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Executive Summary

Background and Objectives

The Commission for the Conservation of Southern Bluefin Tuna (CCSBT) has historically relied on
catch per unit effort (CPUE) indices from the Japanese longline fishery as a primary indicator of
southern bluefin tuna (SBT) abundance. Previous analytical approaches using generalized linear
models (GLMs) encountered difficulties due to increasing spatial and temporal aggregation of fishing
effort, leading to sparse data and parameter estimation problems, particularly in recent years. These
problems were resolved via the development of GAM-based approaches using spatial-temporal
smoothing. Nevertheless, concerns remain that increasing effort concentration may reduce the
accuracy and precision of SBT abundance indices.

This analysis has developed joint CPUE indices using operational longline data from Australian, New
Zealand, and Korean fleets, combined with aggregated Japanese fleet data, to address limitations of
single-fleet approaches and with the aim of improving the reliability of abundance indices for stock

assessment.

Methods

The study incorporated longline catch and effort data from four fishing fleets spanning different time
periods. Fleet-specific data processing addressed differences in data formats, coordinate systems,
and species reporting. Hierarchical cluster analysis was applied to operational fleet data to identify
distinct fishing strategies based on species composition, which may reflect different catchability
patterns.

Standardization employed generalized additive models (GAMs) implemented through the R package
mgcv, using a delta-lognormal approach to handle zero-inflated catch data. The models incorporated
spatial, temporal, and operational covariates, with fleet-specific effects to account for differences in
catchability between fishing operations.

Key Findings

Data characterization described the substantial differences in fishing patterns among fleets,
including variations in temporal coverage, spatial distribution, gear configurations, and target
species composition. Cluster analyses identified between 2-5 distinct fishing strategies within each
operational fleet, and meaningful differences in SBT catchability that warranted separate treatment
in standardization models.

Preliminary model results suggest that joint fleet analyses can provide abundance indices that
maintain consistency with historical patterns while potentially offering improved precision and
reduced sensitivity to fleet-specific operational changes.
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Implications and Limitations

The multi-fleet approach represents a methodological improvement that may provide more robust
abundance indices for southern bluefin tuna stock assessment. The improved spatial and temporal
coverage afforded by incorporating multiple fleets could help mitigate biases associated with
increasing effort concentration and sparse data in single-fleet analyses.

However, several limitations should be acknowledged. The analysis relies on the assumption that
standardization models adequately account for differences in catchability between fleets and fishing
strategies. The quality and consistency of data reporting across fleets may vary, potentially affecting
model performance. Combining aggregated and operational data in a single analysis is a novel but
flawed approach, and the resulting indices should not be seen as representative of stock trends.
Representative indices should be based on operational data from all fleets.

Recommendations

Further validation of the joint modeling approach through simulation testing and retrospective
analysis would strengthen confidence in the resulting indices. Continued testing and refinement of
clustering methods and consideration of additional operational variables could improve the
identification of distinct fishing strategies.

The joint CPUE approach developed in this analysis provides a foundation for enhanced abundance
monitoring of southern bluefin tuna, though continued evaluation and refinement of methods will
be important as additional data become available and fishing patterns continue to evolve.



Introduction

The CPUE standardization methods used for SBT have been updated to address problems with
recent CPUE estimates. Analytical problems arose from increasing aggregation of fishing effort,
together with a method that relied on data availability in all strata. Sparse data caused parameter
estimation problems (ESC 25, para 37).

A new approach has been developed and adopted (Hoyle, 2021; Hoyle, 2022; Hoyle, 2020; Itoh and
Takahashi, 2022) that uses generalized additive models (GAMs) implemented with the R package
mgcv (Wood, 2011). The principal GAM models produced unbiased estimates with simulated data,
while GLM models and less flexible GAM smoothers provided biased indices. This bias was
particularly pronounced at the end of the time series as effort became more concentrated, and data
became sparse (Hoyle, 2022).

However, simulations indicated that biased indices would result from increasing effort concentration
through time, as vessels focused effort on areas with higher CPUE. This effect was strongest at the
end of the time series when concentration was greatest. This bias may be due to loss of information
from the dataset rather than model failure. ESC 27 concluded that it may be helpful to increase
available information via models that include data from other fleets in addition to Japan.

Work for 2023 involved exploring the spatio temporal effort distributions of fleets other than Japan,
to help understand whether they might usefully contribute to maintaining coverage of the SBT
population distribution through time, thereby reducing the risk of parameter estimation difficulties.
Results showed that data from other fleets can significantly improve coverage throughout the time
series, particularly in recent years. Catch rates of most other fleets showed similar trends to indices
from the Japanese fleet.

Joint analysis using data from multiple fleets fishing on the same stock is increasingly applied as a
way to increase the coverage and representativeness of CPUE indices (Hoyle et al., 2024; Hoyle et
al., 2018; Hoyle et al., 2015; Kitakado et al., 2021). Such analyses require significant work to prepare
data and ensure they are compatible for a joint analysis. Different fishing methods are used by
different fleets, and by different groups and vessels within fleets, resulting in variation in
catchability.

There is likely considerable catchability variation within fleets other than Japan, given the diversity of
vessel size, experience, equipment, bait use, and targeting practices within domestic fleets
compared to distant water fishing fleets. These sources of variability can be addressed using a
combination of techniques, such as the inclusion of vessel ids, identification of targeting practices,
and auxiliary analyses using additional covariates. These analyses require operational data.

Before jointly analysing national datasets, each dataset needs to be thoroughly explored and
characterised to identify factors that may need to be accounted for during the standardization, and
to eliminate sources of data conflict. It is also necessary to remove effort where there may be issues
with reporting quality or the representativeness of the sampling frame.

Work for 2025 involved obtaining, preparing, and analysing operational data for the Australian,
Korean, and New Zealand fleets, and combining it with Japanese data to develop joint indices. The
specific objectives of this analysis were to:

1. Characterize the fishing patterns and data quality of each fleet

2. ldentify distinct fishing strategies within fleets through cluster analysis

3. Develop standardized CPUE indices that account for fleet-specific catchability differences

4. Evaluate the performance and robustness of the joint modeling approach
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Methods

Data Sources and Processing

This analysis incorporated longline catch and effort data from four fishing fleets targeting Southern
Bluefin Tuna (SBT) in the southern hemisphere. Operational data were provided by the data
management agencies for the Australian, New Zealand, and Korean fleets. Aggregated data for the
Japanese fleet were obtained from CPUE inputs file provided by the CCSBT.

The operational datasets provided set-level information including species-specific catch, effort,
spatial and temporal details, and vessel identifiers, while the Japanese dataset consisted of
aggregated catch and effort data by stratum.

Fleet-Specific Data Processing

Korean Fleet (KR): Operational data were obtained from CSV files covering the period 1996-2023.
Initial processing involved coordinate conversion from degree-minute format with hemisphere
indicators (NS: 1=North, 2=South; EW: 1=East, 2=West) to decimal degrees. Longitudes were
standardized to ensure proper range (-180° to 180°).

Species catch data included Southern Bluefin Tuna (SBT), Albacore (ALB), Bigeye (BET), Yellowfin
(YFT), Swordfish (SWO), and billfish species (Blue Marlin, Black Marlin, Striped Marlin). Processing
approaches were based on the approach in Hoyle et al. (2022).

New Zealand Fleet (NZ): Data were processed from CSV files with set-level information including
precise datetime stamps in the Pacific/Auckland time zone. Coordinate conversion from truncated
positions to decimal degrees was performed, followed by calculation of 1° and 5° grid references.

Species mapping included conversions from CCSBT codes (STN=SBT, BIG=Bigeye, YFN=Yellowfin,
BKM=Black Marlin, BEM=Blue Marlin, STM=Striped Marlin, MAK=Shortfin Mako).

Australian Fleet (AU): Data integration involved merging three Excel files: effort, catch, and bait
information. Complex temporal processing included time zone lookup using coordinates, sunrise
time calculations relative to set times, and lunar illumination calculations for moon phase effects.

Spatial processing involved longitude transformation (adding 360° to longitudes between -180° and -
100°) to maintain continuity across the fishing domain. Vessel identification used unique bt_id
values, and species data processing included handling of retained and discarded catch separately.

Japanese Fleet (JP): Aggregated data were processed from text files with stratum-level (month x 5°
grid cell) information. The dataset included total hooks and SBT catch by stratum, with CPUE
calculated as catch per 1000 hooks. Longitude adjustment involved adding 360° to negative
longitudes to generate spatial continuity across the 180° boundary.

Data Filtering and Quality Control
Data filtering was applied to ensure data quality and analytical consistency across fleets:

Effort and catch-based filters:
e Minimum hooks: 200 (AU, NZ), 500 (KR) hooks per set (fleet-specific thresholds)
e  Maximum hooks: 4,500 (KR, AU, NZ), hooks per set to remove outliers
e Hooks Between Floats (HBF): 3-50 floats where available, with correction of obvious data
entry errors
e At least 50 sets per vessel



Spatial filters:
e Valid coordinates: latitude within £90°, longitude within £180° or 0°-360°.
e CCSBT statistical areas 4-9 only (core SBT fishing grounds)
e Latitude > -50° (southern boundary of analysis area)
e Area 9 restriction: latitude <=-35° OR not in area 9 (excluding northern portion)
Temporal filters:
e Operational months 4-9 (April-September, core SBT fishing season)
e Years > 1985 (JP), 1990 (NZ, KR), 2000 (AU)
e Valid date information required for all records
CPUE-based filters:
e Maximum CPUE: catch per 1000 hooks < 200 (AU, NZ, KR) or 120 (JP) to remove extreme
outliers
Vessel-based filters:
e Valid vessel identification required
e Consistent vessel codes within fleets
e  Minimum activity: vessels with >= 50 sets total, >= 2 years fishing.
e CPUE distribution: vessels with p(positive) >= 0.05 and <= 0.975.

Data Standardization and Harmonization
All datasets were transformed to a common structure with standardized variable names and units:

Coordinate Processing and Spatial Transformations: All fleet datasets required coordinate
processing to ensure spatial consistency and compatibility with CCSBT area definitions. Longitudes
were transformed to maintain spatial continuity across the Pacific domain. For Australian and New
Zealand datasets, longitudes between -180° and -100° were converted by adding 360° (e.g., -175°
became 185°). This transformation prevents artificial discontinuities across the 180° meridian where
fishing grounds extend across the line.

CCSBT Statistical Area Assignment: All datasets were assigned to CCSBT statistical areas using a
standardized lookup function. CCSBT areas 1-15 cover the full range of fishing grounds, with areas 4-
9 representing the core SBT fishing areas that were retained for analysis.

Temporal standardization:
e Operation date (op_date) as Date class
e Operation year (op_yr), month (op_mon), and quarter (op_qtr) as integers
e Year factor (year_factor) for categorical modeling
Effort standardization:
e Log-transformed hooks (log_hooks) for modeling
e Hooks Between Floats (HBF) where available
Species standardization:
e Species catch in numbers of fish
e CPUE calculated as SBT per 1000 hooks
e Binary catch indicator (cpue_binary: 0/1)
e Log-transformed CPUE (log_cpue) for positive catches only
Fleet identification:
e Fleet codes: AU, NZ, KR, JP
e Vessel identifiers: anonymized and fleet prefix added (e.g., "AU_123")
e Fleet-specific factors created for modeling



The standardization process resulted in a harmonized dataset with consistent variable definitions,
units, and coding schemes across all fleets, enabling joint analysis while preserving fleet-specific
characteristics important for CPUE standardization.

Data Characterization

Fleet-specific data characterization examined temporal coverage, spatial distribution, effort
characteristics, and species composition patterns. Temporal trends in fishing effort (number of sets,
vessels, and hooks) were analysed to identify changes in fleet activity over time. Spatial distributions
were mapped to understand fishing ground usage and potential range shifts. Operational
characteristics including hook numbers, hooks between floats (HBF), and other gear configurations
were summarized to identify fleet-specific practices.

Cluster Analysis

Cluster analysis was conducted to identify distinct fishing strategies within each operational fleet
based on species composition. This approach recognizes that different targeting strategies result in
different catchability coefficients for SBT, which must be accounted for in CPUE standardization.

Individual fishing sets were aggregated to 10-day trips using vessel and temporal identifiers to
reduce the influence of short-term operational decisions and focus on strategic targeting choices.
Species catch data were converted to proportions relative to total catch within each trip to
standardize for different trip durations and catch magnitudes.

Species were selected for clustering based on their prevalence in each fleet's dataset (minimum 5%
of trips) and their importance in the fishery. Core species included Southern Bluefin Tuna (SBT),
Bigeye Tuna (BET), Albacore (ALB), Yellowfin Tuna (YFT), Swordfish (SWO), and other billfish species,
where they were present in sufficient quantities.

Clustering Methodology

Principal Component Analysis (PCA) was first applied to species proportion data using fourth-root
transformation to stabilize variance and reduce the influence of rare species. The optimal number of
principal components was determined using the Kaiser criterion and scree plot analysis.

Hierarchical clustering was performed using Ward's linkage method (ward.D2) on Euclidean
distances calculated from the transformed species proportions. The optimal number of clusters was
determined based primarily on silhouette analysis (Rousseeuw, 1987), while also using the Calinski-
Harabasz Index (Calinski and Harabasz, 1974) and the elbow method for validation. Final selection
also considered biological interpretability and statistical robustness.

Alternative clustering methods (K-means and CLARA) were evaluated for comparison and validation.
The hierarchical clustering approach was selected as the primary method based on superior
interpretability and consistency with previous analyses in the region. The CLARA method provided
higher silhouette scores in all cases and may be explored in future.

Each cluster was characterized by its mean species composition, spatial and temporal distribution,
operational characteristics (mean hooks per trip, HBF), and SBT catch rates.

CPUE Standardization

Model Framework

CPUE standardization was conducted using a delta-lognormal approach implemented with
Generalized Additive Models (GAMSs). This approach consists of two components: a binomial model
for the probability of catching SBT (presence/absence) and a lognormal model for positive catch



rates when SBT was caught. The final standardized index was calculated by multiplying predictions
from both components.

Model specifications

Three model configurations were evaluated.

Base model (Model 1): cluster effects as factors.

Fixed vessel model (Model 2): Base model + vessel effects as factors.

Random vessel model (Model 3): Base model + vessel effects as random effects.

The GAM models were implemented using the R package mgcv (Wood, 2017) with the following
general structure:

Binomial component (presence/absence):

cpue_binary ~ year_factor + cluster_factor + ti(lon, k=20) + ti(lat, k=4) +
tilop_mon, k=5) + ti(log_hooks) + ti(lon, lat, k=c(10,4), bs="cs") +
ti(op_mon, lat, k=c(5,4), bs="cs") + ti(lon, op_mon, k=c(10,5), bs="cs") +
ti(op_yr, lat, k=c(3,4), bs="cs") + ti(op_yr, op_mon, k=c(3,5), bs="cs") +
ti(lon, op_yr, k=c(10,3), bs="cs")

Positive component (lognormal):

log(cpue) ~ year_factor + cluster_factor + ti(lon, k=20) + ti(lat, k=4) +
tilop_mon, k=6) + ti(log_hooks) + ti(lon, lat, k=c(20,4), bs="cs") +
ti(op_mon, lat, k=c(6,4), bs="cs") + ti(lon, op_mon, k=c(20,6), bs="cs") +
ti(op_yr, lat, k=c(20,4), bs="cs") + ti(op_yr, op_mon, k=c(20,6), bs="cs") +
ti(lon, op_yr, k=c(20,20), bs="cs") + ti(lat, lon, op_mon, k=c(4,4,4), bs="cs") +
ti(op_yr, lon, op_mon, k=c(4,4,4), bs="cs") + ti(lat, lon, op_yr, k=c(4,4,4), bs="cs") +
ti(lat, op_mon, op_yr, k=c(4,3,3), bs="cs")

The positive model includes four three-way tensor product interactions to capture complex spatio-
temporal relationships in SBT catch rates when present. The binomial model uses only two-way
interactions to avoid convergence issues while maintaining adequate model complexity for
presence/absence patterns.

Where:

e year_factor: categorical year effect (the target abundance signal)

e cluster_factor: fishing strategy clusters from species composition analysis

e ti(): tensor product interactions using cubic splines with shrinkage (bs="cs")
e k: basis dimension controlling smoothness

e Op_yr, op_mon: continuous operation year and month

e log_hooks: log-transformed hook numbers

Model Implementation

Models were fitted using the mgcv package in R (Wood, 2017), with restricted maximum likelihood
(REML) estimation for both components. Following Wood's recommendations for multi-level
interactions, all terms were specified using tensor product interactions (ti()) to ensure proper
separation of main effects and interactions.

Binomial models included effort (log_hooks) to account for the effect of effort on the probability of
encountering SBT. Both models used cubic spline smooths with shrinkage (bs="cs"), allowing
automatic variable selection by penalizing terms to zero when not supported by the data.



Both model components were fitted with a gamma=2 smoothing parameter multiplier to increase
the smoothing penalty and reduce overfitting.

binomial_model <- mgcv::gam(formula, family = binomial(),

data = data, method = "REML", gamma = 2)
positive_model <- mgcv::gam(formula, family = gaussian(),

data = positive_data, method = "REML", gamma = 2)

Model Selection and Evaluation

Multiple model configurations were tested, varying in the inclusion of:
e Cluster assignments (included vs. excluded)
e Vessel effects (fixed vs. random)
e Interaction complexity

Model selection was based on multiple criteria including:
e Akaike Information Criterion (AIC)
e Deviance explained
e Residual diagnostics
e Biological plausibility of trends

Index Calculation

Standardized annual indices were calculated by predicting abundance in each fished stratum (year x
month x 5° spatial cell) and aggregating across strata weighted by ocean area. Reference conditions
for prediction included median values for continuous variables and the most common observation
for factors.

Ocean areas for each 5° x 5° grid cell were calculated following Hoyle and Langley (2020), with
predictions limited to cells that were fished during the study period. Annual indices were normalized
to have a geometric mean of 1.0 across the time series.

Uncertainty Estimation

Standard errors for annual indices were calculated using the delta method to propagate uncertainty
from both model components. Confidence intervals were constructed assuming log-normal
distributions for the annual index values.

Diagnostic Assessment
Model diagnostics included examination of:

e Residual patterns (temporal, spatial, by fitted values)
e Quantile-quantile plots for distributional assumptions
¢ Influence measures for outlier detection

e Partial effects plots for smooth terms

e Basis dimension adequacy using gam.check()

Sensitivity Analysis
Sensitivity of the standardized index was evaluated by varying reference conditions for key variables
including:

e Reference month (seasonal baseline)

e Reference hook numbers (effort baseline)

e Reference spatial location (geographic baseline)
e Cluster assignment (targeting strategy baseline)



Software and Packages
All analyses were conducted in R version 4.3.3 using the following primary packages:

e mgcv (Wood, 2017): GAM model fitting and diagnostics

e tidyverse (Wickham et al., 2019): data manipulation and visualization

e cluster: clustering algorithms and validation

e factoextra (Kassambara and Mundt, 2017): cluster visualization and assessment
e fastcluster (Mullner, 2013): rapid implementation of hclust in particular.

e corrplot: correlation analysis and visualization

e viridis: color palettes for visualization

e lubridate (Grolemund and Wickham, 2011): date and time manipulation

e gridExtra and ggpubr: plot arrangement and publication formatting

Additional packages for specialized analyses included DHARMa (Hartig, 2020) for model diagnostics,
gratia and visreg (Breheny and Burchett, 2017) for GAM visualization, and future for parallel
processing of computationally intensive model fitting procedures.

Models were run using the OpenBLAS library to improve the efficiency of matrix calculations (Xianyi
et al., 2012).

Results
Characterization

Temporal Coverage and Fleet Characteristics

Data from Australia, New Zealand and Korea were available since 2000, 1990, and 1994 respectively
(Figure 1). After cleaning the final dataset included 17742, 68507, and 9588 sets from Australia, New
Zealand, and Korea respectively (Table 1), and 3642 strata in the aggregated Japanese dataset. The
number of fish caught by species and fleet are provided in Table 2.

Operational patterns and targeting behaviour

Much of the effort in the Australian and New Zealand datasets had low SBT catch rates (Figure 2)
and was likely targeted towards species other than SBT. Hooks per set tended to be lower in the
relatively small-scale vessels operating in the Australian and New Zealand fleets, compared to the
Korean fleet (Figure 3).

Fishing seasonality varied among fleets, as expected given differences in targeting approaches and
fishing locations (Figure 4). The number of active vessels in the Australian fleet declined considerably
from 2000 to 2010, while the Korean fleet was relatively stable through time, and the New Zealand
fleet showed more variability (Figure 5). The Australian and New Zealand fleets showed significant
variability in the proportions of positive sets, while the relatively targeted Korean and Japanese
fleets were much more stable (Figure 6).

Species composition patterns

Species compositions differed between fleets (Figure 7). The Australian and New Zealand fleets
caught high proportions of albacore, which increased through time in the Australian fleet but
declined from 2005 in the New Zealand fleet. The Korean fleet showed a large increase in the
proportion of albacore catch between approximately 2006 and 2015, almost inversely related to
SBT, with the exception of a pulse of yellowfin tuna in 2004-2005.
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Yellowfin tuna was significant for the Australian fleet but declined as a proportion from about 2011
as SBT catch increased. SBT catch also increased substantially in the NZ fleet, from a low point in
2006, to reach its highest proportion in the most recent year.

Fleet participation and spatial distribution

Fleet participation by vessels revealed distinct patterns (Figure 8). There was an early loss of vessels
in the Australian fleet with limited replacement, relatively steady turnover in the NZ fleet, and
numerous KR vessels with very short periods of participation. These differences likely reflect the
differing natures of the fleets and the data provision process.

The domestic Australian and New Zealand fleets tend to continue fishing in the same jurisdictions
and areas (Figure 9), and the longline effort provided was not restricted to vessels that caught SBT.
Vessels in the distant water Korean longline fleet may be less constrained to fishing in the same
parts of the ocean or to targeting SBT. Importantly, the KR longline effort provided included only
vessels that caught some SBT in a given year.

Cluster analysis

Silhouette scores and Calinski-Harabasz indices suggested 2-3 clusters for the Australian fleet and 2-
4 clusters for the New Zealand fleet (Figure 10). A minimum selection of three clusters was applied,
because overestimating the number of clusters is preferable to underestimating when accounting
for targeting heterogeneity. Five clusters were supported for the Korean fleet.

SBT catch rates differed substantially between clusters, particularly in the Australian and New
Zealand datasets (Figure 11). These differences demonstrate meaningful variation in SBT targeting
intensity among operational strategies within each fleet.

In the Australian dataset, cluster 3 with high SBT catch rates was dominated by SBT and albacore
(Figure 12). Cluster 2 was dominated by albacore, while cluster 1 was dominated by yellowfin tuna.

In the New Zealand dataset, the cluster 2 had high SBT catch rates and was similar to the Australian
cluster 3 in being dominated by SBT and albacore. The other two clusters were dominated y albacore
(cluster 1) and swordfish (cluster 3).

In the Korean dataset, clusters 1, 2, and 5 were all dominated by SBT, while clusters 3 and 4 were
dominated by yellowfin and albacore respectively.

The temporal patterns of cluster allocation (Figure 13) reflect the patterns of species composition
seen in Figure 7. The Australian SBT-focused cluster 3 expanded starting in 2013. The NZ SBT-focused
cluster 3 contracted through 1995 and then expanded from 2011 to 2022. The KR SBT-focused
cluster 1 became the only cluster represented in that dataset from 2016 onward.

Modeling

Model fitting and selection

All three model configurations fitted successfully. Model fitting times varied considerably. In Model
1 base, the binomial took 3 minutes to converge while the positive model took 25 minutes. For
Model 2 vessel fixed, the binomial model fitted in 21 minutes, and the positive model took 58
minutes. For Model 3 vessel random, the binomial model took 14 minutes to converge, and the
positive model took 60 minutes.

The model with fixed vessel effects was selected as the preferred model because it had the best AIC
value in both the binomial and positive components (Table 3). All model components were highly
significant (Tables 4 to 7).
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Model performance and diagnostics

Model diagnostics were expected to show some lack of fit, given the dataset included both
operational and aggregated data. These data types have different error distributions, and the error
distribution of aggregated data is always problematic because strata with higher CPUE tend to have
more sets, and therefore smaller variance.

The binomial model fit was relatively good with only minor deviations from expected patterns
(Figure 14). The positive model showed greater signs of variation, with particular differences by
fleet, which was anticipated given the heterogeneity in fishing operations spatial distribution, and
data aggregation across fleets.

Plots showing expected values and partial effects of individual covariates, while holding other
parameters constant (Figure 15), showed very strong spatial patterns, particularly in the binomial
component. Clusters also had a large explanatory effect. There were surprising and somewhat
inconsistent patterns in the vessel effects, with higher rates of positive catches for the Australian
fleet. This may reflect the relative confounding between vessels and clusters at the fleet level. These
patterns were not observed in the same plots for model 3 which used random rather than fixed
effects for the vessel ids. However, these issues are not expected to affect the indices.

Residual boxplots for latitude, longitude, month, and year (Figure 16) showed substantial patterns
associated with longitude, and minor patterns associated with latitude and month in the positive
component. The longitude patterns may indicate that more flexibility is needed in the basis
dimensions (k values) used in the model. There was insufficient time to explore a range of k values
for the main effects and the interaction terms.

DHARMa residual plots by variable (Figure 17) were consistent with the box plot diagnostics,
showing moderate departure from model assumptions for the positive component.

Plots of the smooth model components are provided in figures 18 (binomial) and 19 (positive). They
include similar information to Figure 15, but without the partial effects and with the addition of the
interaction terms.

Standardized indices from the 3 model configurations are presented in Figure 20. Results are very
similar across all three models, indicating relatively small impact associated with the treatment of
vessel effects. However, substantial uncertainty is evident at the end of the time series, reflecting
reduced data coverage and increased fleet concentration in recent years.

The estimated trend appears to differ from the Japanese index for the period 1990-2022 (Itoh and
Takahashi, 2025). These differences likely reflect the influence of the Australian and New Zealand
datasets. improved spatial and temporal coverage provided by the multi-fleet approach, but require
careful interpretation given the methodological differences between the analyses.

Discussion

This analysis, which combines data from multiple fleets in a single standardization analysis, was
motivated by the progressive spatial and temporal concentration of the Japanese fleet through time.
This increasing concentration reduces the amount of information available to the model by reducing
the number of strata with information about catch rates. Loss of information can also cause
instability in model estimates (e.g., Hoyle, 2021) and tends to increase uncertainty in the indices of
abundance, as estimates increasingly rely on information sharing among adjacent strata.

A further concern is the theoretical risk that vessels are partly achieving this greater effort
concentration by increasingly using information obtained from one another, from remote sensing,
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and from oceanographic models If so, this technological enhancement may improve their ability to
focus on areas with higher catch rates and avoid areas likely to have low catch rates. Such a process
would tend to positively bias CPUE estimates over time.

Combining information from multiple fleets, rather than relying on data from Japan alone, has the
potential to the improve the analysis by increasing the number of informative strata available to the
analysis. The multi-fleet approach also provides additional spatial and temporal coverage that can
help maintain representativeness of the fishing grounds throughout the time series.

Several unique difficulties were associated with this analysis. The first challenge was the highly
distinct spatial coverage of each dataset. The New Zealand dataset is based entirely in the New
Zealand region in the far east of the spatial domain. The Australian dataset covers an even smaller
areas based in eastern Australia and largely north of 40°S. The Korean dataset has broad coverage in
the west but has no spatial overlap with either the Australian or the New Zealand datasets. The
Japanese aggregated dataset has by far the broadest overage, covering almost all spatial cells
covered by the other datasets, plus additional areas.

Lack of overlap between the operational datasets was problematic for the analysis, because overlap
throughout the dataset is needed to avoid singularities and ensure that parameters are estimable.
Spatial overlap makes it possible to estimate the relative catch rates among areas without making
unreasonable assumptions. This problem was resolved by including the aggregated Japanese data in
the analysis, which provided the necessary spatial connectivity.

A further difficulty was the need to jointly analyse operational and aggregated data in the same
model, which raised issues around parameter estimability and data weighting. The aggregated
dataset lacked vessel ids and cluster allocations, which were assigned as dummy values. All Japanese
effort was allocated the same vessel id and cluster factor, which initially led to lack of identifiability
due to perfect collinearity in the vessel-as-factor model. This was resolved by using the Japanese
vessel and cluster as the reference levels for each factor in the GAM, which set their values to zero.

Calibrating data weights between datasets was also problematic. Equal weights were initially given
to all sets and to all strata, although each row of aggregated data is more informative about catch
rates than individual operational sets, because aggregated data combines catch rates from multiple
sets. However, aggregated data rows are not necessarily more informative in binomial regression,
because each stratum provides only one piece of information: whether the aggregated stratum is
zero or non-zero. Effort-dependent data weights were therefore omitted from the binomial model,
though they should be considered in future in the positive model.

Estimation difficulties occurred when fitting the binomial model, associated with vessels with
extreme catch success rates (100%, very high proportions, very low proportions, or 0% of non-zero
catches). Vessels that either always or never catch something are problematic in fixed-effect
binomial models because they have infinite parameter values and provide no useful information to
the model. Vessels that almost always or almost never catch something are also problematic,
because they can cause numerical instability, and they provide little useful information to the model.
This separation problem was resolved by restricting the data set to vessels making at least 50 sets,
fishing in at least 2 years, and with between 5% and 97.5% positive catches. However, vessels with
more than 97.5% positive catches may provide useful information to the positive model, and their
inclusion should be considered in future analyses.

The basis dimensions (k values) were initially set to the same values used in the Japanese GAM (ltoh
and Takahashi, 2025), with reductions for the op_yr effects to allow for the shorter time series.
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However, the positive model failed to converge (still running after 5+ hours) until the initial degrees
of freedom (k values) in the three-way interaction terms were reduced considerably. This problem
may have been caused by variation through time in the spatial distribution of data among fleets. For
example, non-zero data from the Australian fleet were particularly sparse until about 2010.
Restricting the flexibility of the three-way interactions allowed the model to fit successfully, but
further model exploration is recommended.

Model diagnostics were expected to show some lack of fit given that the dataset included both
operational and aggregated data. These data types have different error distributions, and the error
distribution of aggregated data is inherently problematic because strata with higher CPUE tend to
have more sets and therefore smaller variance. The fit of the binomial model was relatively good
with only minor deviations from expected patterns. The positive model showed greater signs of
variation, with particular differences by fleet, which was anticipated given the heterogeneity in
fishing operations across fleets.

Cluster assignments showed large explanatory effects, confirming the importance of accounting for
different targeting strategies in multi-fleet analyses. Spatial patterns were very strong, particularly in
the binomial component. Vessel effects showed some unexpected patterns, with higher rates of
positive catches for the Australian fleet. This may reflect confounding between vessels and clusters
at the fleet level. Notably, these patterns were not observed in Model 3, which used random rather
than fixed effects for vessel identifiers. Residual patterns indicated that additional flexibility may be
needed in the longitude terms, but time constraints prevented full exploration of alternative basis
dimensions for the main effects and interaction terms.

The resulting indices are to some extent different from the Japanese indices (ltoh and Takahashi,
2025) during the same period, with variation at different times and a larger increase at the end of
the time series. Some differences are expected given the different data inputs, but more validation is
needed to make sure that the results are credible. The combination of aggregated and operational
data in a single analysis, while necessary for spatial connectivity, represents a methodological
compromise. Representative indices would ideally be based on operational data from all fleets,
though this is not currently feasible given data availability constraints. A likely contributor to the
differences is the relatively low statistical weighting given to the Japanese data, since each Japanese
stratum receives the same weight as a single set from the other 3 fleets. It would be useful to
explore giving higher weights to the aggregated data, since each of these strata represents between
4 and 1600 sets, with an average of 88 sets.

These analyses were made feasible by using OpenBLAS libraries, which speed up matrix operations
considerably compared to the standard Basic Linear Algebra Subprograms (BLAS) libraries.
Otherwise, GAM analyses of such large datasets take far longer and can be impractical. OpenBLAS,
Intel MKL, and the BLAS implementation used in Microsoft R Open are all optimized
implementations. Microsoft R Open is no longer being developed, and the most recent version is
based on R 4.0.2 from September 2020.

This project has successfully developed a new R codebase for joint analysis of longline CPUE data
using GAMS; and used it to generate joint indices of abundance by combining data from multiple
fleets. Further testing and development will be required if the CCSBT decides to continue down this
path. Ideally, the aggregated Japanese data should be replaced with operational data. The index may
have a long-term role as a comparator to the Japanese index, or it may be developed as a
replacement if its performance is found to be superior.
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Recommendations for Future Work

1.

Enhanced data analyses: Work towards developing collaborations that can use operational
data from all fleets, to eliminate the need for mixed data types.

Model refinement: Further explore clustering methods, basis dimensions, model complexity,
and data weighting approaches to optimize fit while maintaining stability.

Simulation testing: Validate the multi-fleet approach through simulation studies to better
understand potential biases.

Compare GAM approach with alternative spatiotemporal models such as tinyVAST or
sdmTMB.

Declaration of generative Al use

A generative artificial intelligence (Al) assistant, Anthropic Claude Sonnet 4.0, was used to parse R
code during model development. It was also used to provide a first draft of the methods section.
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Tables

Table 1: Number of records available by fleet before and after filtering, quality control, and removal of records outside the
key period of April to September and SBT areas 4 to 9.

AU NZ KR
Initial records 45758 114802 33518
After filtering 112880 33507
After QC 45507 112098 33504
After area/month 21975 73770 23806
After 5% - 97.5%
positive vessels 17742 68507 9588

Table 2: Number of fish recorded by fleet and by species in the final dataset

AU NZ KR
sbt 112,643 282,299 147,083
alb 314,834 1,457,321 78,759
bet 45,371 57,157 9,884

yft 197,829 7,100 33,399
SWOo 39,623 142,171 1,414
mls 9,499 2,057 36
bsh 972

sma 7,349 65,671

ceo 21,612

dol 11,013

poa 45,894

blm 10
bum 19

Table 3: Comparison of AIC values across the three alternative models.

Model AIC AIC AIC dAIC
Positive Binomial Total

modell_base 125944.04 56331.27 182275.31 1370.3

model2_vessel_fixed 125054.97 55850.04 180905.01 0

model3_vessel_random 125206.16 55912.17 181118.33 213.32
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Table 4: Summary of parametric terms and associated statistics from the binomial sub-model of model 2.

Term df  Chi-square p-value
year_factor 32 1581 <0.001
cluster_factor 11 2129 <0.001
vessel factor 290 1034 <0.001

Table 5: Summary of smooth terms and associated statistics from the binomial sub-model of model 2 fixed.

Term edf Ref.df Chi-square p-value
ti(lon) 16.017 17.345 542.32 <0.001
ti(lat) 2.603 2.804 933.98 <0.001
ti(op_mon) 3.826  3.953 1197.81 <0.001
ti(log_hooks) 1.003 1.007 178.15 <0.001
ti(lon,lat) 16.675 27 633.00 <0.001
ti(op_mon,lat) 7.865 12 376.29 <0.001
ti(lon,op_mon) 23.861 36 428.97 <0.001
ti(op_yr,lat) 4.895 6 78.95  <0.001
tilop_yr,op_mon) 6.469 8 85.43 <0.001
ti(lon,op_yr) 14.006 18 623.48 <0.001

Table 6: Summary of parametric terms and associated statistics from the positive sub-model of model 2 fixed.

Term df F p-value
year_factor 32 63.875 <0.001
cluster_factor 10 @ 290.620 <0.001
vessel factor 291 5.373 <0.001

Table 7: Summary of smooth terms and associated statistics from the positive sub-model of model 2 fixed.

Term edf Ref.df F p-value
ti(lon) 14945 16.206 51.894 <0.001
ti(lat) 2.796 2919 153.023 <0.001
ti(op_mon) 4711 4901 131.063 <0.001
ti(lon,lat) 36.405 57 13.987 <0.001
ti(op_mon,lat) 7.939 15 15.405 <0.001
ti(lon,op_mon) 21.837 36 9.712 <0.001
ti(op_yr,lat) 27.861 33 13.403 <0.001
ti(op_yr,op_mon) 25.626 44 7.000 <0.001
ti(lon,op_yr) 50.752 72 8.367 <0.001
ti(lat,lon,op_mon) 4.005 27 1.852 <0.001
ti(op_yr,lon,op_mon) | 18.455 27 12.586 <0.001
ti(lat,lon,op_yr) 12.815 27 7.539 <0.001
ti(lat,op_mon,op_yr) 4.713 12 5.511 <0.001

18



Table 8: * Annual indices and standard errors (SE) for each year, presented for Model 1 base, Model 2 fixed, and Model 3
random.

Model 1 Model 2 Model 3

Year Index SE Index SE Index SE

1990 0.4294 0.0106 0.4001 0.0085 0.4352 0.0102
1991 0.3218 0.0062 0.3411 0.0058 0.3323 0.0061
1992 0.3682 0.0057 0.4086 0.0057 0.3763 0.0055
1993 0.4071 0.0063 0.4454 0.0063 0.4151 0.0062
1994 0.7369 0.0120 0.6799 0.0107 0.7398 0.0118
1995 0.6574 0.0106 0.6597 0.0104 0.6783 0.0108
1996 0.5248 0.0096 0.4966 0.0089 0.5225 0.0095
1997 0.4973 0.0088 0.5203 0.0087 0.5140 0.0087
1998 0.5018 0.0097 0.5232 0.0091 0.5166 0.0094
1999 0.5337 0.0103 0.5330 0.0090 0.5408 0.0097
2000 0.5127 0.0097 0.5178 0.0084 0.5217 0.0090
2001 0.5381 0.0098 0.5220 0.0081 0.5382 0.0090
2002 0.4941 0.0085 0.4900 0.0072 0.5026 0.0080
2003 0.3999 0.0074 0.3839 0.0060 0.4049 0.0070
2004 0.3573 0.0071 0.3440 0.0057 0.3637 0.0067
2005 0.3973 0.0084 0.3758 0.0065 0.3979 0.0076
2006 0.3860 0.0086 0.3519 0.0061 0.3768 0.0074
2007 0.4339 0.0096 0.4089 0.0068 0.4243 0.0080
2008 0.7404 0.0150 0.6883 0.0105 0.7264 0.0126
2009 0.6960 0.0134 0.6533 0.0099 0.6928 0.0118
2010 0.7438 0.0138 0.7168 0.0114 0.7520 0.0130
2011 0.7959 0.0141 0.7668 0.0122 0.8044 0.0136
2012 0.9608 0.0170 0.9497 0.0158 0.9839 0.0167
2013 1.0987 0.0223 1.1011 0.0216 1.1239 0.0219
2014 1.3907 0.0348 1.3800 0.0335 1.4048 0.0334
2015 1.6993 0.0485 1.7192 0.0467 1.7332 0.0460
2016 2.0210 0.0698 2.0080 0.0644 2.0159 0.0636
2017 1.8352 0.0730 1.8048 0.0647 1.8152 0.0648
2018 2.0700 0.0950 2.0752 0.0828 2.0714 0.0835
2019 1.5098 0.0973 1.4869 0.0825 1.4724 0.0834
2020 1.7516 0.1601 1.7410 0.1378 1.7131 0.1373
2021 2.7194 0.4100 2.7961 0.3715 2.6826 0.3578
2022 4.4697 1.1229 4.7103 1.0731 4.4071 0.9981
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Figures

AU Fleet - Number of Sets by Year

KR Fleet - Number of Sets by Year
Dashed line shows trend
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Figure 1: Time series plots showing number of sets per year for operational fleets (AU, KR, NZ).



AU Fleet - CPUE Distribution KR Fleet - GPUE Distribution
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Figure 2: Frequency histograms of CPUE (SBT per 1000 hooks) for operational fleets (AU, KR, NZ) by individual set and aggregated Japanese (JP) fleet by stratum.
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AU Fleet - Hooks per Set Distribution KR Fleet - Hooks per Set Distribution
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Figure 3: Frequency histograms showing distribution of hooks per set for operational fleets (AU, KR, NZ).
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AU Fleet - Sets by Month
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Figure 4: Bar plots showing monthly distribution of sets for operational fleets (AU, KR, NZ) and for the aggregated Japanese (JP) fleet, aggregated across all years. Japanese set counts are
calculated based on 3000 hooks per set.
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KR Fleet - Number of Vessels by Year
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Figure 5: Time series plots showing number of active vessels per year for operational fleets (AU, KR, NZ).
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AU Fleet - Proportion of Positive Sets by Year KR Fleet - Proportion of Positive Sets by Year
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Figure 6: Time series plots showing proportion of sets with SBT catch for operational fleets (AU, KR, NZ) and proportion of strata with SBT catch for aggregated Japanese (JP) fleet.
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Figure 7: Stacked area plots showing relative catch proportions by species for operational fleets (AU, KR, NZ).
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AU Fleet - Vessel Participation Timeling KR Fleet - Vessel Participation Timeling
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Figure 8: Line plots showing data coverage periods for individual vessels within operational fleets (AU, KR, NZ). Vessels providing fewer than 2 years of data were subsequently excluded, as
were those with less than 5% or more than 97.5% positive observations.
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Figure 9: Maps showing geographic distribution of fishing effort for operational fleets (AU, KR, NZ) and aggregated Japanese (JP) fleet, with point size indicating effort and colour indicating

CPUE.

28



AU Ficet - Slhouette Score by Number of Clusters AU Fleet - Within Sum of Squares by Number of Clusters KR Fleet - Slihouctte Score by Number of Clusters: KR Fleet - Within Sum of Squares by Number of Clusters

2000 i
o

1250 o

E,‘ S\\houc%c Score
(
Within Sé‘m of Sqéar,_-z
SHhouancgcnm
M within s‘;“ ofSauares

1000

B 3
Number of Clusters (k)

o

a & N 6 4 &
Number of Clusters (k} Number of Clusters {k) Number of Clusters (k}

AU Fleet - Calinskl-Harabasz Index by Number of Clusters KR Fleet - Callnski-Harabasz Index by Number of Clusters
o

900
00

2000 a0

CH Index
4 H
CH Index

. W
Number of Clusters {k} Number of Clusters (k}

NZ Flect - Sllhouette Score by Number of Clusters. NZ Fleet - Within Sum of Squares by Number of Clusters

000

aoan

2000

Sllhouctte Score
Within Sum of Squares

4
Number of Glusters (ky Number of Clusters (k)
NZ Fleet - Callnskl-Harabasz Index by Number of Clusters

12000

12000

CH Index

i

-

0000

Number of Clusters (k)

Figure 10: Cluster comparison plots by fleet for the operational data, using silhouette scores, Calinski-Harabasz indices, and elbow plots to select the preferred number of clusters when using
hierarchical Ward?2 clustering. For the first two approaches a higher score is better, while elbow plots show patterns in the trend of within-sample sums of squares.
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AU Fleet - Mean CPUE by Cluster
Based on 10-day trip aggregations
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Figure 11: Bar plots showing SBT CPUE distributions by cluster for operational fleets (AU, KR, NZ).



AU Fleet - Species Composition by Cluster
Mean proportions based on 10-day trip aggregations
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Figure 12: Bar plots (x-axis: species) showing mean catch proportions by cluster for operational fleets (AU, KR, NZ).
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AU Fleet - Temporal Distribution of Clusters
Proportion of trips by cluster and year
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Figure 13: Stacked bar plots showing proportion of effort by cluster for operational fleets (AU, KR, NZ).
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Figure 14: Four-panel plots for the binomial (above) and positive (below) sub

predicted, residuals vs. year, and residuals vs. fleet with DHARMa test statistics.
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Residuals by Longitude
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Figure 16: Boxplots for the binomial (above) and positive (below) sub-models, showing quantile residuals (y-axis) against

latitude, longitude, month, and year (x-axes) with reference lines at 0.25, 0.5, and 0.75 quantiles.
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Figure 17: DHARMa diagnostic plots for binomial (left) and positive (right) sub-models, showing quantile residuals vs. predicted values, residuals vs. latitude, longitude, month, and year, with
quantile regression lines and uniformity tests.
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Figure 18: Fitted smooth functions for spatial, temporal, and other covariates in the binomial sub-model with confidence bands.

37



Positive Model - Smooth Functions Positive Model - Smooth Functions Positive Model - Smooth Functions Pasitive Model - Smooth Functions

- [
& =) =
= © o £
= B E
2 - = a -
ERA 3 v
o ke
T T T T T T T T T
4 5 & 7 & 9 = =
op_mon -
Positive Model - Smooth Functions Positive Model - Smooth Functions
[ w " - I
‘i"{‘-ﬁﬁ
B L B
[ 5 o y B
LR LI ,
« o « o -
T T T T T T T T T T
o i o wr

op_Yyr—

Positive Model - Smooth Functions
2014 2018 2022

lat

Positive M odel - Smooth Functions

lat

Positive 4 odel - Smooth Functions
[
|
|
MY
Positived odel - Smooth Functions

2
L

op_yr—
2014 2018

)

lat

Positive 4 odel - Smooth Functions

LT 094 1998
op_men op_yr—

Figure 19: Fitted smooth functions for spatial, temporal, and other covariates in the positive sub-model with confidence bands.
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GAM Standardized CPUE Indices - Model Comparison
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Figure 20: Comparison of indices derived from 3 models: the base model 1 without vessel effects; model 2 with vessel effects implemented as fixed effects, and model 3 with vessel effects
implemented as random effects.
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