2017 ANNUAL REPORT TO THE ECOLOGICALLY RELATED SPECIES WORKING GROUP (ERSWG)

Republic of Indonesia

Bram Setyadji¹, Zulkarnaen Fahmi¹ and Duto Nugroho²

Research Institute for Tuna Fisheries, Bali
²⁾ Center of Fisheries Research, Jakarta

1. Introduction

Southern bluefin tuna (*Thunnus maccoyii*) was caught as bycatch of Indonesia tuna longline vessel targeting bigeye tuna and yellowfin tuna operating in the Indian ocean but mostly within Indonesia Fisheries Management Area 573. Indonesia became the member of the CCSBT in April, 2008 with a membership allocation of annual catch limits of 750 mt. Based on 2015 catch monitoring program in Benoa port, as reported, SBT catch of Indonesian tuna longline fishery was 593 mt with 114 SBT-related vessels in active. This report includes information on Ecologically Related Species (ERS) of Indonesia tuna longline fisheries collected by scientific observers on-board updated to 2013-2015.

2. Review of SBT Fisheries

Indonesia has developed its tuna fisheries since 1970s, but for southern bluefin tuna catch recording was initiated appropriately since 2008, and in fact that hundreds of Indonesia longline vessels had SBT catch record. During 2011-2015, Indonesia annual catch were more than its national quota, that it may be resulted from the involvement of hundreds of small-scale tuna longline vessels in this SBT fisheries. From 2015, Indonesia started to allocate quota to each company through three (3) associations, and there are 17 companies having received its own quota. In this scheme, each company has to submit the list of their vessel greater than 30 GT authorized to fish for SBT and those vessels have also to be included on the CCSBT Record of Vessel Authorized to Fish for SBT. And there are 211 tuna longline vessels greater than 30 GT have been listed as authorized vessels to fish for SBT. To support the effective implementation of this scheme, Indonesia has developed an Application System of CDS and will be fully operated from January 2015. Under this system, quota allocation for each company will be controlled automatically at the time of submission of CDS form for its validation. In this system, CDS form for validation has to be submitted this on-line system.

In addition to that, there are about 305 small-scale longline vessels (smaller than 30 GT) that are possible to catch SBT, of which 120 out of them have been included on the

CCSBT Record of Vessel Authorized to Fish for SBT. In fact, SBT is un-intended bycatch for this fleets, therefore national quota did not allocate to them due to difficulties in practical.

Annual number of Indonesia tuna longline vessels included on the CCSBT Record of Vessel Authorized to Fish for SBT is shown in the Table 1. Number of vessel is fluctuated due to validity period of their fishing permit is different each other. The fishing ground extends from 70 - 125 °E and from 0 - 35 °S. Higher CPUE were obtained below 25 °S (Figure 1).

The highest landing occurred in February and October and the lowest landing between June to August. The pattern of monthly fluctuation is similar with the 6 previous consecutive years (2010-2015). SBT being more abundant on the fishing grounds and more significant proportion of the overall tuna catch during the SBT spawning season, which is occurred during September to April

3. Fisheries Monitoring for each fleet

Indonesia commenced scientific observer program in 2005, it is not exclusively to SBT fishery but to tuna fishery. Scientific observer on-board will carry out its task in accordance with the template/guideline adopted by IOTC and CCSBT. For 2015, 5 observers had deployed onboard and their coverages were 0.73%, as shown in Table 2. The low coverage due to large number of non-specific longline vessel targeting SBT, therefore to comply with minimum 5% coverage requires a lot of resources. All data collected by observer was validated by a group of scientist from Research Center of Fisheries Management and Conservation. During the trip, they observed and collected data based on the template as far as possible, such as number of catch, discard/release (dead or live), species composition, gear type, catch and effort including biological data, etc. Catch and Effort data was daily recorded in the fishing logbook and reported to the principal of base-port.

To increase data collection by observer on-board as required by RFMO such IOTC and CCSBT, since 2013 Directorate General of Capture Fisheries has established National Observer Program. Under this program, there are 6 (six) tuna longline vessels had been observed in 2015, of which the collected data need to be further validated by the scientists from Research Center of Fisheries Management and Conservation, particularly in species identification such as sharks, ray as well as another species.

4. Seabirds

Total numbers, CPUE and mortality of seabirds by species incidentally caught by Indonesian longline fishery are shown in Table 3.

5. Other non-target species

Total numbers, CPUE and mortality of non-target species incidentally caught by Indonesian longline fishery are shown in Table 4.

6. Marine Mammal and Marine Reptile

Total numbers, CPUE and mortality of non-target species incidentally caught by Indonesian longline fishery are shown in Table 5.

7. Mitigation Measures to Minimize Seabird and Other Species Bycatch

In accordance with Ministerial Regulation No. 12/2002, it is mandatory for each tuna longline vessel to implement mitigation measure to seabirds when they are fishing in south of 25 °S. The option of night setting, seabirds scaling line and weight line has become a requirement. In relation to mitigation measure on marine turtle, it is a requirement for tuna longline vessel to carry on-board a necessary equipment to appropriate release of marine turtle caught incidentally, such as de-hooker, line-cutting and scope net.

8. Public Relations and Education Activities

Awareness building activity to protect ERS and bycatch such as marine turtle, seabirds and sharks, has been developed in form of printing material such as poster and leaflet. This material has been widely distributed to all stakeholders of tuna fisehries, particularly in Bali and Jakarta where SBT is commonly landed.

9. Information on other ERS (non-bycatch) such as prey and predator species Nothing

10. Others

Nothing

11. Implementation of the IPOA-Seabirds and IPOA-Sharks

Recent progress related to the management of shark in Indonesia after establishment of National Plan of Action of the Shark (NPOA-Shark) on 10th October 2010 is the issuance of ministerial decree no 12, 2012, chapter X which regulates a management and conservation of bycatch and ecological related species on tuna fisheries. Several activities to raise the fishers' awareness on the important of sharks' resource sustainability are through workshops, seminars and producing and distribute posters which prohibit several keys species of sharks to catch. In the framework of fisheries management of sharks and rays in Indonesia, the government through the minister of marine and fisheries has issued a ministerial regulation of marine and relevant fisheries management and use of sharks and

rays in Indonesia, the latest regulations contained in the Minister of Marine and Fisheries No. 34/PERMEN-KP/2015 on the amendment of the Minister of Marine Affairs and Fisheries No. 59/PERMEN-KP/2014 concerning prohibition on the issuance of Oceanic whitetip sharks (*Carcharhinus longimanus*) and hammerhead sharks (*Sphyrna* spp.) from the territory of Republic of Indonesia out of Indonesian territory. Indonesia also established National Plan of Action (NPOA) for sharks and rays 2015-2019. Indonesia also currently in a stage of arranging national plan of action for seabird mitigation.

Tabel 1. Annual Number of Indonesia Longline Vessel fishing for Tuna including SBT And
Annual Catch of SBT catches in the CCSBT Convention Area, 2008-2015

Year	Number of Longline Vessel	Estimated Catch (tons)
2009	438	641
2010	272	580
2011	274	769
2012	317	817
2013	386	722
2014	336	1,187
2015	114	593*

Note: * provisional

Figure 1. Distribution of nominal hook rates of SBT caught by Indonesian tuna longline fisheries based on scientific observer data, 2005-2015.

Year	Trips Observed	Effort observed (X1,000)	Total effort estimated (X1,000)	Coverage (%)
2009	5	323	169,769	0.19
2010	5	220	71,808	0.31
2011	5	110	36,168	0.30
2012	6	290	91,930	0.32
2013	5	253	117,190	0.22
2014	8	194	48,888	0.40
2015	5	169	23,119	0.73

Table 2. Observer coverages of hooks observed from the Indonesian observer program,
2009-2015

	_		_	_										_		_				_	_			_		_	_	_	_	-
ID	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID	A. SHARF	2009	Entity	Fishing	Country/	Table 4. O	Ð	T	2015	ID	ID	2012	ID	2009	Entity	Fishing	Country/	Table 3. I
2009	2009	2009	2009	2009	2009	2009	2009	2009	2009	2009	2009	2009	K		I CUI	Vear	Calendar -	bserved o	2010	2015		2012	2012		2009		1 Cai	Vear	Calanda	estimation
LL	LL	LL	LL	LL	LL	LL	LL	LL	LL	LL	LL	LL			Code	Gear	Fishe	f total s	Ę	11		LL	LL		LL		Code	Gear	Fi Fi	of tota
IDD	IDD	IDD	IDD	IDD	IDD	IDD	IDD	IDD	IDD	IDD	IDD	IDD			Code	Fleet	ery	sharks a		תרו		IDD	IDD		IDD		Code	Fleet	shery	l seabir
1	1	1	1	1	1	1	1	1	1	1	1	1			Area	Statistical	CCSBT	und rays ca	-	_		2	1		1		Area	Statistica	CCSBT	ds caught
TSP 7	TSK]	TRT]	SSH S	SSD S	SPZ H	SPY I	MSP N	MSO N	MSK N	CSK (CCB S	BSH I			group)	(or	Species	ught inci	ц.	B3		B3	B3		B1		group)	l (or	Species	incidental
Thresher sharks	Thresher sharks	Thresher sharks	Silky Shark	Shortnose spurdog	Hammerhead sharks	Hammerhead sharks	Mako sharks	Mako sharks	Mako sharks	Crocodile shark	Spinner shark	3 lue shark				English		dentally by Indones	DIACK / MURIL 033	Black A lhatross		Black Albatross	Black Albatross		Seagull			English		lly by Indonesian tu
2	2	14	10	22	3	3	7	9	3	47	10	53			(number)	Captured	Observed	ian tuna lon	~	7		9	3		1		(number)	Captured	Observed	na longline
0.006	0.006	0.043	0.031	0.068	0.009	0.009	0.022	0.028	0.009	0.145	0.031	0.164			Rate	Capture	Observed	gline fleets	1.00	1 58		1.25	2.00		0.71		Rate	Capture	Observed	fleets fron
2	2	2	6	22	3	3	7	9	3	45	10	53			(number)	Mortalities	Observed	s from 2009.	`	7		9	3		1		(number)	Mortalities	Observed	n 2009-2015
0.006	0.006	0.006	0.027	0.068	0.009	0.009	0.022	0.028	0.009	0.139	0.031	0.164			Rate	Mortality	Observed	-2015	1.00	1 58		1.25	2.00		0.71		Rate	Mortality	Observed	
0	0	12	1	0	0	0	0	0	0	2	0	0			Releases	Live	Observed		<	n		0	0		0		Releases	Live	Observed	
2	2	2	6	22	3	3	7	9	3	45	10	53			mortalities	number of	Estimated total		`	7		6	3		1		mortalities	number of	Estimated total	

1	0	0.009	1	0.009	1	Mako sharks	MSP	1	IDD	LL	2012	ID
2	0	0.017	2	0.017	2	Mako sharks	MSO	1	IDD	LL	2012	ID
17	0	0.147	17	0.147	17	Crocodile shark	CSK	1	IDD	LL	2012	ID
9	0	0.078	9	0.078	9	Blue shark	BSH	1	IDD	LL	2012	ID
											RKS	A. SHAI
												2012
297	166	2.690	297	4.194	463	Pelagic stingrays	DAV	1	IDD	LL	2011	ID
1	3	0.009	1	0.036	4	Pelagic stingrays	DAS	1	IDD	LL	2011	ID
												B. RAYS
1	1	0.009	1	0.009	1	Thresher sharks	TSK	1	IDD	LL	2011	ID
1	0	0.009	1	0.009	1	Hammerhead sharks	SPL	1	IDD	LL	2011	ID
46	23	0.417	46	0.625	69	Crocodile shark	CSK	1	IDD	LL	2011	ID
4	0	0.036	4	0.036	4	Blue shark	BSH	1	IDD	LL	2011	ID
											RKS	A. SHAI
												2011
80	230	0.362	80	1.406	310	Pelagic stingrays	DAV	1	IDD	LL	2010	ID
234	3	1.061	234	1.075	237	Pelagic stingrays	DAS	1	IDD	LL	2010	ID
												B. RAYS
5	20	0.022	5	0.113	25	Thresher Sharks	TRT	1	IDD	LL	2010	ID
3	0	0.014	3	0.014	3	Silky Shark	SSH	1	IDD	LL	2010	ID
1	0	0.005	1	0.005	1	Hammerhead sharks	SPY	1	IDD	LL	2010	ID
1	0	0.005	1	0.005	1	Mako sharks	MSO	1	IDD	LL	2010	ID
3	0	0.014	3	0.014	3	Mako sharks	MSK	1	IDD	LL	2010	ID
268	37	1.216	268	1.384	305	Crocodile shark	CSK	1	IDD	LL	2010	ID
08	0	0.363	08	0.363	80	Blue shark	BSH	1	IDD	LL	2010	ID
											KS	A. SHAR
												2010
147	358	0.455	147	1.563	505	Pelagic stingrays	DAV	1	IDD	LL	2009	ID
687	1	2.126	687	2.157	697	Pelagic stingrays	DAS	1	IDD	LL	2009	ID
												B. RAYS
1	0	0.003	1	0.003	1	Thresher sharks	TSS	1	IDD	LL	2009	ID

17	0	0.088	17	0.088	17	Spinner shark	CCB		IDD	LL	2014	ID
67	0	0.346	67	0.346	67	Blue shark	BSH	1	IDD	LL	2014	ID
											RKS	A. SHA
												2014
337	253	1.332	337	2.333	590	Pelagic stingray	DAV	1	IDD	LL	2013	ID
400	6	1.582	400	1.605	406	Pelagic stingray	DAS	1	IDD	LL	2013	ID
											S	B. RAY
1	0	0.004	1	0.004	1	Thresher sharks	TSS	1	IDD	LL	2013	ID
1	0	0.004	1	0.004	1	Thresher sharks	TSP	1	IDD	LL	2013	ID
1	0	0.004	1	0.004	1	Thresher sharks	TSK	1	IDD	LL	2013	ID
1	0	0.004	1	0.004	1	Hammerhead sharks	\mathbf{SPY}	1	IDD	LL	2013	ID
2	0	0.008	2	0.008	2	Mako sharks	MSO	1	IDD	LL	2013	ID
1	0	0.004	1	0.004	1	Mako sharks	MSK	1	IDD	LL	2013	ID
53	0	0.210	53	0.210	53	Crocodile shark	CSK	1	IDD	LL	2013	ID
4	0	0.016	4	0.016	4	Spinner shark	CCB	1	IDD	LL	2013	ID
39	0	0.154	39	0.154	39	Blue shark	BSH	1	IDD	LL	2013	ID
											RKS	A. SHA
												2013
161	4	1.388	161	1.422	165	Pelagic stingray	DAV	2	IDD	LL	2012	ID
4	0	0.034	4	0.034	4	Pelagic stingray	DAS	2	IDD	LL	2012	ID
30	9	0.172	30	0.224	39	Pelagic stingray	DAV	1	IDD	LL	2012	ID
199	4	1.142	199	1.165	203	Pelagic stingray	DAS	1	IDD	LL	2012	ID
											S	B. RAY
3	0	0.017	3	0.017	3	Thresher sharks	TSP	2	IDD	LL	2012	ID
2	0	0.011	2	0.011	2	Hammerhead sharks	SPY	2	IDD	LL	2012	ID
6	0	0.052	6	0.052	6	Mako sharks	MSK	2	IDD	LL	2012	ID
140	0	0.803	140	0.803	140	Crocodile shark	CSK	2	IDD	LL	2012	ID
372	0	2.135	372	2.135	372	Blue shark	BSH	2	IDD	LL	2012	ID
2	0	0.017	2	0.017	2	Thresher sharks	TSS	1	IDD	LL	2012	ID
2	0	0.017	2	0.017	2	Thresher sharks	TSK	1	IDD	LL	2012	ID
1	1	0.009	1	0.017	2	Thresher sharks	TRT	1	IDD	LL	2012	ID

ID 20	ID 20		ID 2(2009	Entity 2009 ID 20	Fishing Entity 2009 ID 20
1 009 L	009 L		009 L	009	009 L	Year C 009 L
	L IDD		IDD	IDD	Code Code	Gear Fleet Code Code
1 1	1		1	-	Area 1	Statistical Area 1
TTIG	TTH		LKV	LKV	group) LKV	(or group) LKV
Marine turtles nei	Hawksbill turtle	•	Olive ridley turtle	Olive ridley turtle	Olive ridley turtle	English Olive ridley turtle
1	2	7	c	2	(number)	Captured (number)
0.003	0.006	0.006	0000	0000	Rate	Capture Rate
0	1	1			(number)	Mortalities (number)
0.000	0.006	0.006	> >>>	> >>	Rate	Mortality Rate
1	1	1		_	Releases	Live Releases
				_	mortalities	number of mortalities

ID	2015	ID	2014	ID	2013	ID	2012	ID	2011	ID	2010
2015		2014		2013		2012		2011		2010	
LL		LL		LL		LL		LL		LL	
IDD		IDD		IDD		IDD		IDD		IDD	
		1		1		1		1		1	
LKV		LKV		LKV		LKV		LKV		LKV	
Olive ridley turtle		Olive ridley turtle		Olive ridley turtle		Olive ridley turtle		Olive ridley turtle		Olive ridley turtle	
1		12		6		5		1		7	
0.006	_	0.062		0.024		0.017		0.009		0.032	
1		3		5		3		1		6	
0.006		0.015		0.020		0.010		0.009		0.027	
0		6		1		2		0		1	
1		3		5		3		1		6	