plots showing proportion of sets with SBT catch for operational fleets (AU, KR, NZ) and proportion of strata with SBT catch for aggregated Japanese (JP) fleet.  
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Figure 7: Stacked area plots showing relative catch proportions by species for operational fleets (AU, KR, NZ). 
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Figure 8: Line plots showing data coverage periods for individual vessels within operational fleets (AU, KR, NZ). Vessels providing fewer than 2 years of data were subsequently excluded, as 
were those with less than 5% or more than 97.5% positive observations.  
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Figure 9: Maps showing geographic distribution of fishing effort for operational fleets (AU, KR, NZ) and aggregated Japanese (JP) fleet, with point size indicating effort and colour indicating 
CPUE.  
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Figure 10: Cluster comparison plots by fleet for the operational data, using silhouette scores, Calinski-Harabasz indices, and elbow plots to select the preferred number of clusters when using 
hierarchical Ward2 clustering. For the first two approaches a higher score is better, while elbow plots show patterns in the trend of within-sample sums of squares.  



 

Figure 11: Bar plots showing SBT CPUE distributions by cluster for operational fleets (AU, KR, NZ). 
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Figure 12: Bar plots (x-axis: species) showing mean catch proportions by cluster for operational fleets (AU, KR, NZ). 
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Figure 13: Stacked bar plots showing proportion of effort by cluster for operational fleets (AU, KR, NZ). 
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Figure 14: Four-panel plots for the binomial (above) and positive (below) sub-models, showing QQ uniformity, residuals vs. 
predicted, residuals vs. year, and residuals vs. fleet with DHARMa test statistics. 
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Figure 15: Partial effects of individual covariates on binomial (above) and positive (below) responses with confidence bands, 
plotted using the visreg package. 
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Figure 16: Boxplots for the binomial (above) and positive (below) sub-models, showing quantile residuals (y-axis) against 
latitude, longitude, month, and year (x-axes) with reference lines at 0.25, 0.5, and 0.75 quantiles. 

 



 

Figure 17: DHARMa diagnostic plots for binomial (left) and positive (right) sub-models, showing quantile residuals vs. predicted values, residuals vs. latitude, longitude, month, and year, with 
quantile regression lines and uniformity tests.  
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Figure 18: Fitted smooth functions for spatial, temporal, and other covariates in the binomial sub-model with confidence bands.  
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Figure 19: Fitted smooth functions for spatial, temporal, and other covariates in the positive sub-model with confidence bands. 
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Figure 20: Comparison of indices derived from 3 models: the base model 1 without vessel effects; model 2 with vessel effects implemented as fixed effects, and model 3 with vessel effects 
implemented as random effects.  




