

Fisheries New Zealand

Tini a Tangaroa

Factors affecting Protected Species Captures in domestic Surface longline fisheries New Zealand Aquatic Environment and Biodiversity Report No.....

Stefan Meyer, Darryl MacKenzie

ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN XXXX (online)

February 2022

New Zealand Government

Requests for further copies should be directed to:

Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140

Email: <u>brand@mpi.govt.nz</u> Telephone: 0800 00 83 33 Facsimile: 04-894 0300

This publication is also available on the Ministry for Primary Industries websites at: <u>http://www.mpi.govt.nz/news-and-resources/publications</u> <u>http://fs.fish.govt.nz</u> go to Document library/Research reports

© Crown Copyright – Fisheries New Zealand

TABLE OF CONTENTS

EXECUTIVE SUMMARY	1
1. INTRODUCTION	3
2. METHODS 2.1 Data preparation	4 4
2.2 Species grouping	7
2.3 Observed effort and captures in small-vessel surface-longline fi 2006–07 and 2018–19	isheries between 7
2.4 Variable correlations	11
2.5 Statistical modelling	12
 3. RESULTS 3.1 All seabirds captures model 3.2 Multi-species captures model: black petrel, white-capped albatross, H 	14 14 Buller's albatross
3.3 NZ fur seal captures model	35
3.4 Turtle captures model	45
4. WORKSHOP OUTCOME	50
5. DISCUSSION	55
6. REFERENCES APPENDIX A: INITIAL DATA SUMMARY PRESENTED T(57 O AEWG IN
NOVEMBER 2021	59
APPENDIX B: INITIAL BAYESIAN MODEL EXPLORATION (IN PR	ROGRESS) 61
APPENDIX C: PREDICTIVE CHECKING FOR ALL SEABIRD MODEL	S CAPTURES 77
APPENDIX D: PREDICTIVE CHECKING FOR MULTI-SPECIE MODEL: BLACK PETREL, WHITE-CAPPED ALBATROS ALBATROSS	S CAPTURES S, BULLER'S 81
APPENDIX E: PREDICTIVE CHECKING FOR NZ FUR SEAL CAPT	TURES MODEL 93
APPENDIX F: PREDICTIVE CHECKING FOR TURTLE CAPTURES	S MODEL 99

APPENDIX G: RESIDUALS VS ADDITIONAL PREDICTORS FOR ALL BIRDS CAPTURES MODEL 100

- APPENDIX H: RESIDUALS VS ADDITIONAL PREDICTORS FOR MULTI-SPECIES CAPTURES MODEL: BLACK PETRELS, WHITE-CHINED PETREL, BULLER'S ALBATROSS 101
- APPENDIX I: RESIDUALS VS ADDITIONAL PREDICTORS FOR FUR SEAL CAPTURES MODEL 106
- APPENDIX J: RESIDUALS VS ADDITIONAL PREDICTORS FOR TURTLE CAPTURES MODEL 109
- APPENDIX K: HISTOGRAMMS FOR DATA OF SIGNIFICANT ADDITIONAL PREDICTORS FOR ALL SEABIRDS MODEL 110
- APPENDIX L: HISTOGRAMMS FOR DATA OF SIGNIFICANT ADDITIONAL PREDICTORS FOR MULTI-SPECIES SEABIRDS MODEL: BLACK PETREL, WHITE-CAPPED ALBATROSS, BULLER'S ALBATROSS 125
- APPENDIX M: HISTOGRAMMS FOR DATA OF SIGNIFICANT ADDITIONAL PREDICTORS FOR NZ FUR SEAL CAPTURES MODEL 117
- APPENDIX N: HISTOGRAMMS FOR DATA OF SIGNIFICANT ADDITIONAL PREDICTORS FOR TURTLE CAPTURES MODEL 119

EXECUTIVE SUMMARY

Meyer, S.; MacKenzie D. (2021). Factors affecting Protected Species Captures in domestic surface longline fisheries.

New Zealand Aquatic Environment and Biodiversity Report No. XX. XX p.

The overall objective of this study was to Assess risk factors that influence the capture of protected species including seabirds, fur seals, sharks, and turtles by small SLL vessels to inform the development of potential mitigation strategies.

For this study, the Protected Species Captures database (PSCDB) was expanded by utilizing additional variables that are stored in the centralised observer database (COD) but are not formally integrated into the PSCDB. Observed captures of seabirds, NZ fur seals, and marine turtles were then analysed. There were insufficient observed captures of dolphins and whales, and sharks and rays to enable meaningful analysis. This analysis focuses on small surface-longline (SSL) vessels operation between the 2006–07 and 2018–19 fishing years.

Negative binomial generalised linear models with varying level of complexity were fitted to observed captures of seabirds, NZ fur seals, and turtles. For seabird species, two alternate models were fitted: (1) a model for all seabird captures combined, (2) a multi-species captures model for the most frequently caught seabird species (black petrel, white-capped albatross, and Buller's albatross).

A two-phase model fitting process was used given the varying completeness of the variables. In Phase 1, models within the candidate set were fit separately to datasets with varying data completeness and (within each dataset) ranked by AIC. However, including many variables at once in the analysis would lead to substantial data pruning because of the heterogeneity of missing values across fishing events. Therefore, in Phase 2, additional variables that were incomplete for the dataset being considered were separately added to the top AIC-ranked model fitted to complete data from Phase 1, which should include the main variables for explaining variation in the observed captures.

The main effects identified in Phase 1 for the model with seabirds combined were fishing year, area (discrete areas along coastline), presence/absence of vessel freezer, moon phase, and start month. For the multi-species model fit to observed captures of black petrels, white-capped albatrosses, and Buller's albatrosses, the main effects were similar, and included presence/absence of vessel freezer, moon phase, start month, and an interaction term for area and species. Main effects identified in the NZ fur seal capture model were fishing year, area, start month, presence/absence of tori lines, and bathymetry. The model fitted to observed turtle captures showed poor predictive ability most likely due to insufficient observed captures.

Phase 2 model fitting indicated that several other vessel-configuration, fishing-behaviour, and environmental variables could affect the capture rates of seabirds and NZ fur seals. For example, seabird capture rates appeared to decrease with increased night hours, when the tori line was over the bait entry point, with increasing tori line attachment height (a proxy for aerial extent), and with increasing distance to shore. In contrast, capture rates increased with higher number of turns during setting, and fishing during higher sea surface temperatures. For fur seals, the presence/absence of light sticks, line setting height, use of light (short) streamers, seemed to increase capture rates, while increased night hours and increased distance between bait and tori line appeared to have a decreasing effect on capture rates.

A workshop was held to discuss the results and improvement of existing or new bycatch mitigation strategies. A main conclusion from the workshop was that a set of mandatory variables (e.g., whether tori line was placed over the bait entry point) are required to reduce the data sparseness that limits the assessment of mitigation measures and alternative options as done here. Further recommended was to

adjust instructions for variable collection to reduce the level of subjectivity that could arise otherwise (e.g., currently deck lighting which could attract birds is only recorded as to whether there existed unnecessary deck lighting). Further, it was recommended to focus data collection on variables that influence the sink rate of hooks, such as vessel speed and individual snood length.

1. INTRODUCTION

Surface longline (SLL) fishing in New Zealand (NZ) occurs predominantly off the west coast of the South Island and the east coast of the North Island, targeting tuna and swordfish. Incidental captures of non-target species occur within SLL fisheries, and these captures range from seabirds, marine mammals, marine turtles, to sharks and rays. Incidental seabird captures in NZ's SLL fisheries are mitigated through the following mandatory measures:

- Using hook-shielding device (hookpods) being introduced in 2020; and/or
- deploy a tori (streamer) line for the duration of all setting events; and
- either set lines at night, or weight lines.

The effectiveness of these measures, however, depends on the set-up of the vessel, conditions (e.g., weather) at the time of fishing, or the combination of different bycatch mitigation measures. For example, in South African pelagic longline fisheries the combined use of two bird-scaring lines. weighted branch lines and night setting is considered best practice to reduce seabird bycatch (Melvin et al., 2014). Bull (2007) also suggests that "a combination of BSL [bird scaring lines], line weighting, night setting (in some fisheries), and retention of offal during fishing operations is likely to be the most effective regime for mitigating seabird bycatch in NZ demersal and pelagic longline fisheries". The author further suggests that factors influencing the "effectiveness of a BSL include the seabird assemblage present, fishing grounds, target fish species, fishing method, vessel size, time of day/year, weather conditions, BSL quality, and mounting height". Other factors reducing bycatch (though not discussed in combination with bycatch mitigation devices) are the setting depth of hooks, hook type, presence/absence of light sticks (discussed for shark bycatch for NZ longline fisheries in Howard (2015)); setting depth of hooks (discussed for turtle bycatch for US Longline Fisheries in Swimmer et al. (2017)); dumping of offal (discussed for seabird bycatch mitigation for pelagic longline fisheries targeting tuna and related species in Melvin et la. (2014), and Middleton & Abraham (2007)); and distance to breeding site (discussed for seabird bycatch for New Zealand trawl and longline fisheries in Waugh et al. (2008)).

The overall objective of this study was to Assess risk factors that influence the capture of protected species including seabirds, fur seals, sharks & rays, dolphins & whales, and turtles by small SLL vessels to inform the development of potential mitigation strategies. The specific objectives of this study are:

- 1. Conduct modelling analyses to examine the influence of factors that could potentially lead to the capture of protected species by domestic longline vessels.
- 2. Based on the outcome of Objective 1, summarise the results and organise a workshop to test potential mitigation strategies.

For this study, the Protected Species Captures database (PSCDB; Abraham & Berkenbusch, 2019) was expanded by utilizing additional variables that are stored in the centralised observer database (COD; Sanders & Fisher 2010) but are not formally integrated into the PSCDB. Observed captures of seabirds, NZ fur seals, marine turtles, sharks and rays, and whales and dolphins were then analysed (where possible) to identify factors that potentially influence captures of protected species in SLL fisheries. This analysis focuses on small SLL vessels that operated between the 2006–07 and 2018–19 fishing years (i.e., hookpods were not integrated into this assessment). Hooks pods have not been assessed in this analysis as an updated COD including information on hook pods was not available at the time of this analysis.

2. METHODS

2.1 Data preparation

Groomed data from the PSCDB version 5 (Meyer, 2022, report in review) including the 2018–19 fishing year were combined with additional variables (i.e., those not being formerly integrated into the PSCDB) from the COD. The datasets were filtered for domestic and Australian-based small SLL vessels operating between the 2006–07 and 2018–19 fishing years, as this time period is considered to reflect the status quo of NZ's commercial SLL fishery (e.g., there are no Japanese vessels currently operating in NZ's SLL fisheries) and this project is aimed at identifying current risk factors so as to develop "new" mitigation strategies (personal communication with William Gibson and Ben Sharp, FNZ).

The PSCDB contains three tables: (1) fisher-reported catch effort data (*catch_effort_t*), observerreported effort data (*observer_effort_t*), and reported protected species captures (*all_captures_t*). Records from *catch_effort_t* and *observer_effort_t* are linked as part of the PSCDB grooming by using several linking rules developed by Abraham & Berkenbusch (2019), which allows additional fields that are recorded in the observer data (e.g., mitigation methods) being appended to the catch effort data. Only observed fishing events were included in this analysis, hence only records from *catch_effort_t* that had been successfully linked to *observer_effort_t* (i.e., shared the same event key) were used.

Data was extracted from the PSCDB by applying the above filtering of records and joining the *catch_effort_t* and *observer_effort_t* tables on the event key column. Additional variables (see Table 1) taken from the COD were added to the filtered PSCDB extract by linking records via the *trip_number* (trip number allocated by the observer programme) and *station_number* (a sequential identifier for each fishing event, e.g., a tow or set) (Sanders & Fisher, 2018), which are preserved in both the COD and the *observer_effort_t* table of the PSC database.

New COD variables were obtained from the following tables (descriptions obtained directly from COD):

- x_haul_effort: Hourly information of observed tuna longline hauls (expanded by station number)
- x_surface_lining_effort: Profile information on all observed sets of tuna longlines (expanded by station number)
- x_sll_baskets: Surface long line gear, detail on baskets deployed for fishing events. From SLL gear form Version 3, August 2018.
- *x_sll_gear*: Surface long line gear data. From SLL gear form Version 3, August 2018.
- x_surface_lining_bait: Information on bait species used on observed sets of Tuna longline vessels (expanded by trip number)
- *x_tori_line*: Tori line details.
- *x_fishing_event_catch_specimen*: Description of catches of specimens (fish, birds, seals, etc) made by tuna longlines (expanded by station number)

The tables $x_fishing_event$ (generic information associated with a set of fishing effort) and x_trip (header information common to a trip) were used to expand the different tables (if needed) by station numbers or trip numbers, respectively, so they can be sufficiently linked the PSCDB extract.

A total of 2 611 records of observed SLL fishing events on small vessels during the 2006–07 to 2018– 19 fishing years were available in the PSCDB. 238 records were without a matching event key leading to remaining dataset with 2 373 fishing events available for this analysis. An initial data assessment of the completeness of each variable between the 2006–07 and 2018–19 fishing years was carried out and presented to the AEWG (Table 32 in Appendix A). Data were only fully available for variables that are already integrated into the PSCDB. The proportion of fishing events available for analysis diminished with the incorporation of variables from the COD, and the proportion varied substantially across variables, either because these were recorded sporadically or only in recent years (Table 32 in Appendix A).

Including all variables at once in the analysis would cause substantial data pruning because of the heterogeneity of missing values across fishing events and fishing years (see Table 32). Therefore, five datasets were created where variables were included based on different thresholds for data completeness. An unpruned dataset, containing 2 373 fishing events, was compiled that only included variables that were fully recorded (see Table 1) across all fishing events between 2006–07 and 2018– 19. Next, a dataset was compiled that comprised variables for which at least 75% (on average between the 2006-07 and 2018-19 fishing years) had fishing events with available records (i.e., this also includes variables from the unpruned dataset) reducing the size of the dataset to 1 069 fishing events. Three additional pruned datasets were created with lower thresholds for data completes of $\geq 60\%$, $\geq 20\%$, and >0%. The corresponding size of these three datasets was 462, 336, and 0 fishing events, respectively. When including variables that had >0% of data completeness as lower threshold then the dataset was pruned to zero fishing events and was therefore not available for the analysis (but see Statistical modelling). Note, that not all variables shown in Table 32 were included as some variables appeared redundant (e.g., fishery seabirds vs. fishery), plus some additional variables were added to the analysis after consultation with the AEWG (e.g., aerial extent). The final variables used here are described in Table 1.

Table 1: Variables included in model fitting; original data set size for small-vessel SLL catch effort was 2 611 fishing events but not all had event keys assigned that could be linked to observer data.

Variable 100% data completeness across years (2373 fishing events)	Description
species	Bird species
target	Target species
stats_area	Statistical area
fishing_year	Fishing year
area	Area (see Fig. 3), originally used to summarise estimated captures in Abraham & Richard (2019). Used here to coarsely divide the coastline into discrete sections
vessel size	Vessel size: 06-17 m. 17-28 m. 28-43 m
vessel_nation	Vessel nation: NZ, AUS
vessel freezer	Use of vessel freezer: yes, no
moon phase	Moon phase between 0 (new moon) and 1 (full moon)
start month	Start month between 1 and 12
season	Season: Summer (Jan, Feb, Mar), Autumn (Apr, May, Jun),
	Winter (Jul, Aug, Sep), Spring (Oct, Nov, Dec)
mitigation_tori	Use of tori line: yes, no
Dens	Bird species- and month-specific relative distribution layers
	provided by Charles Edwards (CESCAPE consultancy services)
time_of_day	Time of the day: Night (nautical dusk to nautical dawn), day (nautical dawn to nautical dusk); calculated from start datetime column
bathymetry	Bathymetry (m) at start fishing location calculated from NZ 250m gridded bathymetric data set and imagery, Mitchell et al. (2012), released 2016.
moon phase:species	Interaction between moon phase and species
mitigation_tori:species	Interaction between the use of tori line and species
\geq 75% data completeness across years (1069 fishing events, or 45% of unpruned dataset)	
wind	Low Beaufort scale 0 to 3
	Medium 4 to 6
	High Over 6
baskets_number	Number of baskets [i.e., line sections] on the line
line_length	Length of line in kilometres.
distance_to_shore	Distance to shore in metres.

night_hours min_depth

max_depth

bait_thrower_used_yn wind_beaufortscale number_of_vessels cloud_cover snood_signal_time start wind direction

 \geq 60% data completeness across years (462 fishing events or 19% of unpruned dataset) wind

vessel_speed vessel heading surface temperature

≥ 20% data completeness across years (336 fishing events or 14% of unpruned dataset) tori_length tori_height line_entry_yn bait stream

> 0% data completeness across years (0 fishing events or 0% of unpruned dataset) dist stern to bait min

float_line_length attach1_height attach1_distance

setting_turns dist_bait_to_tori float_line_diameter aerial_extent distance_weight_to_hook snood_signal_time long_streamer_distance

mitigation_none bottom_depth light_sticks_yn acoustic_bird_deterrent_yn

deck_light_yn

fishing_gear_discard_yn setting_path

discards_during_setting

line_setting_height hook_type number_snoods long_streamer_yn light streamer yn Hours of fishing at night On current 2018+ set logs this is the minimum hook depth (m). The pre-2018 Set logs, is the expected minimum depth of the line when set in metres. On current 2018+ set logs this is the maximum hook depth (m). The pre-2018 Set logs, is the expected maximum depth of the line when set in metres. Use of a bait thrower: yes, no Wind strength in Beaufort scale The number of vessels within a 24 nautical mile radius. Percentage of cloud cover at start of the set. The snood signal time in seconds. Wind direction at start of the set (0 to 359 degrees).

Low Beaufort scale 0 to 3 Medium 4 to 6 High Over 6 Speed of the vessel during the haul in knots. Vessels heading at time of observation in degrees (0 to 359). Sea surface temperature (decimal degrees C).

Length of tori line (metres). Height of attachment of tori line above the water (metres). Whether the tori line was over bait entry point. (Yes or no). Distance between bait landing point and tori line in metres.

Minimum distance from stern to bait entry point (m).
Length of the float/drop line (m).
Height of attachment point above water (m).
Lateral distance (m) from centre of stern to attachment point.
Number of turns during setting
Lateral distance from bait entry point to tori line (m).
Diameter of the float/drop line (mm).
Aerial extent of tori line (m).
Distance between the hook and the closest weight (cm).
The snood signal time in seconds.
The maximum distance between any long streamers, in metres. For pre-2018 forms, this is maximum distance between any streamers.

Presence of light sticks on line (Y/N). Whether acoustic bird deterrents were used as a mitigation strategy for Protected Species Captures (Y/N/U). Whether there was unnecessary deck lighting while setting (Y/N/U). Whether fishing gear was discarded (Y/N/U). 3-part code for path of vessel while setting. Code detail on back of setting form. Whether there was any offal, bait or whole fish discarded during setting. Line setting height (m). Hook type and size, as referred to by retailers. Number of snoods in the basket. Presence of long streamers (Y/N). Presence of light streamers (Y/N). setting_strategy

surface_float_diameter snood_length long_streamer_aerial_yn weight weighting_type Part one of setting path code - denotes strategy for the path of set. Diameter of the surface floats (cm) Length of snoods (m). Whether long streamers cover aerial extent (Y/N). Mass of the weight closest to hook (g). Weighting type: H = Hook pods, S = Sliding weight, W = Weighted swivel, F = Fixed weights, C = shark CliptO = Other (described in comments).

2.2 Species grouping

Datasets were compiled for seabirds, NZ fur seals, turtles, dolphins and whales, and shark and rays. Seabird species were grouped according to Abraham & Richard (2020), with 10 specific species (note, Buller's albatrosses contained Buller's albatross and Pacific albatross, and Southern Buller's albatross) and all remaining bird species were grouped into other albatrosses and other birds. For non-bird species the groups were turtles (leatherback turtle, green turtle, loggerhead turtle, turtle; names as per PSCDB), dolphins and whales (long-beaked common dolphin, Hector's dolphin, Dusky dolphin, bottlenose dolphin, beaked whales, orca, common dolphin, pilot whale long-finned, dolphins and toothed whales ; names as per PSCDB), and shark and rays (oceanic whitetip shark, spine-tailed devil ray, basking shark, porbeagle shark, white pointer shark ; names as per PSCDB). More fine-scaled grouping was not considered due to the small number of observed captures. NZ fur seals were treated as a separate group. The effect of data pruning on the observed number of captures for each group is shown in Table 2.

Table 2: Effect of data pruning on number of observed captures between the 2006–07 and 2017–19 fishing years in small-vessel SLL fisheries. Shown are number of observed captures for datasets that include variables with different lower threshold for data completeness (see column header); when all variable with data completeness >0% were included then all fishing events were removed from the dataset.

Species	100%	≥75%	≥60%	≥20%	>0%
Black petrel	29	21	15	14	-
Buller's albatross	154	48	24	16	-
Flesh-footed shearwater	9	2	2	0	-
Grey petrel	16	11	2	1	-
Salvin's albatross	5	3	2	2	-
Sooty shearwater	1	0	0	0	-
White-capped albatross	141	44	21	16	-
White-chinned petrel	18	8	5	0	-
Other birds	50	14	5	5	-
Other albatrosses	155	62	28	18	-
NZ fur seal	149	56	34	16	-
Turtles	19	12	8	4	-
Dolphins and whales	9	4	2	1	-
Sharks and rays	3	2	1	1	-

2.3 Observed effort and captures in small-vessel surface-longline fisheries between 2006–07 and 2018–19

A total of 758 observed captures were recorded in the PSCDB extract for small-vessel SSL fisheries between the 2006–07 and 2018–19 fishing years. These captures predominantly contained seabirds and NZ fur seals (Table 2). Observed captures varied considerably between fishing years, ranging between 19 (2007–08 fishing year) and 143 (2015–16 fishing year) captures (Fig. 1). The mean annually observed effort for data used in this analysis was 171 123 hooks, with annually observed effort ranging

between 72 963 (2012–13 fishing year) and 341 272 (2016–17 fishing year) hooks (Fig. 2). Most effort occurred within the areas Northland and Hauraki (NOHA), East Coast North Island (ECNI), West Coast North Island (WCNI), and West Coast South Island (WCSI) (Figs. 2 and 3). The two main target species were Southern bluefin tuna (*Thunnus maccoyii*) and Bigeye tuna (*Thunnus obesus*).

Seabird captures (for all seabird species combined) predominantly occurred along the West Coast of the South Island and the northern regions of the North Island (Fig. 3). The three most frequently caught bird species (not including the groups other birds and other albatrosses) were black petrel, Buller's albatross, and white-capped albatross, with 29, 154, and 141 birds, respectively, caught between the 2006–07 and 2018–19 fishing years (Table 2). Black petrel captures were constrained to the areas Northland and Hauraki, and Bay of Plenty, whereas Buller's albatross albatrosses were observed being captured in the areas Northland and Hauraki, and Bay of Plenty, and East Coast North Island. White-capped albatross occurred in most areas but predominantly off the West Coast of South Island (Fig. 3).

Observed captures of NZ fur seals mostly occurred off the West Coast of South Island, and in the areas Bay of Plenty, and East of North Island (Fig. 3). Observed captures of turtles, dolphins and whales, sharks and rays were rare and predominantly occurred in areas of the North Island.

Figure 1: Observed captures of seabirds, NZ fur seals, turtles, dolphins and whales, and sharks and rays in small-vessel SLL fisheries between the 2006–07 and 2018–19 fishing years.

Figure 2: SLL effort (small-vessels) in thousands of hooks between the 2006–07 and 2018–19 fishing years by area (left panel) and target species (right panel); Areas are BOPL: Bay of Plenty; ECNI: East Coast Nort Island; ECSI: East Coast South Island; FIOR: Fjordland; KERM: Kermadec Islands; NOHA: Northland and Hauraki; STEW: Stewart-Snares shelf; TARI: Taranaki; WCNI: West Coast North Island; WCSI: West Coast South Island. Target species are ALB: Albacore tuna (*Thunnus alalunga*); BIG: Bigeye tuna (*Thunnus obesus*); STN: Southern bluefin tuna (*Thunnus maccoyii*); SWO: Swordfish, and TOR: Pacific bluefin tuna (*Thunnus orientalis*).

Figure 3: Area-variable used in captures modelling. BOPL: Bay of Plenty; ECNI: East Coast Nort Island; ECSI: East Coast South Island; FIOR: Fjordland; KERM: Kermadec Islands; NOHA: Northland and Hauraki; STEW: Stewart-Snares shelf; TARI: Taranaki; WCNI: West Coast North Island; WCSI: West Coast South Island. Also shown are observed fishing events (black dots); observed captures (red dots; and differently coloured dots for dataset used in multi-species model).

2.4 Variable correlations

Variables were assessed for potential correlations prior to model fitting as highly correlated variables may lead to confounding of estimated effect size parameters (due to the large number of variables a separate file is provided for pairwise correlations: pairwise correlations sll study.png). A list of potentially confounded parameters due to variable correlation is provided in Table 3. Potentially correlated variables were not necessarily excluded from the analyses, but the potential correlation was considered when interpreting and refining model fits.

Table 3: List of potentially correlated variable pairs that may lead to parameter confounding.

Variable 1	Variable 2
fishery_seabird	fishery
target	fishery
	start_month
vessel_nation	fishing_year
	mitigation_tori
start_solar_altitude	start_month
season	start_month
area_seabirds	area
vessel_size	vessel_freezer
	vessel_nation
	mitigation_tori
tori_length	min_depth
snood_signal	max_depth
vessel_speed	line length
sea_surface_temperature	cloud_cover
float_line_length	snood_length
total_hook_number	basket_number
	line length
	night_hours
	sea_surface_temperature
basket_number	night_hours
bait_thrower_used_yn	start_month
moon_phase	start_month
start_solar_altitude	number_of_vessels
	sea_surface_temperature
	start_month
start_month	bird densities
season	bird densities
tori_length	basket_number
	line length
	sea_surface_temperature
long_streamer_aerial_yn	weight
	mainline_diameter
	float_line_diameter
	surface_float_diameter
dist_bait_to_tori	snood_length

	long_streamer_aerial_yn
vessel_length	float_line_length
	weight
	basket_number
distance_weight_to_hook	line length
float_line_length	basket_number
weight	basket_number

2.5 Statistical modelling

Negative binomial generalised linear models (to account for zero-inflated data and potential variation in the capture rate, due to a lack of independence of the capture events within a fishing event) with varying level of complexity were fitted to each of the 4 datasets with records (see Table 1) using the glm.nb-function in R (Venables & Ripley, 2002). The base model structure was:

 $captures_i \sim offset(total_hook_num_i/1000) + X_i$

(1)

where *captures* are the reported captures on observed fishing event *i*, *total_hook_num* are the total number of hooks reported on observed fishing event *i*, and X_i denote fixed effects for up to 5 variables recorded on observed fishing event *i*. An offset term for the total number of hooks was included in the model because each fishing event is associated with a different number of deployed hooks. The total number of hooks was divided by 1 000, such that the estimated capture rates can be interpreted as captures per 1 000 hooks.

For each dataset, a candidate set of models was defined where each model contained no more than five predictor variables that were complete for the data set being considered. A maximum of five variables was included to reduce potential overfitting of the data given the relative rarity of observed captures. The particular set of variables included in a model defines the set of predictors included in X defined in Equation 1. All possible combinations of the complete variables were allowed in the candidate set.

A two-phase model fitting process was used given the varying completeness of the datasets. In Phase 1, all models within the candidate set were fit to the data (separately for all datasets with varying data completeness) and compared using AIC. Top models (i.e., with lowest AIC) were assessed for potentially confounded parameters and fine-tuned if required. In Phase 2, additional variables that were incomplete for the dataset being considered (i.e., variables that contained missing values and would therefore reduce the number of observations used to estimate parameters) were added to the top AIC-ranked model, and the expanded model fit to the reduced dataset to estimate the effect of the incomplete variable on capture rates. Only a single incomplete variable was added to the top model each time to restrict the degree of data pruning (i.e., adding two incomplete variables to the top model would likely reduce the amount of available data than adding only one incomplete variable). A possible shortcoming of this two-phase approach is that it only estimates the effect of the additional variables given the structure of the top-ranked model, and other base model structures are not considered. However, this is a pragmatic approach given the extremely large possible number of models that would have to be considered otherwise and given that the top AIC-ranked model should include the main variables for explaining variation in the observed captures. The top-ranked model was re-fit to the reduced dataset (as well as the expanded model) to allow valid comparison of the two models using AIC, which must be based on the same data set.

Models were only fit to observed captures of seabirds, NZ fur seals, and turtles. There were insufficient observed captures of dolphins and whales, and sharks and rays to enable meaningful analysis (Table 2).

Seabird captures were analysed using two different general approaches. First, captures for all species where combined (including "other birds" and "other albatrosses"), hence the response variable considered is the total number of seabirds captured on an event. An aggregated seabird relative density layer (see Table 1 for variable descriptions) was developed by summing the species-specific relative monthly distribution layers and re-scaling the new layer, so it sums to one (i.e., there were 12 separate layers with aggregated densities). Second, a multi-species analysis was conducted for the most frequently observed species captures: black petrel, Buller's albatross, and white-capped albatross (Table 2). Datasets for each of these species were stacked and *species* was used as a variable during the model fitting to allow for a different mean capture rate for each species. This multi-species approach allows the effect of some variables to be consistent across the three species. Further, species- and month-specific relative distributions were used as a covariate. Initial model exploration showed that observed captures for all other species were too rare to obtain species-specific estimates of capture rates. The coarse species groups "other birds" and "other albatrosses" were also excluded here, because these reflect groups of mixed species.

To diagnose model fits, standardized residuals from each top model (i.e., for each species or group of species) were plotted against predictors. Additionally, the average predicted captures per area (see Fig. 3 for areas) were plotted against the average observed captures per area.

Initially, Bayesian model fitting was attempted for modelling the seabird captures (as proposed, following Abraham & Richard, 2020), but was deemed to be impractical for fitting large numbers of models (i.e., > 1000) within a reasonable time frame. To assess consistency of results based on the initially proposed Bayesian model framework and the final approach used here, a simple set of models has been fitted in both frameworks and results were compared against each other (Appendix B).

3. RESULTS

3.1 All seabirds captures model

Tables 4 to 7 show the top-10 models (based on AIC) and the Null model (i.e., intercept model) fitted to observed captures of all seabirds combined. For the different datasets between 2 379 and 331 211 models were fitted. Model fitting to all seabird captures suggests a relationship between observed seabird captures and moon phase as well as the start month or season. This result was consistent for all datasets analysed here (Tables 4 to 7). When fitting models to data with \geq 75% and 100% data completeness for each variable, then the inclusion of the area variable was also supported (Tables 4 and 5).

Good predictive ability (i.e., the mean number of predicted captures on observed fishing per area compared against the mean number of actual observed captures per area were well correlated) was observed for all top-10 models fitted to data with \geq 75% and 100% data completeness per variable (see Figs. 15 and 17 in Appendix C). When fitting models to datasets with \geq 60% and \geq 20% data completeness per variable, then the top-10 models also included gear configuration-specific variables such as the line length (Tables 6 and 7), and the predictive ability of these models was acceptable (see Figs. 19 and 21 in Appendix C).

The best-supported model (model 1) fitted to the dataset for variables with 100% data completeness, included the variables fishing year, area, presence/absence of a vessel freezer, moon phase, and start month (Table 4). There existed a decreasing trend in standardized residuals with increasing moon phase (Fig. 4), implying that the relationship between observed captures and moon phase could be non-linear. However, re-fitting the model with log-transformed moon phase (i.e., to model an asymptotic relationship between the observed capture rate and moon phase) has not resulted in an improved model fit (results not shown here).

 Table 4: Top-10 models fitted to all seabirds captures where model fits included variables with 100% data completeness (unpruned dataset with 2 373 fishing events); the total number of explored models was 2 379.

Model	Description	df	logLik	AIC	ΔΑΙΟ
1	fishing year+area+vessel freezer+moon phase+start month	36	-1023.254	2118.508	0
2	area+vessel_size+vessel_freezer+moon_phase+start_month	26	-1035.393	2122.786	4.278
3	area+vessel freezer+moon phase+start month+dens	25	-1037.134	2124.268	5.76
4	stats area+fishing year+vessel freezer+moon phase+start month	68	-994.632	2125.263	6.755
5	area+vessel nation+vessel freezer+moon phase+start month	25	-1039.107	2128.214	9.706
6	target+area+vessel freezer+moon phase+start month	28	-1036.252	2128.505	9.997
7	area+vessel freezer+moon phase+start month	24	-1040.274	2128.547	10.039
8	area+vessel freezer+moon phase+start month+season	24	-1040.274	2128.547	10.039
9	area+vessel freezer+moon phase+start month+mitigation tori	25	-1039.489	2128.979	10.471
10	area+vessel freezer+moon phase+start month+time of day	25	-1040.023	2130.046	11.538
Null model	Intercept	2	-1212.683	2429.366	310.858

Table 5: Top-10 models fitted to all seabirds captures where model fits included variables with >75% data completeness (1 069 fishing events or 45% of unpruned dataset); the total number of explored models was 83 681.

Model	Description	df	logLik	AIC	ΔΑΙΟ
1	area+vessel size+moon phase+start month+time of day	24	-438.7038	925.408	0
2	area+vessel_size+moon_phase+start_month+min_depth	24	-439.3688	926.738	1.33
3	area+vessel size+moon phase+start month+baskets number	24	-440.0381	928.076	2.668
4	area+vessel size+vessel freezer+moon phase+start month	24	-440.0645	928.129	2.721
5	area+vessel freezer+moon phase+start month+min depth	25	-441.3773	928.755	3.347
6	area+vessel nation+moon phase+start month+min depth	23	-441.403	928.806	3.398
7	area+moon phase+start month+min depth	22	-442.4893	928.979	3.571
8	area+moon phase+start month+season+min depth	22	-442.4893	928.979	3.571
9	area+moon phase+start month+night hours+min depth	23	-441.4898	928.980	3.572
10	target+area+moon phase+start month+min depth	25	-439.6559	929.312	3.904
Null model	Intercept	2	-512.3364	1028.673	103.265

Table 6: Top-10 models fitted to all seabirds captures where model fits included variables with >60% data completeness (462 fishing events or 19% of unpruned dataset); the total number of explored models was 174 436.

Model	Description	df	logLik	AIC	ΔΑΙΟ
1	moon phase+start month+start wind direction+bait thrower used yn+surface temperature	17	-205.093	444.1868	0
2	moon_phase+start_month+bait_thrower_used_yn+wind_beaufortscale+surface_temperature	17	-205.739	445.4788	1.292
3	target+moon phase+start month+bait thrower used yn+surface temperature	19	-203.967	445.9343	1.7475
4	moon_phase+start_month+bait_thrower_used_yn+cloud_cover+surface_temperature	17	-206.029	446.0584	1.8716
5	moon_phase+start_month+wind+bait_thrower_used_yn+surface_temperature	18	-205.085	446.1701	1.9833
6	moon_phase+start_month+mitigation_tori+bait_thrower_used_yn+surface_temperature	17	-206.127	446.2538	2.067
7	target+area+moon_phase+start_month+bait_thrower_used_yn	23	-200.208	446.4167	2.2299
8	vessel_size+moon_phase+start_month+bait_thrower_used_yn+surface_temperature	17	-206.209	446.4179	2.2311
9	moon_phase+start_month+baskets_number+bait_thrower_used_yn+surface_temperature	17	-206.256	446.5113	2.3245
10	moon_phase+start_month+bait_thrower_used_yn+surface_temperature	16	-207.449	446.8981	2.7113
Null model	Intercept	2	-257.661	519.322	75.1352

Table 7: Top-10 models fitted to all seabirds captures where model fits included variables with >20% data completeness (336 fishing events or 14% of unpruned dataset); the total number of explored models was 331 211.

Model	Description	df	logLik	AIC	ΔΑΙΟ
1	moon_phase+season+line_length+cloud_cover+surface_temperature	9	-144.024	306.0471	0
2	moon_phase+season+line_length+wind_beaufortscale+surface_temperature	9	-145.933	309.8658	3.8187
3	moon_phase+season+line_length+surface_temperature+bait_stream	9	-146.146	310.2927	4.2456
4	moon_phase+season+line_length+surface_temperature+tori_height	9	-146.156	310.3122	4.2651
5	moon_phase+season+night_hours+cloud_cover+surface_temperature	9	-146.429	310.8574	4.8103
6	moon_phase+season+line_length+surface_temperature	8	-147.789	311.5778	5.5307
7	moon_phase+season+mitigation_tori+line_length+surface_temperature	8	-147.789	311.5778	5.5307
8	moon_phase+season+line_length+surface_temperature+tori_length	9	-146.843	311.6859	5.6388
9	moon_phase+season+time_of_day+line_length+surface_temperature	9	-146.931	311.8629	5.8158
10	moon_phase+season+time_of_day+line_length+tori_height	9	-146.997	311.9931	5.946
Null model	Intercept	2	-179.5254	363.0508	57.0037

Figure 4: Residuals vs predictors from top all seabirds captures model (model 1) where model fits included variables with 100% data completeness (Table 4).

start_month

Model estimates from model 1 (Table 4) are shown in Table 8. The estimated mean capture rate (on log-scale) per 1 000 hooks was -3.875 (standard error: 0.535), which converts to approximately 0.021 captures per 1 000 hooks on actual scale. This intercept relates to the case when fishing year is 2006–07, in the Bay of Plenty (BOPL) area, for vessels without vessel freezer, and operating in January during new moon (moon phase = 0). Model strata-specific estimates are further described on back-transformed effects by taking the exponential, hence the effects become multiplicative and can be interpreted as the proportional change of the capture rate by one unit change of the predictor variable.

The model suggests interannual variability in capture rates, with proportional changes ranging between 0.22 and 1.1 (Table 8). Further some areas had significantly higher capture rates, such as the east coast South Island (ECSI) were the proportional change in the capture rate was 38.78 (95% CI: 8.117–185.319) but note that only a few seabird captures were observed in this area (see Fig. 3). The significant effects for start month suggest that higher capture rates were observed during late spring/early summer months (e.g., a proportional increase of 6.4 (95% CI: 2.529–16.217) for captures rate in November) as opposed to lower captures rates over winter (e.g., proportional change of 0.1 (95% CI: 0.028–0.347) or 90% reduced capture rate during August). Capture rates also increased proportionally with moon phase by factor 5.71 (95% CI: 3.731–8.735) per unit change in moon phase (Table 8). The results imply that vessels with vessel freezer on board had captures rates about three times higher (2.86 (95% CI: 1.975–4.143)) compared to vessel without freezer on board.

Table 8: Model estimates from top all seabirds captures model (model 1) where model fits included variables with 100% data completeness (Table 4). Base cases for categorical fixed effects were 2006–07 for fishing_year, BOPL for area, FALSE for vessel_freezer and 1 for start_month.

	Estimate	SE	95% CI	exp(estimate) incl. 95% CI	z-value	p-value
(Intercept)	-3.875	0.535	-4.924; -2.826	0.02 (0.007; 0.059)	-7.238	< 0.001***
fishing_year2007-08	-0.879	0.452	-1.765; 0.007	0.42 (0.171; 1.007)	-1.944	0.052
fishing_year2008-09	-0.880	0.445	-1.752; -0.008	0.41 (0.173; 0.992)	-1.979	0.048*
fishing_year2009-10	-0.264	0.361	-0.972; 0.444	0.77 (0.378; 1.558)	-0.733	0.463
fishing_year2010-11	-0.999	0.411	-1.805; -0.193	0.37 (0.165; 0.824)	-2.430	0.015*
fishing_year2011-12	-1.055	0.380	-1.8; -0.31	0.35 (0.165; 0.733)	-2.778	0.005**
fishing_year2012-13	0.094	0.509	-0.904; 1.092	1.1 (0.405; 2.979)	0.185	0.853
fishing_year2013-14	-1.285	0.437	-2.142; -0.428	0.28 (0.117; 0.651)	-2.941	0.003**
fishing_year2014-15	-1.052	0.453	-1.94; -0.164	0.35 (0.144; 0.849)	-2.321	0.020*
fishing_year2015-16	-0.826	0.350	-1.512; -0.14	0.44 (0.22; 0.869)	-2.356	0.018*
fishing_year2016–17	-1.508	0.366	-2.225; -0.791	0.22 (0.108; 0.454)	-4.117	< 0.001***
fishing_year2017-18	-0.483	0.458	-1.381; 0.415	0.62 (0.251; 1.514)	-1.055	0.292
fishing_year2018-19	-0.726	0.389	-1.488; 0.036	0.48 (0.226; 1.037)	-1.865	0.062
areaECNI	0.926	0.323	0.293; 1.559	2.52 (1.34; 4.754)	2.864	0.004**
areaECSI	3.658	0.798	2.094; 5.222	38.78 (8.117; 185.319)	4.587	< 0.001***
areaFIOR	3.707	0.660	2.413; 5.001	40.73 (11.172; 148.502)	5.618	< 0.001***
areaKERM	0.310	0.527	-0.723; 1.343	1.36 (0.485; 3.83)	0.588	0.556
areaNOHA	0.303	0.319	-0.322; 0.928	1.35 (0.725; 2.53)	0.952	0.341
areaSTEW	3.614	1.725	0.233; 6.995	37.11 (1.262; 1091.164)	2.095	0.036*
areaTARI	-33.800	21220000.000	-41591234; 41591166	0 (0,0)	0	1.000
areaWCNI	-0.364	0.488	-1.32; 0.592	0.69 (0.267; 1.808)	-0.746	0.456
areaWCSI	2.644	0.337	1.983; 3.305	14.07 (7.268; 27.235)	7.844	< 0.001***
vessel_freezerTRUE	1.051	0.189	0.681; 1.421	2.86 (1.975; 4.143)	5.573	< 0.001***
moon_phase	1.742	0.217	1.317; 2.167	5.71 (3.731; 8.735)	8.02	< 0.001***
start_month02	-0.260	0.536	-1.311; 0.791	0.77 (0.27; 2.205)	-0.486	0.627

start_month03	-0.852	0.640	-2.106; 0.402	0.43 (0.122; 1.495)	-1.332	0.183
start_month04	-1.184	0.513	-2.189; -0.179	0.31 (0.112; 0.837)	-2.309	0.021*
start_month05	-0.857	0.489	-1.815; 0.101	0.42 (0.163; 1.107)	-1.752	0.080
start_month06	-0.228	0.478	-1.165; 0.709	0.8 (0.312; 2.032)	-0.477	0.634
start_month07	-1.247	0.474	-2.176; -0.318	0.29 (0.113; 0.728)	-2.629	0.009**
start_month08	-2.322	0.644	-3.584; -1.06	0.1 (0.028; 0.347)	-3.605	< 0.001***
start_month09	0.055	0.548	-1.019; 1.129	1.06 (0.361; 3.093)	0.101	0.920
start_month10	0.786	0.580	-0.351; 1.923	2.19 (0.704; 6.84)	1.357	0.175
start_month11	1.857	0.474	0.928; 2.786	6.4 (2.529; 16.217)	3.917	<0.001***
start_month12	0.989	0.474	0.06; 1.918	2.69 (1.062; 6.808)	2.089	0.037*

In Phase 2, the top model (model 1) originally fitted to the unpruned dataset was repeatedly re-fitted with one additional variable that was not already assessed at this stage (i.e., the model was re-fitted repeatedly but each time with another additional variable). Variables with a significant slope are shown in Table 9 (non-significant parameters are provided in Table 10). Based on the AIC difference between the expanded model and the original model 1 (but re-fitted to account for altered data structure), all parameters received some support for being included in the model. However, note that most variables were only recorded recently between the 2017–18 and 2018–19 fishing years, hence only being recorded on between 272 to 302 fishing events. A pairwise comparison between each additional predictor implies that parameters are not strongly correlated meaning that each variable could potentially have an independent effect on the estimated capture rate (however, consider the low sample size for some variables) (Fig. 5). Plots showing standardized residuals vs. each fitted additional variable are shown in Appendix K.

Most estimated effects pointed into the anticipated direction (Table 9). Mandatory bycatch mitigation measures seemed reducing seabird bycatch if employed effectively. For example, tori lines reduced seabird captures when the tori line was over the bait entry point (variable: line_entry_yn) with a proportional change of 0.61 (95% CI: 0.385–0.964) or 51% reduction compared to tori lines not being set over the bait entry point. Aerial extent (expected to reduce the capture rate) had a positive effect on the capture rate but note that the aerial extent of the tori line is estimated by the observer and thus might be inaccurate. In contrast, an increasing attachment height of the tori line (variable: attach1_height), which influences the aerial extent, resulted in a proportional change of the capture rate of 0.37 (95% CI:0.191–0.731) or 63% decrease per unit change in attachment height (range 3 to 17 m). There existed also a small decrease in capture rates (1% or proportional change of 0.99 (95% CI: 0.983–0.999)) per unit (cm) increase in the distance to the weight to the hook. Increasing the number of night hours also resulted in a proportional change of 1.90 (95% CI: 0.983–0.999)) or 18% reduction of capture rate per additional night hour.

Gear configuration and vessel behaviour variables also affected the capture rate of seabirds. For example, capture rates decreased by about 5% for every additional 10 km off the shore (i.e., proportional change per 10 km is 0.95 (95% CI: 0.915–0.979)). Further, an increasing number of turns (range 0 to 2) during setting increased capture rates by 94% (or proportional change of 1.94 (95% CI: 1.145–3.301)). Increasing float line length resulted in reduced seabird capture rates (proportional change per meter float line: 0.76 (95% CI: 0.611–0.937)). A higher risk of seabird captures was observed for fishing during higher sea surface temperatures (proportional increase of 1.27 (95% CI: 1.076–1.49) in capture rates per additional degree Celsius). Histograms for significant predictors are shown in Appendix O.

Table 9: Estimated effect size and AIC for models with significant effect for additional parameter X_i (i.e., variable that was not already assessed using the unpruned dataset) being added to top all seabirds captures model (model 1; Table 4); *Model 1*: model 1 in Table 4 but re-fitted with fishing events removed that had additional parameter X_i missing; *Model 1 + Xi*: Model 1 from Table 4 plus additional parameter; ΔAIC : AIC difference between AICs of *Model 1* and *Model 1 + Xi*; *Estimate* and *SE*: Estimated effect size and standard error of additional parameter X_i ; *Prop. events left* and *N events left*: proportion and total fishing events left compared to unpruned dataset; *N captures*: Number of observed captures; *Year range*: Range of fishing years (January year shown) with available records for additional parameter X_i . Variables are ordered by the number of available fishing events.

		AIC									
Variable	Model 1	Model 1 + X _i	ΔΑΙΟ	Estimate	SE	95% CI	exp(estimate) incl. 95% CI	Prop. events left	N events left	N captures	Year range
distance_to_shore	2026.827	2017.765	-9.062	-0.0000055	0.0000017	0–0	0.95 (0.915–0.979) per 10 km	0.973	2 309	518	2007–2019
night_hours	2026.697	2024.858	-1.838	-0.201	0.101	-0.3990.003	0.82 (0.671–0.997)	0.971	2 308	518	2007-2019
min_depth	2045.462	2041.005	-4.457	-0.023	0.009	-0.0410.005	0.98 (0.96-0.995)	0.952	2 260	570	2007–2019
surface_temperature	1375.791	1369.878	-5.913	0.236	0.083	0.073-0.399	1.27 (1.076–1.49)	0.646	1 534	351	2007-2018
tori_length	1151.762	1141.913	-9.849	-0.007	0.002	-0.0110.003	0.99 (0.989–0.997)	0.575	1 365	300	2007-2018
line_entry_yn	1148.016	1145.400	-2.616					0.574	1 362	299	2007-2018
line_entry_ynY				-0.495	0.234	-0.9540.036	0.61 (0.385-0.964)				
dist_stern_to_bait_min	294.293	291.590	-2.703	0.042	0.019	0.005-0.079	1.04 (1.005–1.082)	0.127	302	95	2018-2019
float_line_length	294.293	287.875	-6.418	-0.279	0.109	-0.4930.065	0.76 (0.611–0.937)	0.127	302	95	2018-2019
dist_bait_to_tori	294.293	291.380	-2.914	0.047	0.022	0.004-0.09	1.05 (1.004–1.094)	0.127	301	95	2018-2019
attach1_height	294.293	286.692	-7.601	-0.984	0.342	-1.6540.314	0.37 (0.191–0.731)	0.126	300	95	2018-2019
attach1_distance	294.293	289.332	-4.961	0.080	0.030	0.021-0.139	1.08 (1.021–1.149)	0.126	300	95	2018-2019
setting_turns	293.496	290.271	-3.225	0.665	0.270	0.136–1.194	1.94 (1.145–3.301)	0.125	297	95	2018-2019
float_line_diameter	234.251	231.967	-2.283	-0.309	0.141	-0.5850.033	0.73 (0.557-0.968)	0.120	284	95	2018-2019
aerial_extent	294.293	292.367	-1.926	0.079	0.039	0.003-0.155	1.08 (1.003–1.168)	0.117	278	95	2018-2019
distance_weight_to_hook	294.293	290.771	-3.522	-0.009	0.004	-0.0170.001	0.99 (0.983–0.999)	0.115	272	95	2018-2019

	distance_lo_shore	night_hours	min_cepth	vessel_heading	surface_temperature	tori_length	line_entryyn	dist_stem_b_bait_min	float_line_length	attach1_height	attach1_distance	setting_turms	dist_bait_to_tori	float_line_diameter	aerial_extent	distance_weight_to_hook	
1.0c-05 7.5e-06 5.0e-06 2.5e-06	\bigwedge	Corr: 0.093***	Corr: 0.155***	Corr: 0.015	Corr: 0.052*	Corr: 0.061*	 	Corr: -0.097.	Corr: -0.143*	Corr: -0.042	Corr: 0.043	Corr: 0.029	Corr: -0.214***	Corr: 0.224***	Corr: -0.017	Corr: 0.089	distance_to_shore
10.0 7.5 5.0 2.5	-	\bigwedge	Corr: 0.064**	Corr: -0.058*	Corr: -0.305***	Corr: 0.111***	· ÷÷÷	Corr: 0.195***	Corr: -0.190***	Corr: 0.208***	Corr: 0.169**	Corr: 0.048	Corr: 0.027	Corr: -0.194***	Corr: 0.330***	Corr: -0.137*	night_hours
75 - 50 - 25 - 0 -		÷	h	Corr: -0.006	Corr: 0.039	Corr: 0.225***	÷÷÷	Corr: -0.118*	Corr: 0.194***	Corr: 0.080	Corr: -0.164**	Corr: 0.027	Corr: 0.089	Corr: -0.240***	Corr: 0.312***	Corr: -0.084	min_depth
300 - 200 - 100 -		<u>م</u>		\bigwedge	Corr: -0.012	Corr: -0.048.	╞╞╡	NA	NA	NA	NA	NA	NA	NA	NA	NA	vessel_heading
24 · 20 · 16 · 12 ·	ţ.	\$.	۲	A	Corr: -0.063*	╞╒╡	NA	NA	NA	NA	NA	NA	NA	NA	NA	surface_temperature
300 - 200 - 100 -		÷.		.	*	A	⊨₽≞	NA	NA	NA	NA	NA	NA	NA	NA	NA	tori_length
190 190 190	Å	1	ша. "Іп.			ىدللەر 1 مىلىد .											line_entry_yn
30 - 20 - 10 - 0 -	-	- 		NA	NA	NA		h	Corr: 0.020	Corr: 0.162**	Corr: 0.249***	Corr: 0.088	Corr: 0.765***	Corr: -0.255***	Corr: 0.113.	Corr: -0.122*	dist_stern_to_bait_min
16 12 8 4	ilf; .	, i Ì li ç 		NA	NA	NA	5	••••••••••••••••••••••••••••••••••••••		Corr: 0.020	Corr: -0.647***	Corr: -0.121*	Corr: 0.289***	Corr: 0.110.	Corr: -0.020	Corr: 0.168**	float_line_length
15 · 10 · 5 ·			4	NA	NA	NA		j	· '11:2	M	Corr: 0.082	Corr: -0.007	Corr: 0.063	Corr: -0.387***	Corr: 0.209***	Corr: -0.236***	attach1_height
25 · 20 · 15 · 10 · 5 · 0 ·	-	- -	:	NA	NA	NA					\mathbb{V}	Corr: 0.314***	Corr: 0.040	Corr: -0.200***	Corr: 0.276***	Corr: -0.257***	attach1_distance
2.0 1.5 1.0 0.5			•••	NA	NA	NA	•	••••••	· · · ·		- · ·	L	Corr: 0.036	Corr: 0.076	Corr: 0.002	Corr: 0.024	setting_turns
50- 40- 30- 20- 10- 0-	-	.		NA	NA	NA							M	Corr: -0.186**	Corr: 0.122*	Corr: -0.128*	dist_bait_to_tori
12 - 10 - 8 - 6 - 4 -	j		: :	NA	NA	NA		:].		· 			:]:	N	Corr: -0.350***	Corr: 0.178**	float_line_diameter
125 · 100 · 75 · 50 ·	2	÷	,ł	NA	NA	NA	# No.	; ; ·	· - 312			: ! :	1 [.]		A	Corr: -0.014	aerial_extent
1000 - 500 - 0 -	-	: :	: 	NA	NA	NA	:	: 2., ,	 		: *:	: · . 	: 1	•••• ;;;•;•;•,		<u>h</u> r	distance_weight_to_hook
	0e+00 1e+05 2e+05 3e+05 4e+05	0.0 5.0 7.5	0 25 50 75	0.950 0.975 1.000 1.025 1.050	0.955 0.975 1.000 1.025	0.975 0.975 1.000 1.025		3 50 0 30 50 0	8 12- 16-	10-15-	0 15 20 25	0.0	24 3 2 4 0	4 9 8 0 1	50 75 100-	0 500- 1000-	

Figure 5: Pairwise comparison of significant additional parameters (Table 9) that were added to top all seabirds captures model (model 1; Table 4).

Table 10: Estimated effect size and AIC for models with non-significant effect for additional parameter Xi (i.e., variable that was not already assessed using the unpruned dataset) being added to top all seabirds captures model (model 1; Table 4); Model 1: model 1 in Table 4 but re-fitted with fishing events removed that had additional parameter Xi missing; Model 1 + Xi: Model 1 from Table 4 plus additional parameter; Δ AIC: AIC difference between AICs of Model 1 and Model 1 + Xi; Estimate and SE: Estimated effect size and standard error of additional parameter Xi; Prop. events left and N events left: proportion and total fishing events left compared to unpruned dataset; *N captures*: Number of observed captures; Year range: Range of fishing year (January year shown) with available records for additional parameter Xi. Variables are ordered by the number of available fishing events. Blank field for estimates: model failed.

		AIC									
Variable	Model 1	$Model \ 1 + X_i$	ΔΑΙΟ	Estimate	SE	95% CI	exp(estimate) incl. 95% CI	Prop events left	N events left	N captures	Year range
baskets_number	2116.790	2118.679	1.889	-0.001	0.003	-0.007-0.005	1 (0.993–1.005)	0.99	2 358	578	2007-2019
line_length	2103.319	2104.897	1.578	-0.006	0.009	-0.024-0.012	0.99 (0.977–1.012)	0.99	2 3 5 4	578	2007-2019
max_depth	2011.905	2013.868	1.963	0.000	0.002	-0.004-0.004	1 (0.996–1.004)	0.93	2 216	566	2007-2019
start_wind_direction	1971.143	1971.260	0.117	-0.001	0.001	-0.003-0.001	1 (0.997–1.001)	0.92	2 204	534	2007-2019
bait_thrower_used_yn	1811.520	1811.518	-0.002					0.87	2 062	484	2007-2018
bait_thrower_used_ynY				0.647	0.403	-0.143-1.437	1.91 (0.867–4.208)				
wind_beaufortscale	1768.439	1770.416	1.977	-0.007	0.048	-0.101-0.087	0.99 (0.904–1.091)	0.85	2 006	475	2007-2018
number_of_vessels	1766.770	1768.740	1.970	0.008	0.043	-0.076-0.092	1.01 (0.927–1.097)	0.84	2 003	477	2007-2018
cloud_cover	1615.879	1617.879	2.000	0.000	0.002	-0.004-0.004	1 (0.996–1.004)	0.82	1 944	418	2007-2019
snood_signal_time	1817.884	1819.195	1.311	-0.026	0.033	-0.091-0.039	0.97 (0.913–1.039)	0.81	1 942	515	2007-2019
vessel_speed	1604.664	1604.440	-0.223	-0.141	0.093	-0.323-0.041	0.87 (0.724–1.042)	0.76	1 801	444	2007-2018
long_streamer_distance	1647.798	1649.265	1.467	-0.020	0.025	-0.069–0.029	0.98 (0.933–1.029)	0.73	1 725	453	2008-2018
tori_height	1151.758	1153.374	1.615	-0.029	0.048	-0.123-0.065	0.97 (0.884–1.067)	0.58	1 364	300	2007-2018
bait_stream	1108.039	1109.887	1.847	-0.019	0.049	-0.115-0.077	0.98 (0.891–1.08)	0.55	1 294	288	2007-2018
mitigation_none	542.988	542.988	0.000					0.24	573	165	2007-2018
bottom_depth								0.15	355	112	2007-2018
light_sticks_yn	294.293	296.181	1.888					0.13	302	95	2018-2019
light_sticks_ynY				-0.126	0.378	-0.867-0.615	0.88 (0.42–1.849)				
acoustic_bird_deterrent_yn	294.293							0.13	302	95	2018-2019
deck_light_yn	294.293	296.293	2.000					0.13	302	95	2018-2019
deck_light_ynY				5.782	9575210.253	-18767406.314– 18767417.878					
fishing_gear_discard_yn	294.293	296.293	2.000					0.13	302	95	2018-2019
fishing_gear_discard_ynU				-1.514	4640629.833	-9095635.987– 9095632.959					

hook_type	294.293							0.13	302	95	2018-2019
number_snoods	294.293	296.170	1.876	-0.038	0.099	-0.232-0.156	0.96 (0.793-1.169)	0.13	302	95	2018-2019
setting_path	293.496	323.077	29.581					0.13	301	95	2018-2019
setting_path1A0				-8.410	16104918.120	-31565647.925-					
setting_path1A1				-5.294	16104918.120	-31565644.809-					
setting_path1A2				-5.836	16104918.120	-31565645.351-					
setting_path1B0				-12.606	69319931.110	- 135867077.582-					
setting_path1C0				-42.872	37219191.411	135867052.37 -72949658.038–					
setting_path1C1				-7.910	16104918.120	72949572.294 -31565647.425-					
setting_path2A0				-8.057	68908170.998	31565631.605					
setting_path3				-8.929	16104918.120	135060007.099 -31565648.444- 31565630.586					
setting_path3A0				-8.433	16104918.120	-31565647.948- 31565631.082					
setting_path3B2				-4.308	48580967.229	-95218700.077- 95218691.461					
setting_path3C0				-4.127	67911046.218	- 133105654.714- 133105646.46					
setting_path3C1		~		-9.810	16104918.120	-31565649.325- 31565629.705					
setting_path4A0				-8.071	16104918.120	-31565647.586- 31565631.444					
setting_path5				-3.925	67911046.163	133105654.404					
setting_path5A				-3.914	67911046.129						
setting_path5A0				-7.609	16104918.120	-31565647.124 31565631.906					
setting_path5B1				15.077	69104127.639	135444075.095-					
setting_path5B2				-9.009	68908170.882	135444105.249 					

setting_path5C1				-38.409	17345159.198	-33996550.437-					
setting path5D2				-7.584	68908170.872						
						135060022.493-					
setting path5U2				-4.293	67911046.044	135060007.325					
						133105654.539-					
setting path6A				-4.082	67911046.159	133105645.953					
setting_putron					077110101107	133105654.554-					
setting nath640				-6.450	16104918 120	133105646.39					
setting_puttoA0				-0.450	10104710.120	31565633.065					
setting_path6B				-3.560	67911046.147	122105654.008					
						133105646.888					
setting_path6C1				-8.199	16104918.120	-31565647.714-					
setting path6C2				-6.153	16104918.120	-31565645.668-					
						31565633.362					
setting_path6E0				-8.496	16104918.120	-31565648.011-					
discards_during_setting	284.309	288.308	4.000			51505051.015		0.13	301	94	2018-2019
$discards_during_settingU$				27.370	16499039.615	-32338090.275-					
discards during settingV				0.031	1 406	32338145.015	0.97 (0.062, 15.253)				
line setting height	204 202	205 262	1.070	-0.031	0.270	1 126 0 324	$0.57(0.324 \pm 1.323)$	0.12	201	05	2018 2010
	294.295	295.303	2.000	-0.401	0.370	-1.120-0.324	0.07 (0.324–1.383)	0.12	301	95	2016-2019
long_streamer_yn	294.293	296.293	2.000					0.13	300	95	2018-2019
long_streamer_yn				-4.465	10569122.468	-20715484.502- 20715475.572					
light_streamer_yn	294.293	293.251	-1.042			20,101,010,12		0.13	300	95	2018-2019
light_streamer_yn				-1.357	0.850	-3.023-0.309	0.26 (0.049–1.362)				
setting_strategy	263.909	269.418	5.508					0.12	286	88	2018-2019
setting strategy2				-2.064	67396558.112	-					
0_ 0#						132097255.964					
setting strategy3				-2.358	1.340	-4.984-0.268	0.09(0.007 - 1.308)				
setting strategy4				-1.511	0.891	-3 257-0 235	0.22 (0.038 - 1.265)				
setting_strategy5				-1 198	1.007	-3 172-0 776	0.3(0.042-2.172)				
setting_strategys				-1 202	1.007	-3 354-0 95	0.3 (0.035_2.586)				
surface float diamater	224 251	226 251	2 000	0.572	204017 122	507628 151	0.5 (0.055-2.580)	0.12	284	70	2018 2010
surrace_noat_diameter	234.231	250.251	2.000	-0.572	304917.132	597637.007		0.12	204	/0	2010-2019

snood_length	234.251	234.617	0.366	0.107	0.077	-0.044-0.258	1.11 (0.957–1.294)	0.12	284	70	2018-2019
weight	294.293	291.920	-2.373	-0.024	0.014	-0.051 - 0.003	0.98 (0.95–1.003)	0.12	272	95	2018-2019
weighting_type	294.293	295.967	1.674					0.12	272	95	2018-2019
long_streamer_aerial_yn				-0.802	0.549	-1.878-0.274	0.45 (0.153–1.315)				
weighting_typeF				-13.379	34748477.641	-68107029.555- 68107002.797					
weighting_typeOW				20.256	23340677.409	-45747707.466-					
weighting_typeS				22.153	17513902.051	-34327225.867- 34327270.173					
weighting_typeSW				23.989	17513902.051	-34327224.031-					
weighting_typeW				22.692	17513902.051	34327272.009 -34327225.328- 34327270.712					
weighting_typeWC				23.568	22990701.479	-45061751.331-					
long_streamer_aerial_yn	294.293	294.430	0.136			45061798.467		0.11	258	95	2018-2019
long streamer aerial yn				-0.802	0.549	-1.878-0.274	0.45 (0.153-1.315)				

3.2 Multi-species captures model: black petrel, white-capped albatross, Buller's albatross

Tables 11 to 14 show the top-10 (and top-11 in table 11) and intercept models when fitting a multispecies captures model to observed captures of black petrels, white-capped albatrosses, and Buller's albatrosses. For the different datasets between 6 884 and 510 415 models were fitted. Models 1 to 10 in each table show that very similar results were obtained compared to the model being fitted to all seabird captures combined (i.e., when ignoring the actual species), with consistent support to include the parameters area, start month or season and moon phase (Tables 11 to 14). The top models fitted to the full data set were not including fishing year (as opposed to the top model in the all seabird captures model), but note that less captures were available for this model fit (i.e., only three species were included). Standardized residuals vs. predictor plots (Figs. 6 and 7) showed a similar trend for moon phase as also observed in the all seabirds model. Further, some obvious pattern existed when assessing residuals against bird density (Fig. 6). Initial model exploration (not shown here) showed that the species density effect (dens, e.g., in model 1, Table 11) was only significant if an area term was included, implying that both terms are confounded. The non-significant effect for species density could be due to inaccurate species distribution layers or that recorded fishing start positions do not match with areas of high bird densities were captures might have occurred. The coarse area variable seems therefore being a sufficient and preferred proxy to reflect the species distribution as indicated by the top model in Table 11. Further, it seemed reasonable to include an interaction between area and species, because each of the modelled species have very localised distributions (e.g., black petrel in Hauraki Gulf region). Another post-hoc adjustment was to remove the initially moon phase-species interaction as the difference in AICs between the two top model's (model 11 without, and model 12 with moon phase-species interaction) was only 1.405. The post-hoc adjusted model (model 11) received the strongest support. Model 11 was further support by the good alignment between mean predicted captures per area and the actual mean observed capture per area (Figs. 22 to 24 in Appendix D). Models 1 to 10 showed poor predictive ability.

Table 11: Top-13 multi-species models fitted to black petrel, white-capped albatross, and Buller's albatross captures where model fits included variables with 100% data completeness (unpruned dataset with 2 373 fishing events); the total number of explored models was 6 884 plus 3 post-hoc adjusted models (11 to 13).

Model	Description	df	logLik	AIC	ΔΑΙΟ
11	area:species + vessel freezer + start month + moon phase	44	-799.1226	1686.245	0
12	area:species + vessel freezer + start month + moon phase:species	46	-797.8248	1687.65	1.405
13	area:species + vessel freezer + start month + dens + moon phase:species	47	-797.6347	1689.269	3.024
1	area+vessel_freezer+start_month+dens+moon_phase:species	27	-853.937	1761.874	75.629
2	area+vessel size+start month+dens+moon phase:species	28	-853.05	1762.1	75.855
3	stats_area+vessel_size+start_month+dens+moon_phase:species	60	-822.758	1765.516	79.271
4	fishing_year+area+vessel_freezer+start_month+moon_phase:species	38	-844.78	1765.561	79.316
5	stats area+vessel freezer+start month+dens+moon phase:species	59	-823.896	1765.792	79.547
6	area+vessel_size+vessel_freezer+start_month+moon_phase:species	28	-856.393	1768.785	82.54
7	area+vessel_size+season+dens+moon_phase:species	20	-864.81	1769.621	83.376
8	fishing_year+area+start_month+dens+moon_phase:species	38	-848.769	1773.538	87.293
9	stats area+fishing year+vessel freezer+start month+moon phase:species	70	-816.815	1773.63	87.385
10	fishing_year+area+vessel_size+start_month+moon_phase:species	39	-848.299	1774.597	88.352
Null	intercept	2			459.751
model	-		-1070.998	2145.996	

Table 12: Top-10 multi-species models fitted to black petrel, white-capped albatross, and Buller's albatross captures where model fits included variables with >75% data completeness (1 069 fishing events or 45% of unpruned dataset); the total number of explored models was 146 595.

Model	Description	df	logLik	AIC	ΔΑΙΟ
1	area+moon_phase+season+time_of_day+baskets_number	15	-345.247	720.4934	0.00
2	fishing year+area+start month+dens+moon phase:species	34	-326.372	720.7443	0.25
3	fishing year+area+moon phase+season+baskets number	24	-336.618	721.2362	0.74
4	area+moon_phase+season+baskets_number+distance_to_shore	15	-346.041	722.0821	1.59
5	area+season+dens+moon_phase:species+baskets_number	17	-344.28	722.5607	2.07
6	area+start_month+dens+moon_phase:species+distance_to_shore	25	-336.563	723.1262	2.63
7	area+start_month+dens+time_of_day+moon_phase:species	25	-336.61	723.2193	2.73
8	area+season+time_of_day+moon_phase:species+baskets_number	17	-344.66	723.32	2.83
9	fishing year+area+moon phase+start month+time of day	32	-329.727	723.453	2.96
10	fishing year+area+season+moon phase:species+baskets number	26	-335.737	723.4744	2.98
Null	Intercept	2			
model	-		-418.5183	841.0366	120.54

Table 13: Top-10 multi-species models fitted to black petrel, white-capped albatross, and Buller's albatross captures where model fits included variables with >60% data completeness (462 fishing events or 19% of unpruned dataset); the total number of explored models was 284 273.

Model	Description	df	logLik	AIC	ΔΑΙΟ
1	fishing year+moon phase+season+time of day+surface temperature	17	-178.698	391.3958	0.00
2	fishing_year+moon_phase+season+mitigation_tori+time_of_day	17	-178.835	391.6706	0.27
3	fishing_year+moon_phase+season+dens+time_of_day	17	-178.907	391.8143	0.42
4	fishing_year+area+season+dens+long_streamer_distance	21	-174.949	391.8983	0.50
5	fishing_year+moon_phase+season+time_of_day+wind_beaufortscale	17	-179.113	392.2261	0.83
6	fishing_year+area+moon_phase+season+dens	21	-175.155	392.3104	0.91
7	fishing_year+season+mitigation_tori+dens+time_of_day	17	-179.193	392.3863	0.99
8	start_month+dens+moon_phase:species+wind_beaufortscale+surface_temperature	19	-177.218	392.4358	1.04
9	moon_phase+start_month+dens+wind_beaufortscale+surface_temperature	17	-179.253	392.5064	1.11
10	fishing_year+area+moon_phase+season+long_streamer_distance	21	-175.308	392.6154	1.22
Null			-		
model	Intercept		230.0593	464.1186	72.72

Table 14: Top-10 multi-species models fitted to black petrel, white-capped albatross, and Buller's albatross captures wheremodel fits included variables with $\geq 20\%$ data completeness (336 fishing events or 14% of unpruned dataset); the total numberof explored models was 510 415.

Model	Description	df	logLik	AIC	ΔΑΙΟ
1	fishing_year+moon_phase+season+time_of_day+surface_temperature	17	-178.698	391.3958	0
2	fishing_year+moon_phase+season+mitigation_tori+time_of_day	16	-178.835	391.6706	0.2748
3	fishing_year+moon_phase+season+dens+time_of_day	17	-178.907	391.8143	0.4185
4	fishing_year+area+season+dens+long_streamer_distance	21	-174.949	391.8983	0.5025
5	fishing_year+moon_phase+season+time_of_day+wind_beaufortscale	17	-179.113	392.2261	0.8303
6	fishing_year+area+moon_phase+season+dens	21	-175.155	392.3104	0.9146
7	fishing_year+season+mitigation_tori+dens+time_of_day	16	-179.193	392.3863	0.9905
8	start_month+dens+moon_phase:species+wind_beaufortscale+surface_temperature	19	-177.218	392.4358	1.04
9	moon_phase+start_month+dens+wind_beaufortscale+surface_temperature	17	-179.253	392.5064	1.1106
10	fishing_year+area+moon_phase+season+long_streamer_distance	21	-175.308	392.6154	1.2196
Null		2			
model	Intercent				

Figure 6: Residuals vs predictors from second top multi-species seabird captures model (model 1) where model fits included variables with 100% data completeness (Table 11).

Figure 7: Residuals vs predictors from top multi-species seabird captures model (model 11) where model fits included variables with 100% data completeness (Table 11).

Model estimates from model 11 (Table 11) are shown in Table 15. The estimated mean capture (on logscale) per thousand hooks was -3.606 (standard error: 0.656), which converts to approximately 0.027 captures per 1 000 hooks on actual scale. Similar to the all seabirds model, there was a significant positive relationship between the presence/absence of a vessel freezer, a significant start month effect with higher capture rates being observed during late spring/early summer months and lower captures rates over the winter. Increasing moon phase also resulted in significantly higher capture rates with a proportional increase of 10.84 (95% CI: 6.372–18.433) per unit change in moon phase.

	Estimate	SE	95% CI	exp(estimate) incl. 95% CI	z-value	p-value
(Intercept)	-3.606	0.656	-4.8922.32	0.03 (0.008–	-5.495	<0.001***
vessel_freezerTRUE	1.246	0.203	0.848-1.644	3.48 (2.335– 5.175)	6.139	<0.001***
start_month02	-0.800	0.692	-2.156-0.556	0.45 (0.116–	-1.156	0.248
start_month03	-1.516	1.164	-3.797-0.765	0.22 (0.022-	-1.302	0.193
start_month04	-1.164	0.657	-2.452-0.124	0.31 (0.086–	-1.770	0.077
start_month05	-0.583	0.639	-1.835-0.669	0.56 (0.16–	-0.913	0.361
start_month06	0.212	0.625	-1.013–1.437	1.24 (0.363 - 4.208)	0.340	0.734
start_month07	-1.616	0.645	-2.880.352	0.2 (0.056-	-2.504	0.012*
start_month08	-3.033	1.120	-5.2280.838	0.05 (0.005 - 0.433)	-2.707	0.007**
start_month09	-0.841	0.868	-2.542-0.86	0.43 (0.079–	-0.969	0.333
start_month10	-0.055	0.908	-1.835-1.725	0.95 (0.16–	-0.060	0.952
start_month11	1.213	0.611	0.015-2.411	3.36 (1.016–	1.984	0.047*
start_month12	0.592	0.645	-0.672–1.856	1.81 (0.511 - 6.399)	0.917	0.359
moon_phase	2.383	0.271	1.852-2.914	10.84 (6.372 - 18.433)	8.781	<0.001***
areaBOPL:speciesblack_petrel	-2.641	0.511	-3.6431.639	0.07 (0.026–	-5.166	<0.001***
areaECNI:speciesblack_petrel	-5.204	1.025	-7.2133.195	0.01 (0.001 - 0.041)	-5.076	<0.001***
areaECSI:speciesblack_petrel	-31.550	6174000	-12101072- 12101008	0 ()	0.000	1.000
areaFIOR:speciesblack_petrel	-33.820	6097000	-11950154- 11950086	0 ()	0.000	1.000
areaKERM:speciesblack_petrel	-34.540	2729000	-5348875-	0 ()	0.000	1.000
areaNOHA:speciesblack_petrel	-2.371	0.490	-3.3311.411	0.09 (0.036–	-4.835	<0.001***
areaSTEW:speciesblack_petrel	-31.480	15150000	-29694031- 29693969	0 ()	0.000	1.000
areaTARI:speciesblack_petrel	-33.700	6485000	-12710634-	0 ()	0.000	1.000
areaWCNI:speciesblack_petrel	-3.724	1.075	-5.8311.617	0.02 (0.003 - 0.198)	-3.464	<0.001***
areaWCSI:speciesblack_petrel	-33.140	876800	-1718561– 1718495	0 ()	0.000	1.000
areaBOPL:speciesbullers_albatross	-4.055	0.815	-5.6522.458	0.02 (0.004–	-4.976	<0.001***
areaECNI:speciesbullers_albatross	-1.892	0.290	-2.461.324	0.15 (0.085–	-6.531	<0.001***
$area ECSI: species bullers_albatross$	-31.550	6174000	-12101072 - 12101008	0 ()	0.000	1.000
areaFIOR:speciesbullers_albatross	1.015	0.717	-0.39–2.42	2.76 (0.677– 11.249)	1.416	0.157

Table 15: Model estimates from top multi-species seabirds captures model (model 11) where model fits included variables with 100% data completeness (Table 11).

areaKERM:speciesbullers_albatross	-34.540	2729000	-5348875– 5348806	0 ()	0.000	1.000
areaNOHA:speciesbullers_albatross	-3.313	0.575	-4.442.186	0.04 (0.012– 0.112)	-5.757	<0.001***
areaSTEW:speciesbullers_albatross	2.382	1.928	-1.397-6.161	10.83 (0.247– 473.845)	1.236	0.217
areaTARI:speciesbullers_albatross	-33.700	6485000	-12710634- 12710566	0 Ó	0.000	1.000
areaWCNI:speciesbullers_albatross	-33.030	1329000	-2604873- 2604807	0 ()	0.000	1.000
areaWCSI:speciesbullers_albatross	-0.192	0.215	-0.613-0.229	0.83 (0.542– 1.258)	-0.893	0.372
areaBOPL:specieswhite_capped_albatross	-3.991	0.795	-5.5492.433	0.02 (0.004– 0.088)	-5.022	<0.001***
areaECNI:specieswhite_capped_albatross	-3.780	0.542	-4.8422.718	0.02 (0.008– 0.066)	-6.974	<0.001***
areaECSI:specieswhite_capped_albatross	0.824	1.210	-1.548-3.196	2.28 (0.213– 24.425)	0.681	0.496
areaFIOR:specieswhite_capped_albatross	0.652	0.744	-0.806-2.11	1.92 (0.447– 8.25)	0.876	0.381
areaKERM:specieswhite_capped_albatross	-34.540	2729000	-5348874.54 5348805.46	0 ()	0.000	1.000
areaNOHA:specieswhite_capped_albatross	-5.296	1.089	-7.43-3.162	0.01 (0.001– 0.042)	-4.861	<0.001***
areaSTEW:specieswhite_capped_albatross	-31.480	15150000	- 29694031.48– 29693968.52	0 ()	0.000	1.000
areaTARI:specieswhite_capped_albatross	-33.700	6485000	-12710633.7- 12710566.3	0 ()	0.000	1.000
areaWCNI:specieswhite_capped_albatross	-3.732	1.078	-5.8451.619	0.02 (0.003-0.198)	-3.460	<0.001***
areaWCSI:specieswhite_capped_albatross	NA	NA			NA	NA

As for the models fitted to all seabird captures combined, Phase 2 model fitting implied that the configuration of tori lines is important for their effectiveness to reduce seabird captures (Table 16). Whilst variables such as tori length, and distance between weight and hook had only modest effects, the strong negative relationship between capture rates and tori line attachment height (attach1_height; 0.54 (95% CI: 0.327–0.878) on actual scale; or 46% decrease in capture rate per unit (m) increase in attachment height), suggests that the aerial extent of the tori line is strong factor influencing the effectiveness of tori lines.

Gear configuration and vessel behaviour variables that had a strong effect on capture rates were vessel speed, mainline diameter, floatline diameter, number of turns during line setting, and snood length (Table 16). The model results suggest a proportional change of capture rates of 0.78 (95% CI: 0.625–0.969) for every additional knot in vessel speed. Increasing mainline diameter resulted increased in capture rates (1.5 (95% CI: 1.096–2.06) change per unit change on mainline diameter), whereas increases in floatline diameter led to decreasing capture rates (0.74 (0.548–0.994) change per unit change in floatline diameter). Further, for every increase in the number of turns (range 0 to 2), the capture rate proportionally increased by 1.91 (95% CI: 1.138–3.217) or 91%. Longer snoods also increased capture rates (1.18 (95% CI: 1.065–1.301) proportional change per unit change in snood length). Capture rates decreased by about 5% for every additional 10 km off the shore (i.e., proportional change per 10 km is 0.52 (95% CI: 0.357–0.754)). Histograms for significant predictors are shown in Appendix P.

Table 16: Estimated effect size and AIC for models with significant effect for additional parameter X_i (i.e., variable that was not already assessed using the unpruned dataset) being added to top multi-species seabird captures model (model 11; Table 11); *Model 1*: model 11 in Table 14 but re-fitted with fishing events removed that had additional parameter X_i missing; *Model 11 + Xi*: Model 11 from Table 11 plus additional parameter; ΔAIC : AIC difference between AICs of *Model 11 + Xi*; *Estimate* and *SE*: Estimated effect size and standard error of additional parameter X_i ; *Prop. events left* and *N events left*: proportion and total fishing events left compared to unpruned dataset; *N captures*: Number of observed captures; *Year range*: Range of fishing year (January year shown) with available records for additional parameter X_i . Variables are ordered by the number of available fishing events.

		AIC									
variable	Model 11	Model 11 + X _i	Δ ΑΙΟ	Estimate	SE	95% CI	exp(estimate) incl. 95% CI	Prop events left	N events left	N captures	Year range
line_length	1682.88	1680.27	-2.61	-0.023	0.011	-0.0450.001	0.98 (0.956–0.999)	0.99	2 354		2007-2019
distance_to_shore	1677.15	1660.71	-16.44	-6.57E-06	1.91E-06	0; 0	0.52 (0.357–0.754) per 10 km	0.97	2 309		2007–2019
min_depth	1624.37	1622.25	-2.12	-0.021	0.010	-0.0410.001	0.98 (0.96–0.999)	0.95	2 260		2007-2019
cloud_cover	1179.10	1176.57	-2.53	-0.006	0.003	-0.012-0	0.99 (0.988–1)	0.82	1 944		2007-2019
snood_signal_time	1502.52	1498.74	-3.78	-0.078	0.036	-0.1490.007	0.92 (0.862–0.993)	0.82	1 942		2007-2019
vessel_speed	1241.25	1237.96	-3.29	-0.251	0.112	-0.4710.031	0.78 (0.625–0.969)	0.76	1 801		2007-2018
tori_length	998.96	994.06	-4.90	-0.006	0.002	-0.010.002	0.99 (0.99–0.998)	0.57	1 364		2007-2018
tori_height	998.96	995.92	-3.04	-0.110	0.054	-0.2160.004	0.9 (0.806–0.996)	0.59	1527		2007-2018
dist_stern_to_bait_min	318.80	316.74	-2.06	0.034	0.016	0.003-0.065	1.03 (1.003–1.068)	0.14	366		2018-2019
mainline_diameter	318.80	314.61	-4.19	0.407	0.161	0.091-0.723	1.5 (1.096–2.06)	0.14	362		2018-2019
attach1_height	318.80	314.60	-4.20	-0.624	0.252	-1.1180.13	0.54 (0.327–0.878)	0.14	360		2018-2019
attach1_distance	318.80	316.50	-2.30	0.047	0.023	0.002-0.092	1.05 (1.002–1.096)	0.14	360		2018-2019
setting_turns	318.32	314.54	-3.78	0.649	0.265	0.13-1.168	1.91 (1.138–3.217)	0.14	356		2018-2019
float_line_diameter	245.10	242.89	-2.21	-0.304	0.152	-0.6020.006	0.74 (0.548–0.994)	0.13	344		2018-2019
snood_length	245.10	239.04	-6.06	0.163	0.051	0.063-0.263	1.18 (1.065–1.301)	0.13	344		2018-2019
distance_weight_to_hook	318.80	314.05	-4.75	-0.010	0.004	-0.0180.002	0.99 (0.982–0.998)	0.10	273		2018-2019

	line_length	distance_to_shore	min_depth	cloud_cover	snood_stimal_time	peeds lessed	vessel_heading	tori_length	tori_height	dist_stem_b_bait_min	mainline_diameter	attach1_height	attach1_distance	setting_turms	setting_strategy	float_line_diameter	snood_length	distance_weight_to_hook	
0.04 -		Corr: 0.093***	Corr: 0.035.	Corr: -0.052*	Corr: 0.233***	Corr: 0.235***	Corr: -0.045.	Corr: 0.103***	Corr: 0.138***	Corr: 0.247***	Corr: 0.039	Corr: 0.254***	Corr: 0.178**	Corr: 0.002	: +-+-+-	Corr: -0.137*	Corr: 0.235***	Corr: -0.310***	line_length
4e+05 - 3e+05 - 2e+05 - 1e+05 - 0e+00 -	.	\bigwedge	Corr: 0.155***	Corr: -0.011	Corr: 0.109***	Corr: 0.023	Corr: 0.015	Corr: 0.061*	Corr: -0.039	Corr: -0.097.	Corr: 0.176**	Corr: -0.042	Corr: 0.043	Corr: 0.029	₽ ₽ ₽₽₽	Corr: 0.224***	Corr: -0.067	Corr: 0.089	distance_to_shore
75 - 50 - 25 -	. .	Ör	h	Corr: 0.038	Corr: 0.121***	Corr: 0.140***	Corr: -0.006	Corr: 0.225***	Corr: 0.115***	Corr: -0.118*	Corr: -0.533***	Corr: 0.080	Corr: -0.164**	Corr: 0.027	0_00 _ 4	Corr: -0.240***	Corr: 0.239***	Corr: -0.084	min_depth
100 - 75 - 50 - 25 -	ŀ			\sim	Corr: 0.079**	Corr: -0.042	Corr: -0.082**	Corr: 0.002	Corr: -0.025	Corr: -0.008	Corr: -0.111.	Corr: 0.200**	Corr: 0.150*	Corr: -0.012	\$_\$C\$\$	Corr: -0.011	Corr: 0.003	Corr: 0.088	cloud_cover
25 - 20 - 15 - 10 - 5 -			*		A	Corr: 0.052*	Corr: -0.104***	Corr: 0.006	Corr: 0.119***	Corr: 0.041	Corr: -0.151*	Corr: 0.047	Corr: 0.150*	Corr: 0.062	Ú- _Ó ę _{¢•e}	Corr: -0.501***	Corr: 0.420***	Corr: -0.092	snood_signal_time
6 - 4 - 2 -					1	\bigwedge	Corr: -0.016	Corr: -0.001	Corr: 0.065*	NA	NA	NA	NA	NA	•	NA	NA	NA	vessel_speed
300 - 200 - 100 -	•						Л	Corr: -0.048.	Corr: -0.084**	NA	NA	NA	NA	NA	ļ	NA	NA	NA	vessel_heading
300 - 200 - 100 -	•				*	÷.	÷.	A	Corr: 0.034	NA	NA	NA	NA	NA	þ	NA	NA	NA	tori_length
20 - 15 - 10 - 5 -	Í	÷.				ä.	-		M	NA	NA	NA	NA	NA		NA	NA	NA	tori_height
30 - • 20 - 10 - •		 	- -	 نسابیای		NA	NA	NA	NA	L	Corr: 0.158**	Corr: 0.162**	Corr: 0.249***	Corr: 0.088		Corr: -0.255***	Corr: 0.511***	Corr: -0.122*	dist_stern_to_bait_min
6 5 4 - 3 - 2	•	-				NA	NA	NA	NA		\mathcal{M}	Corr: -0.200***	Corr: 0.620***	Corr: 0.145*	 _:++.÷	Corr: 0.516***	Corr: -0.324***	Corr: 0.015	mainline_diameter
15 - 10 - 5 -		-	.	Rimi	÷.	NA	NA	NA	NA	. ·	n.	L	Corr: 0.082	Corr: -0.007	e-090 : :	Corr: -0.387***	Corr: 0.354***	Corr: -0.236***	attach1_height
25 - 20 - 15 - 10 - 5 -	i	-				NA	NA	NA	NA				\mathbb{V}	Corr: 0.314***	 	Corr: -0.200***	Corr: 0.085	Corr: -0.257***	attach1_distance
2.0- 1.5- 1.0- 0.5-			•••			NA	NA	NA	NA					L		Corr: 0.076	Corr: 0.039	Corr: 0.024	setting_turns
		-											a i i Li Miti Miti			ŀ		-0 -0 -1 -1 -1 -1 -1 -1	setting_strategy
12 - • 10 - • 8 - • 6 - •		 E	i II.		· Ē	NA	NA	NA	NA			Ţ.				N	Corr: -0.325***	Corr: 0.178**	float_line_diameter
20 - 15 - 10 -		i i i		217	· # · ·	NA	NA	NA	NA	ł	Ci :	7	R,		≞ilga	10:	M,	Corr: -0.107.	snood_length
1000 - 500 -		=	-9 <u>er</u> ,	2011.011	. 19 7.	NA	NA	NA	NA	: •			: *: .		1 11 1 <u>2 7455</u>	· ·		M_r	distance_weight_to_hook

Figure 8: Pairwise comparison of significant additional parameters (Table 19) that were added to top multi-species captures model (model 11; Table 11).

Table 17: Estimated effect size and AIC for models with non-significant effect for additional parameter Xi (i.e., variable that was not already assessed using the unpruned dataset) being added to top multi-species captures model (model 11; Table 11); Model 11: model 11 in Table 11 but re-fitted with fishing events removed that had additional parameter Xi missing; Model 11 + Xi: Model 11 from Table 11 plus additional parameter; Δ AIC: AIC difference between AICs of Model 11 and Model 11 + Xi; Estimate and SE: Estimated effect size and standard error of additional parameter Xi; Prop. events left and N events left: proportion and total fishing events left compared to unpruned dataset; Year range: Range of fishing year (January year shown) with available records for additional parameter Xi. Variables are ordered by the number of available fishing events. Blank field for estimates: model failed.

		AIC								
Variable	Model 11	Model 11 + X _i	ΔΑΙΟ	Estimate	SE	95% CI	exp(estimate) incl. 95% CI	Prop events left	N events left	N Year captures range
baskets_number	1685.33	1687.30	1.97	-0.001	0.003	-0.007-0.005	0.03 (0.008-0.098)	0.99	2 358	2007-2019
night_hours	1677.13	1676.13	-1.00	-0.221	0.124	-0.464-0.022	3.48 (2.335-5.175)	0.97	2 308	2007-2019
max_depth	1587.84	1589.84	2.00	0.000	0.002	-0.004-0.004	0.45 (0.116–1.744)	0.93	2 216	2007–2019
start_wind_direction	1555.94	1556.98	1.04	0.001	0.001	-0.001-0.003	0.22 (0.022–2.15)	0.93	2 204	2007–2019
bait_thrower_used_yn	1392.67	1394.29	1.63				0.56 (0.16–1.953)	0.87	2 062	2007–2018
bait_thrower_used_ynY				-0.477	0.786	-2.018-1.064	1.24 (0.363-4.208)			
wind_beaufortscale	1364.05	1365.42	1.37	-0.047	0.058	-0.161-0.067	0.2 (0.056-0.703)	0.85	2 006	2007-2018
number_of_vessels	1360.77	1362.77	2.00	-0.002	0.053	-0.106-0.102	0.05 (0.005–0.433)	0.84	2 003	2007-2018
long_streamer_distance	1507.42	1508.53	1.12	0.026	0.025	-0.023-0.075	0.43 (0.079–2.364)	0.73	1 725	2008–2019
surface_temperature	955.67	956.56	0.89	0.110	0.098	-0.082-0.302	0.95 (0.16-5.611)	0.65	1 534	2007–2018
line_entry_yn	987.71	989.65	1.95				3.36 (1.016–11.14)	0.57	1 362	2007-2018
line_entry_ynY				-0.057	0.246	-0.539-0.425	1.81 (0.511-6.399)			
bait_stream	951.22	953.18	1.96	-0.012	0.059	-0.128-0.104	10.84 (6.372–18.433)	0.55	1 294	2007–2018
mitigation_none	396.22	396.22	0.00				0.07 (0.026–0.194)	0.24	573	2007-2018
bottom_depth	392.53	394.51	1.98	0.000	0.001	-0.002-0.002	0.01 (0.001–0.041)	0.15	355	2007-2018
light_sticks_yn	318.80	320.69	1.89	-0.132	0.401	-0.918-0.654	0 ()	0.13	302	2018-2019
acoustic_bird_deterrent_yn	318.80						0 0	0.13	302	2018-2019
deck_light_yn	318.80	320.80	2				0 ()	0.13	302	2018-2019
deck_light_ynY				2.565	2866541.777	-5618419- 5618424	0.09(0.036_0.244)			
fishing_gear_discard_yn	318.80	320.80	2			5010424	0.03 (0.030 0.244)	0.13	302	2018-2019
fishing_gear_discard_ynU				-1.838	2173472.408	-4260008-	0 ()			
setting path	318.32					4260004	() 0	0.13	301	2018-2019
discards_during_setting	310.68	314.42	3.747				0.02 (0.003–0.198) 0 ()	0.13	301	2018–2019

$discards_during_settingU$				27.347	4301311.169	-8430543-				
discards during settingY				-29.578	6789369.979	8430597 -13307195-	0.02 (0.004–0.086)			
						13307136	0.15 (0.085–0.266)			
hook_type	318.80						0 ()	0.13	302	2018–2019
mainline_material	318.80						2.76 (0.677–11.249)	0.13	302	2018-2019
float_line_length	318.80	318.95	0.147	-0.047	0.036	-0 118-0 024	0.0	0.13	302	2018-2019
number_snoods	318.80	320.79	1.985	-0.011	0.089	-0.185-0.163	0.04 (0.012–0.112)	0.13	302	2018-2019
line_setting_height	318.80	318.85	0.051	-0.531	0.354	-1.225-0.163	10.83 (0.247– 473.845)	0.13	301	2018–2019
long_streamer_yn	318.80	320.80	2				0.0	0.13	300	2018-2019
long_streamer_yn				-1.166	2454346.699	-4810521-				
light streamer vn	318 80	319.26	0 458			4810518	0 ()	0.13	300	2018-2019
light_streamen_yn	510.00	519.20	0.450	0.482	0.402		0.83 (0.542–1.258)	0.15	500	2010 2017
ligni_sireamer_yn	210.00	215.40	1 225	-0.482	0.403	-1.272-0.308	0.02 (0.004–0.088)	0.10	201	2010 2010
dist_bait_to_tori	318.80	317.48	-1.325	0.032	0.019	-0.005-0.069	0.02 (0.008-0.066)	0.13	301	2018–2019
surface_float_diameter	245.10	247.10	2	-0.517	72585.433	-142268-	2 28 (0 212 24 425)	0.12	284	2018-2019
aerial_extent	318.80	317.26	-1.539	0.055	0.029	0.002.0.112	1.02 (0.447, 8.25)	0.12	278	2018-2019
long_streamer_aerial_yn	318.80	319.37	0.565			-0.002-0.112	1.92 (0.447-8.23)	0.11	258	2018-2019
long streamer aerial yn				-0.555	0.459	1 455 0 0 45	0.0			
weight	318.80	317.38	-1.425	-0.022	0.014	-1.455-0.345	0.01 (0.001–0.042)	0.11	272	2018-2019
weighting type	318 80	321.04	2 243			-0.049–0.005	0 ()	0.11	272	2018-2019
weighting_type	510.00	521.01	2.2.13	7 120	11227267 002	22201647	0 ()	0.11	272	2010 2019
weigning_typer				-7.139	11327307.093	22201047=	0.02 (0.003-0.198)			
weighting_typeOW				23.906	10299724.770	-20187437-	(0.002 (0.0002 0.0030)			
weighting typeS				23 387	9951583 960	20187484 -19505082-				
weighting_types				23.307	<i>yys</i> 1505.700	19505128	0.98 (0.956-0.999)			
weighting_typeSW				25.145	9951583.960	-19505079-				
weighting type W				24 293	9951583 960	19505130	0.52 (0.357–0.754)			
weighting_typen				24.275	<i>yyy</i> 1505.900	19505129	0.98 (0.96-0.999)			
weighting_typeWC				25.562	10224600.253	-20040191-				
weighting typeWS				25 205	10328258 081	20040242	0.99 (0.988–1)			
weignung_iypews				25.205	10320230.901	202433413	0.92 (0.862-0.993)			
3.3 NZ fur seal captures model

Tables 18 to 21 show the top-10 models (based on AIC) and the Null model (i.e., intercept model) fitted to observed captures of NZ fur seals combined. For the different datasets between 4 943 and 584 934 models were fitted. Model fitting to all seabird captures suggests a relationship between observed NZ fur seal captures and fishing year for all datasets (i.e., unpruned and pruned datasets). Fitting models to the unpruned dataset suggests including the variables fishing year, area, and start month across all the 10 top models (Table 18). The top model (model 1) also included the variables presence/absence of tori line and bathymetry, and these variables also occurred across the remaining top-10 models. There was also some indication that NZ fur seal captures rates could be influenced by factors such as distance to shore and vessel speed when fitting models to pruned datasets which contained more available parameters (Tables 19 to 21). However, consistently good predictive ability was archived for the models fitted to unpruned data (Fig. 37 in Appendix I), whereas predictive ability was unsatisfactory for most models being fitted to pruned datasets (Figs. 39, 41, and 43 in Appendix I). Plotting standardized residuals from model 1 in Table 18 against predictors does not imply issues with the model fit (i.e., no obvious patterns were observed; Fig. 9).

 Table 18: Top-10 models fitted to NZ fur seal captures where model fits included variables with 100% data completeness (unpruned dataset with 2 373 fishing events); the total number of explored models was 4 943.

Model	Description	df	logLik	AIC	ΔΑΙΟ
1	fishing_year+area+start_month+mitigation_tori+bathymetry	36	-396.202	864.4038	0
2	fishing_year+area+start_month+mitigation_tori	35	-398.086	866.1722	1.7684
3	fishing_year+area+start_month+season+mitigation_tori	35	-398.086	866.1722	1.7684
4	fishing_year+area+start_month+mitigation_tori+time_of_day	36	-397.101	866.2024	1.7986
5	fishing_year+area+vessel_freezer+start_month+mitigation_tori	36	-397.279	866.5573	2.1535
6	fishing_year+area+start_month+mitigation_tori+dens	36	-397.301	866.6013	2.1975
7	fishing_year+area+start_month+bathymetry	37	-398.576	867.151	2.7472
8	fishing_year+area+start_month+season+bathymetry	35	-398.576	867.151	2.7472
9	fishing_year+area+moon_phase+start_month+mitigation_tori	36	-397.614	867.227	2.8232
10	fishing_year+area+start_month+time_of_day+bathymetry	36	-397.701	867.4009	2.9971
Null model	Intercept	2	-510.2799	1024.56	160.1562

Table 19: Top-10 models fitted to NZ fur seal captures where model fits included variables with >75% data completeness (1 069 fishing events or 45% of unpruned dataset); the total number of explored models was 174 436.

Model	Description	df	logLik	AIC	ΔAIC
1	target+fishing year+vessel freezer+mitigation tori+distance to shore	18	-150.522	337.0437	0
2	target+fishing year+vessel freezer+distance to shore	17	-151.994	337.987	0.9433
3	target+fishing year+vessel size+vessel freezer+distance to shore	19	-150.002	338.0033	0.9596
4	target+fishing_year+vessel_freezer+season+distance_to_shore	20	-149.088	338.1768	1.1331
5	target+fishing year+vessel freezer+distance to shore+start wind direction	18	-151.135	338.2699	1.2262
6	target+fishing year+vessel freezer+dens+distance to shore	18	-151.137	338.2736	1.2299
7	target+fishing year+season+distance to shore	19	-150.177	338.3534	1.3097
8	target+fishing year+vessel freezer+distance to shore+night hours	18	-151.185	338.3698	1.3261
9	target+fishing year+mitigation tori+dens+distance to shore	18	-151.237	338.4735	1.4298
10	target+fishing year+season+mitigation tori+distance to shore	20	-149.358	338.715	1.6713
Null	Intercept				
model	-	2	-198.434	400.869	63.825

Table 20: Top-10 models fitted to NZ fur seal captures where model fits included variables with >60% data completeness (462 fishing events or 19% of unpruned dataset); the total number of explored models was 331 211.

Model	Description	df	logLik	AIC	Δ AIC
1	fishing_year+dens+distance_to_shore+vessel_speed+surface_temperature	15	-69.7975	169.5949	0
2	fishing_year+dens+distance_to_shore+bathymetry:max_depth+surface_temperature	15	-70.615	171.2299	1.635
3	fishing_year+vessel_freezer+dens+vessel_speed+surface_temperature	15	-70.6826	171.3652	1.7703
4	fishing year+dens+distance to shore+bathymetry:min depth+surface temperature	15	-70.7151	171.4303	1.8354
5	fishing year+dens+distance to shore+snood signal time+surface temperature	15	-70.9971	171.9943	2.3994
6	fishing year+vessel_freezer+dens+bathymetry:min_depth+surface_temperature	15	-71.1433	172.2866	2.6917
7	fishing_year+vessel_size+dens+distance_to_shore+surface_temperature	15	-71.3898	172.7796	3.1847
8	fishing_year+dens+distance_to_shore+surface_temperature	14	-72.4555	172.9109	3.316
9	fishing_year+dens+distance_to_shore+long_streamer_distance+surface_temperature	15	-71.5501	173.1002	3.5053
10	fishing_year+dens+bathymetry+distance_to_shore+surface_temperature	15	-71.6047	173.2095	3.6146

Null	2			
model		-113.082	230.1643	60.5694

Table 21: Top-10 models fitted to NZ fur seal captures where model fits included variables with >20% data completeness (336 fishing events or 14% of unpruned dataset); the total number of explored models was 584 934.

Model	Description	df	logLik	AIC	ΔΑΙΟ
1	fishing year+area+max depth+tori length+bait stream	19	-27.602	93.20391	0
2	target+fishing year+area+start wind direction+bait stream	20	-26.6867	93.37346	0.16955
3	target+fishing year+area+night hours+bait stream	20	-26.697	93.39393	0.19002
4	target+fishing year+area+wind beaufortscale+bait stream	20	-26.7433	93.48663	0.28272
5	target+fishing year+area+distance to shore+bait stream	20	-27.0105	94.02102	0.81711
6	target+fishing year+start wind direction+surface temperature+bait stream	16	-31.037	94.07392	0.87001
7	target+fishing year+dens+start wind direction+bait stream	16	-31.11	94.22008	1.01617
8	target+fishing year+vessel size+long streamer distance+bait stream	16	-31.1149	94.22973	1.02582
9	target+fishing year+vessel freezer+long streamer distance+bait stream	16	-31.1211	94.24228	1.03837
10	target+fishing year+area+bait stream	19	-28.1819	94.3638	1.15989
Null model		2	-58.3385	120.6771	27.47319

Figure 9: Residuals vs predictors from top NZ fur seal captures model (model 1) where model fits included variables with 100% data completeness (Table 18).

Model estimates (model 1 in Table 18) suggest strong interannual variability in NZ fur seal captures rates with proportional changes up to 23.88 (95% CI: 4.417–129.096) or a 22.88% increase in capture rates (in 2011–12 fishing year). Captures of NZ fur seals were area-specific, and no captures were observed for the areas KERM, TARI, FIOR, ECSI, and STEW, hence the large confidence bounds (but note that actual estimates rates would be close to 0). For areas with NZ fur seal captures, the highest capture rate occurred in west coast South Island (WCSI) (proportional change in capture rate: 30.3 (95% CI: 7.653–119.931). NZ fur seal captures only occurred between the month April to August, while capture rates increased over that time period (Table 22). The model further suggests a proportional increase of 2.16 (95% CI: 1.071–4.374) of capture rates for vessels that used a tori line, but tori line might be a proxy for some other vessel-specific components not covered by the model or dataset (personal discussion with William Gibson, FNZ).

Table 22: Model estimates from top NZ fur seal captures model (model 1) where model fits included variables with 100% data completeness (Table 18). Base cases for fixed effects: fishing year: 2006–07; area: NOHA (Hauraki Gulf); start_month: 7 (July); mitigation_tori: FALSE.

	Estimate	SE	95% CI	Exp(estimate) incl. 95% CI	Z- vəlue	p-value
(Intercept)	-8.411	1.124	-10.6146.208	0 (0-0.002)	-7.484	<0.001***
fishing_year2007-08	1.130	0.925	-0.683–2.943	3.1 (0.505–18.973)	1.221	0.222
fishing_year2008-09	2.456	0.877	0.737-4.175	11.66 (2.09–65.035)	2.802	0.005**
fishing_year2009-10	0.490	0.982	-1.435–2.415	1.63 (0.238–11.187)	0.499	0.618
fishing_year2010-11	2.251	0.900	0.487-4.015	9.5 (1.627–55.423)	2.502	0.012*
fishing_year2011–12	3.173	0.861	1.485-4.861	23.88 (4.417–	3.685	<0.001***
fishing_year2012-13	0.618	1.289	-1.908-3.144	1.86 (0.148–23.207)	0.479	0.632
fishing_year2013-14	1.946	0.906	0.17-3.722	7 (1.186–41.337)	2.148	0.032*
fishing_year2014-15	2.977	0.843	1.325-4.629	19.63 (3.761– 102.44)	3.530	<0.001***
fishing_year2015-16	-0.088	0.975	-1.999–1.823	0.92 (0.135–6.19)	-0.090	0.928
fishing_year2016-17	2.201	0.801	0.631-3.771	9.03 (1.88–43.422)	2.747	0.006**
fishing_year2017-18	-0.657	1.282	-3.17-1.856	0.52 (0.042-6.396)	-0.513	0.608
fishing_year2018-19	2.975	0.820	1.368-4.582	19.59 (3.927– 97.729)	3.630	<0.001***
areaBOPL	1.602	0.611	0.404–2.8	4.96 (1.498–16.437)	2.622	0.009**
areaECNI	2.223	0.633	0.982-3.464	9.23 (2.671–31.934)	3.514	<0.001***
areaECSI	-27.630	7557000.000	-14811747.63– 14811692.37		0.000	1.000
areaFIOR	-28.930	15290000.000	-29968428.93-		0.000	1.000
areaKERM	-26.720	2400000.000	-4704026.72-		0.000	1.000
areaSTEW	-30.720	47450000.000	4703973.28 -93002030.72-		0.000	1.000
areaTARI	-30.050	11800000.000	93001969.28 -23128030.05-		0.000	1.000
	201020	1100000000000	23127969.95		0.000	1000
areaWCNI	0.506	0.829	-1.119–2.13	1.66 (0.327–8.422)	0.610	0.542
areaWCSI	3.411	0.702	2.035-4.787	30.3 (7.653– 119.931)	4.861	<0.001***
start_month01	-33.290	5634000.000	-11042673.29- 11042606.71		0.000	1.000
start_month02	-34.060	5541000.000	-10860394.06- 10860325.94		0.000	1.000
start_month03	-31.690	4510000.000	-8839631.69- 8839568.31		0.000	1.000
start_month04	-3.234	0.756	-4.7161.752	0.04 (0.009–0.173)	-4.278	< 0.001***
start_month05	-2.341	0.413	-3.15-1.532	0.1 (0.043–0.216)	-5.670	<0.001***
start_month06	-0.855	0.294	-1.4310.279	0.43 (0.239–0.757)	-2.913	0.004**
start_month08	0.257	0.407	-0.541 - 1.055	1.29 (0.582–2.871)	0.633	0.527
start_month09	-33.240	6153000.000	-12059913.24- 12059846.76		0.000	1.000
start_month10	-32.320	6417000.000	-12577352.32- 12577287.68		0.000	1.000
start_month11	-30.500	2995000.000	-5870230.5– 5870169.5		0.000	1.000
start_month12	-33.390	4826000.000	-9458993.39- 9458926.61		0.000	1.000
mitigation_toriTRUE	0.772	0.359	0.068–1.476	2.16 (1.071–4.374)	2.150	0.032*
bathymetry	0.000	0.000	0–0	0.96 (0.914–1) Per 100 m	-1.949	0.051

Expanding model 1 in Table 18 by additional variables showed that some gear configuration and fishing behaviour-related variables could affect NZ fur seal captures rates (Table 23). For example, using light sticks during fishing could potentially result in an increase of fur seal capture rates with a proportional increase of 42.91 when light sticks were used but note the wide 95% confidence interval of 3.82 to 481.853. The presence of light (or short) streamers seemed to result in higher capture rates. NZ fur seal capture rates decreased with an increase in the number of night hours during fishing (proportional change of 0.57 (95% CI: 0.417–0.768) per additional hour of night fishing).

Table 23: Estimated effect size and AIC for models with significant effect for additional parameter X_i (i.e., variable that was not already assessed using the unpruned dataset) being added to top NZ fur seal captures model (model 1; Table 18); *Model 1*: model 1 in Table 18 but re-fitted with fishing events removed that had additional parameter X_i missing; *Model 1* + X_i : Model 1 from Table 18 plus additional parameter; ΔAIC : AIC difference between AICs of *Model 1* and *Model 1* + X_i ; *Estimate* and *SE*: Estimated effect size and standard error of additional parameter X_i ; *Prop. events left*: proportion and total fishing events left compared to unpruned dataset; *Year range*: Range of fishing year (January year shown) with available records for additional parameter X_i . Variables are ordered by the number of available fishing events.

		AIC									
Variable	Model 1	Model 1 + X _i	ΔΑΙΟ	Estima te	SE	95% CI	Exp(estimate) incl. 95% CI	Prop. events left	N events left	N captures	Year range
night_hours	835.713	827.097	-8.617	-0.570	0.156	-0.8760.264	0.57 (0.417-0.768)	0.97	2 308	145	2007-2019
max_depth	840.579	832.809	-7.770	-0.013	0.004	-0.0210.005	0.99 (0.979–0.995)	0.93	2 216	145	2007-2019
cloud_cover		666.351		0.011	0.004	0.003-0.019	1.01 (1.003–1.019)	0.82	1 944	119	2007-2019
snood_signal_time	748.004	737.267	-10.737	0.190	0.047	0.098-0.282	1.21 (1.103–1.326)	0.81	1 942	134	2007-2019
light_sticks_yn	161.072	149.522	-11.550					0.13	302	42	2018-2019
light_sticks_ynY				3.759	1.234	1.34-6.178	42.91 (3.82–481.853)				
line_setting_height	161.072	124.963	-36.109	3.595	0.733	2.158-5.032	36.42 (8.657–153.19)	0.13	301	42	2018-2019
dist_bait_to_tori	161.072	140.601	-20.470	-2.788	0.410	-3.5921.984	0.06 (0.028-0.137)	0.13	301	42	2018-2019
dist_stern_to_bait_min	161.072	145.892	-15.180	-0.370	0.088	-0.5420.198	0.69 (0.581-0.821)	0.13	302	42	2018-2019
mainline_diameter	161.072	140.844	-20.228	-1.160	0.269	-1.687-0.633	0.31 (0.185–0.531)	0.13	302	42	2018-2019
float_line_length	161.072	152.517	-8.555	0.358	0.087	0.187–0.529	1.43 (1.206–1.696)	0.13	302	42	2018-2019
number_snoods	161.072	155.026	-6.046	1.002	0.264	0.485–1.519	2.72 (1.623-4.57)	0.13	302	42	2018-2019
attach1_distance	161.072	147.571	-13.500	-0.181	0.043	-0.265-0.097	0.83 (0.767–0.908)	0.13	300	42	2018-2019
light_streamer_yn	161.072	125.325	-35.747					0.13	300	42	2018-2019
light_streamer_yn				3.856	0.747	2.392-5.32	47.28 (10.934– 204.408)				
float_line_diameter	127.172	121.430	-5.742	-0.665	0.292	-1.2370.093	0.51 (0.29–0.911)	0.12	284	42	2018-2019
snood_length	127.172	120.521	-6.651	0.843	0.312	0.231-1.455	2.32 (1.26-4.282)	0.12	284	42	2018-2019
aerial_extent	161.072	146.827	-14.245	-0.324	0.060	-0.4420.206	0.72 (0.643–0.814)	0.12	278	42	2018-2019
weight	161.072	129.443	-31.629	0.053	0.010	0.033-0.073	1.05 (1.034–1.075)	0.11	272	42	2018-2019
distance_weight_to_hook	161.072	123.391	-37.681	0.022	0.004	0.014-0.03	1.02 (1.014–1.03)	0.11	272	42	2018-2019

	night_hours	max_depth	rumber_weighted_snoods	cloud_cover	snood_signal_time	light_sticks_yn	dist_stem_to_bait_min	Ine_setting_height	mainline_diameter	float_line_length	number_snoods	attach1_cistance	light_streamer_yn	dist_bait_to_tori	float_line_diameter	the shood should be a set of the	aerial_extent	weight	distance_weight_to_hook	
0.5- 0.4- 0.3- 0.2- 0.1- 0.0-	\land	Corr: 0.028	Corr: -0.073***	Corr: 0.039.	Corr: 0.184***	÷÷÷	Corr: 0.195***	Corr: -0.103.	Corr: 0.119*	Corr: -0.190***	Corr: -0.187**	Corr: 0.169**	Corr: -0.210***	Corr: 0.027	Corr: -0.194***	Corr: 0.174**	Corr: 0.330***	Corr: 0.178***	Corr: -0.137*	night_hours
250 - 200 - 150 - 100 - 50 -	.	M	Corr: -0.011	Corr: 0.033	Corr: -0.178***	÷dę	Corr: 0.105.	Corr: -0.135*	Corr: 0.418***	Corr: -0.195***	Corr: -0.143*	Corr: 0.585***	Corr: -0.333***	Corr: -0.023	Corr: 0.181**	Corr: -0.127*	Corr: 0.177**	Corr: -0.067**	Corr: -0.291***	max_depth
15 - 10 - 5 - 0 -	<u>.</u>	£		Corr: 0.013	Corr: 0.058*	自 :「	Corr: 0.126*	Corr: -0.013	Corr: -0.231***	Corr: 0.137*	Corr: -0.026	Corr: -0.212***	Corr: 0.080	Corr: 0.168**	Corr: -0.181**	Corr: 0.050	Corr: -0.227***	Corr: 0.025	Corr: 0.093	number_weighted_snoods
100 75 - 50 - 25 -				\sim	Corr: 0.079**	昀	Corr: -0.008	Corr: 0.149*	Corr: -0.111.	Corr: -0.061	Corr: -0.276***	Corr: 0.150*	Corr: -0.012	Corr: 0.061	Corr: -0.011	Corr: 0.003	Corr: 0.187**	Corr: 0.002	Corr: 0.088	cloud_cover
25- 20- 15- 10- 5-	ţ.	.	• 🗰		A	Ļ≑Ę	Corr: 0.041	Corr: 0.291***	Corr: -0.151*	Corr: 0.089	Corr: -0.491***	Corr: 0.150*	Corr: 0.265***	Corr: 0.201***	Corr: -0.501***	Corr: 0.420***	Corr: 0.576***	Corr: 0.067**	Corr: -0.092	snood_signal_time
	Ĩ.			أيليروني			₿• • • •	• []- •	•	• -[]- []-	-]] •	⊩ .		¦ · · · •	-[] []-	•-[]-•	-[-•••	· ·		light_sticks_yn
30 - 20 - 10 - 0 -			موا . ب	 نطريه		 	L	Corr: 0.032	Corr: 0.158**	Corr: 0.020	Corr: -0.063	Corr: 0.249***	Corr: 0.032	Corr: 0.765***	Corr: -0.255***	Corr: 0.511***	Corr: 0.113.	Corr: 0.143*	Corr: -0.122*	dist_stern_to_bait_min
3.5 - 3.0 - 2.5 - 2.0 - 1.5 - 1.0 -					. <u>.</u>			M	Corr: -0.122*	Corr: 0.006	Corr: -0.592***	Corr: 0.212***	Corr: 0.481***	Corr: 0.060	Corr: -0.189**	Corr: 0.194**	Corr: 0.179**	Corr: -0.078	Corr: 0.350***	line_setting_height
6- 5- 4-						· · 			M	Corr: -0.487***	Corr: 0.048	Corr: 0.620***	Corr: -0.106.	Corr: -0.063	Corr: 0.516***	Corr: -0.324***	Corr: 0.089	Corr: -0.078	Corr: 0.015	mainline_diameter
16 - 12 - 8 - 4 -	. .	*	· `¥		·=.			· Fi	.#: · .	\mathcal{N}	Corr: 0.207***	Corr: -0.647***	Corr: 0.328***	Corr: 0.289***	Corr: 0.110.	Corr: 0.438***	Corr: -0.020	Corr: -0.174**	Corr: 0.168**	float_line_length
25 - 20 - 15 - 10 -	2	6 :		sin thi	·**:	Fil	L. ·	.41.	·KI · .	. ; 1,2	M	Corr: -0.443***	Corr: -0.230***	Corr: -0.027	Corr: 0.466***	Corr: -0.102.	Corr: -0.362***	Corr: -0.088	Corr: -0.192**	number_snoods
25- 20- 15- 10- 5-	- -			أملائد				: اندر.	·Ki :			\mathbb{V}	Corr: -0.138*	Corr: 0.040	Corr: -0.200***	Corr: 0.085	Corr: 0.276***	Corr: 0.049	Corr: -0.257***	attach1_distance
1.00 - 0.75 - 0.50 - 0.25 - 0.00 -							- ·			-			\bigvee	Corr: 0.172**	Corr: -0.006	Corr: 0.114.	Corr: -0.207***	Corr: -0.331***	Corr: 0.307***	light_streamer_yn
50 - 40 - 30 - 20 - 10 -	.											1		1_	Corr: -0.186**	Corr: 0.444***	Corr: 0.122*	Corr: -0.058	Corr: -0.128*	dist_bait_to_tori
12- 10- 8- 6-	: .			Me	· <u>.</u>		: .		.ji .		 3	2.		: I	N	Corr: -0.325***	Corr: -0.350***	Corr: -0.036	Corr: 0.178**	float_line_diameter
20 - 15 - 10 -	. -	n .	• •4	217	*	t E	ł	··i:''	.ci :	- ili+	X :	K.	i i	ŗ		M	Corr: 0.548***	Corr: 0.169**	Corr: -0.107.	snood_length
125 - 100 - 75 - 50 -	; f "	<u>л</u> .			.E			. <u>.</u>		·			: 	1 [.] .			A	Corr: 0.148*	Corr: -0.014	aerial_extent
70.0 - 67.5 - 65.0 - 62.5 - 60.0 -			· · · -		·		.			•••••		- · ·	•	 -				\bigcup	Corr: -0.236***	weight
1000 - 500 - 0 -	= =		:: 24 • • •		: .,¥7,	: : 	: •	:: .:#4!!	•••. ••••••••••		:: .##	: #:,	· . : : ; ;	: 	•••• #***••	• جمع •	:: , , ;;«جر:	· . : :	Ļ	distance_weight_to_hook

Figure 10: Pairwise comparison of significant additional parameters (Table 26) that were added to top all seabirds captures model (model 1; Table 18).

Table 24: Estimated effect size and AIC for models with non-significant effect for additional parameter X_i (i.e., variable that was not already assessed using the unpruned dataset) being added to top NZ fur seal captures model (model 1; Table 18); *Model 1*: model 1 in Table 18 but re-fitted with fishing events removed that had additional parameter X_i missing; *Model 1* + X_i : Model 1 from Table 18 plus additional parameter; ΔAIC : AIC difference between AICs of *Model 1* and *Model 1* + X_i ; *Estimate* and *SE*: Estimated effect size and standard error of additional parameter X_i ; *Prop. events left*: proportion and total fishing events left compared to unpruned dataset; *Year range*: Range of fishing year (January year shown) with available records for additional parameter X_i . Variables are ordered by the number of available fishing events. Blank field for estimates: model failed.

		AIC									
Variable	Model 1	Model 1 + X _i	Δ ΑΙΟ	Estimate	SE	95% CI	Exp(estimate) incl. 95% CI	Prop. events	N events	N captures	Year range
baskets_number	857.179							0.99	2 358	146	2007-2019
line_length	865.802	866.402	0.600	-0.018	0.016	-0.049-0.013	0.98 (0.952– 1.013)	0.99	2 354	149	2007–2019
distance_to_shore	835.713	836.277	0.564	0.000	0.000	0-0	1 (1-1)	0.97	2 309	145	2007-2019
min_depth	841.594	843.159	1.565	0.009	0.013	-0.016-0.034	1.01 (0.984–	0.95	2 260	145	2007-2019
start_wind_direction	768.637	770.347	1.710	-0.001	0.001	-0.003-0.001	1(0.997 - 1.001)	0.93	2 204	130	2007-2019
bait_thrower_used_yn	710.969	712.717	1.747			01002 01001	11001)	0.87	2 062	107	2007-2018
bait_thrower_used_ynY				0.303	0.619	-0.91–1.516	1.35 (0.402– 4.555)				
wind_beaufortscale	689.089	690.968	1.878	0.027	0.076	0 122 0 176	1.03 (0.885-	0.85	2 006	103	2007-2018
number_of_vessels	685.288	687.019	1.731	0.026	0.051	-0.074-0.126	1.192) 1.03 (0.929– 1.134)	0.84	2 003	104	2007-2018
vessel_speed	641.730	643.481	1.751	-0.069	0.137	-0.338-0.2	0.93 (0.714– 1.221)	0.76	1 801	95	2007-2018
vessel_heading	629.021	630.372	1.350	-0.002	0.002	0.006.0.002	1 (0.994–	0.74	1 763	94	2007-2018
long_streamer_distance	697.773	699.753	1.980	0.006	0.042	-0.006-0.002	1.002) 1.01 (0.927 - 1.092)	0.73	1 725	121	2008-2019
surface_temperature	538.382	540.381	1.999	-0.003	0.133	-0.264-0.258	1(0.768 - 1.294)	0.65	1 534	80	2007-2018
tori_length	481.499	482.824	1.325	-0.002	0.003	-0.008-0.004	1(0.992 - 1.004)	0.58	1 365	68	2007-2018
tori_height	481.452	483.064	1.612	0.038	0.059	-0.078-0.154	1.04 (0.925–	0.57	1 364	68	2007-2018
line_entry_yn	481.145	481.881	0.735			0.070 0.121	1.100)	0.57	1 362	68	2007-2018
line_entry_ynY				-0.342	0.308	-0.946-0.262	0.71 (0.388–				
bait_stream	456.934	458.123	1.189	0.059	0.065	-0.068-0.186	1.06 (0.934-	0.55	1 294	65	2007-2018
mitigation_none	161.997	161.997	0.000			0.000 0.100	1.200)	0.24	573	25	2007-2018

bottom_depth	160.086	161.976	1.889	0.000	0.001	-0.002-0.002	1 (0.998–	0.15	355	29	2007-2018
discards_during_setting	161.072	165.072	4.000			0.002 0.002	1.002)	0.13	301	42	2018-2019
$discards_during_settingU$				-11.845	26946874.041	-52815884.965- 52815861.275					
discards_during_settingY				94.591	51640162.215	-101214623.35- 101214812.532					
acoustic_bird_deterrent_yn								0.13	302	42	2018-2019
deck_light_yn	161.072	163.072	2.000					0.13	302	42	2018-2019
deck_light_ynY				-12.860	27579472.148	-54055778.27- 54055752.55					
fishing_gear_discard_yn	161.072	163.072	2.000					0.13	302	42	2018-2019
fishing_gear_discard_ynU				-11.902	22810967.414	-44709508.033- 44709484.229					
setting_path	161.072	198.967	37.895					0.13	302	42	2018-2019
setting_path1A0				-25.895	61265284.703	-120079983.913- 120079932.123					
setting_path1A1				-62.335	90868227.324	-178101787.89-					
setting_path1A2				-27.629	61265284.703	-120079985.647-					
setting_path1B0				-29.199	91013894.634	120079930.389 -178387262.682–					
setting nath1C0				-24 966	61265284 703	178387204.284					
senning_panni eo				2	0120020	120079933.052					
setting_path1C1				-24.404	61265284.703	-120079982.422-					
setting_path2A0				-32.677	90931055.164	-178224900.798-					
setting path3				-27.523	91847696.084	-180021511.848-					
						180021456.802					
setting_path3A0				-57.327	61478506.045	-120497929.175- 120497814.521					
setting_path3B2				0.529	77388559.967	-151681577.006-					
setting_path3C0				0.026	90778791.727	-177926431.759-					
setting path3C1				-50.939	63325105.646	177926431.811 -124117258.005–					
sotting nath110				59.010	61470000 021	124117156.127					
setting_putt+A0				-39.010	014/0999.921	120483218.835-					
setting_path5				0.303	90778791.727	-177926431.482– 177926432.088					
setting_path5A				-0.814	90778791.727	-177926432.599–					
						177926430.971					

setting_path5A0				-56.701	61240831.215	-120032085.882-					
setting_path5B1				-89.936	90851742.060	-178069504.374-					
setting_path5B2				-62.113	90828002.116	-178022946.26-					
setting path5C1				-86.110	62668811.518	178022822.034 -122830956.685-					
				(0.754	00000000116	122830784.465					
setting_path5D2				-60.754	90828002.116	-1/8022944.901- 178022823.393					
setting_path5U2				3.099	90778791.727	-177926428.686-					
actting wath ()				2 255	00917747 205	177926434.884					
setting_pathoA				-3.233	90817747.205	-1/8002781.267					
setting_path6A0				-61.330	69804809.724	-136817488.389-					
					00015545 005	136817365.729					
setting_path6B				-3.357	90817/47.205	-178002787.879-					
setting path6C1				-60.985	69804809.170	-136817486.958-					
						136817364.988					
setting_path6C2				-61.363	90831774.344	-178030339.077-					
setting nath6F0				-61.066	67062743 340	1/8030216.351					
setting_puttoE0				-01.000	07002745.540	131442915.88					
attach1_height	161.072	162.577	1.505	0.433	0.305		1.54 (0.848–	0.13	300	42	2018-2019
1	1(1.072	1(2,072	2 000			-0.165-1.031	2.803)	0.12	200	42	2019 2010
long_streamer_yn	101.072	105.072	2.000					0.15	300	42	2018-2019
long_streamer_yn				-37.081	16740371.622	-32811165.46-					
setting turns	161.072	163.060	1 988	0.065	0.453	32811091.298	1 07 (0 439-	0.13	297	42	2018-2019
setting_turns	101.072	105.000	1.900	0.005	0.155	-0.823-0.953	2.593)	0.15	297	12	2010 2019
setting_strategy	155.072	159.294	4.222					0.12	286	42	2018-2019
setting_strategy2				-6.511	67180393.875	-131673578.506-					
						131673565.484					
setting_strategy3				-30.453	2426837.531	-4756632.014-					
setting strategy4				-34.361	4328513.218	-8483920.268-					
						8483851.546					
setting_strategy5				-31.818	1512629.079	-2964784.813-					
setting strategy				-32 287	6755779 314	2964/21.1//					
setting_strategy0				-52.207	0755779.514	13241295.168					
surface_float_diameter	127.172	129.172	2.000	0.041	104940.264	-205682.876-		0.12	284	42	2018-2019
weighting type	161.072	126 202	-24 670			205682.958		0.11	272	40	2018 2010
weighting_type	101.072	150.595	-24.079					0.11	212	72	2010-2019
weighting_typeF				-6.198	20669549.404	-40512323.03 -					
						40512510.054					

weighting_typeOW				30.755	8749839.121	-17149653.922-					
weighting_typeS				-0.112	5843405.944	-11453075.762-					
weighting_typeSW				27.119	5407081.244	-10597852.119-					
weighting_typeW				30.736	5407081.244	-10597848.502-					
weighting_typeWC				-2.632	8162412.676	-15998331.477-					
weighting_typeWS				29.442	7521786.449	-14742671.998- 14742730.882					
long_streamer_aerial_yn	161.072	160.744	-0.328					0.11	258	42	2018-2019
long_streamer_aerial_yn				44.590	11325161.210	-22197271.382– 22197360.562					

3.4 Turtle captures model

For turtle captures, only unpruned data were used due to the low number of observed captures (see Table 2). The total number of fitted models were 6 884 and the top-10 model included the variables season, time of the day (day vs night), bathymetry, presence/absence of tori line, presence/absence of vessel freezer, moon phase, and target (Table 25). None of the 10 top models showed a good predictive ability (Fig. 44 in Appendix J). The top model with lowest AIC included the variables season and time of day (residuals vs predictor plots shown in Fig. 11) with significantly lower captures during winter and night fishing. Adding additional parameters from pruned datasets to model 1 suggest that the maximum distance between long streamer could increase turtle capture rates (proportional change per meter: 1.13 (95% CI: 1.013; 1.257), and that increased capture rates correspond with increased surface temperature during fishing (proportional change per degree Celsius: 1.52 (95% CI: 1.147; 2.016)).

Table 25: Top-10 models fitted to turtle captures where model fits included variables with 100% data completeness (unpruned dataset with 2 373 fishing events); the total number of explored models was 6 884.

Model	Description	df	logLik	AIC	ΔΑΙΟ
1	season+time_of_day	6	-101.668	215.335	0
2	season+time_of_day+bathymetry	7	-101.208	216.417	1.082
3	target+time_of_day	7	-101.330	216.659	1.324
4	season+mitigation_tori+time_of_day	7	-101.395	216.790	1.455
5	vessel_freezer+season+time_of_day	7	-101.508	217.017	1.682
6	moon_phase+season+time_of_day	7	-101.575	217.151	1.816
7	target+bathymetry+bathymetry:time_of_day	7	-100.615	217.229	1.894
8	target+bathymetry:time_of_day	8	-100.615	217.229	1.894
9	vessel_nation+season+time_of_day	8	-101.636	217.272	1.937
10	target+season+time_of_day	10	-98.642	217.284	1.949
Null model	Intercept	2	-110.3467	224.6934	9.3584

 Table 26: Model estimates from top turtle captures model (model 1) where model fits included variables with 100% data completeness (Table 25).

	Estimate	SE	95% CI	Exp(Estimate) incl. 95% CI	z-value	Pr(> z)
(Intercept)	-3.2639	0.664	-4.5651.962	0.04 (0.01–0.141)	-4.915	< 0.001***
season2	-1.102	0.604	-2.286-0.082	0.33 (0.102–1.085)	-1.825	0.068
season3	-2.366	0.862	-4.0560.676	0.09 (0.017-0.508)	-2.744	0.006**
season4	-1.378	0.890	-3.122-0.366	0.25 (0.044–1.443)	-1.549	0.121
time_of_dayNight	-1.661	0.531	-2.7020.62	0.19 (0.067–0.538)	-3.131	0.002**

Table 27: Estimated effect size and AIC for models with significant effect for additional parameter X_i (i.e., variable that was not already assessed using the unpruned dataset) being added to top turtle captures model (model 1; Table 25); *Model 1*: model 1 in Table 25 but re-fitted with fishing events removed that had additional parameter X_i missing; *Model 1* + X_i : Model 1 from Table 25 plus additional parameter; ΔAIC : AIC difference between AICs of *Model 1* and *Model 1* + X_i ; *Estimate* and *SE*: Estimated effect size and standard error of additional parameter X_i ; *Prop. events left* and *N events left*: proportion and total fishing events left compared to unpruned dataset; *Year range*: Range of fishing year (January year shown) with available records for additional parameter X_i . Variables are ordered by the number of available fishing events.

		AIC									
Variable	Model 1	Model 1 + X _i	ΔΑΙΟ	Estimate	SE	95% CI	Exp(estimate) incl.	Prop.	N events left	N captures	Year range
							95% CI	events left			
long_streamer_distance	173.827	171.317	-2.511	0.121	0.055	0.013-		0.73	1 725	15	2008-2019
surface temperature	166 631	160 644	-5 987	0.419	0 144	0.229	1.13 (1.013–1.257)	0.65	1 534	15	2007_2019
surface_temperature	100.051	100.044	-5.707	0.417	0.144	0.137-	1.52 (1.147-2.016)	0.05	1 354	15	2007-2017

Table 28: Estimated effect size and AIC for models with non-significant effect for additional parameter X_i (i.e., variable that was not already assessed using the unpruned dataset) being added to top turtle captures model (model 1; Table 25); Model 1: model 1 in Table 25 but re-fitted with fishing events removed that had additional parameter X_i missing; Model 1 + X_i : Model 1 from Table 25 plus additional parameter; Δ AIC: AIC difference between AICs of Model 1 and Model 1 + X_i ; Estimate and SE: Estimated effect size and standard error of additional parameter X_i ; Prop. events left and N events left: proportion and total fishing events left compared to unpruned dataset; Year range: Range of fishing year (January year shown) with available records for additional parameter X_i . Variables are ordered by the number of available fishing events. Blank field for estimates: model failed.

		AIC									
Variable	Model 1	Model 1 + X _i	Δ AIC	Estimate	SE	95% CI	Exp(estimate) incl. 95% CI	Prop. events left	N events left	N captures	Year range
baskets_number	215.155	217.142	1.987	0.001	0.008	-0.015-0.017	1 (0 985–1 017)	0.99	2 358	19	2007 - 2019
line_length	214.871	216.374	1.503	0.012	0.013	-0.013-0.037	1 01 (0.987–1.038)	0.99	2 354	19	2007– 2019
distance_to_shore	193.434	194.984	1.550	0.000	0.000	0-0	1 (1-1)	0.97	2 309	17	2007– 2019
night_hours	193.428	195.408	1.980	0.042	0.298	-0 542-0 626	1.04(0.582 - 1.87)	0.97	2 308	17	2007– 2019
min_depth	194.626	196.406	1.780	0.012	0.026	-0.039-0.063	1.01 (0.962–1.065)	0.95	2 260	17	2007– 2019
max_depth	193.418	194.479	1.061	-0.009	0.010	-0.029-0.011	0.99 (0.972–1.011)	0.93	2 216	17	2007– 2019
start_wind_direction	206.202	205.907	0 295	0.004	0.003	-0.002-0.01	1 (0 998-1 01)	0.93	2 204	18	2007– 2019
bait_thrower_used_yn	211.220	212.430	1.210			0.002 0.01	1 (0.550 1.01)	0.87	2 062	19	2007-2018
bait_thrower_used_ynY				-22.877	87809.966	-172130.41-					2010
wind_beaufortscale	210.558	212.395	1.837	-0.060	0.146	-0 346-0 226	0 94 (0 707–1 254)	0.85	2 006	19	2007– 2018
number_of_vessels	210.608	210.271	0 337	-0.287	0.214	-0 706-0 132	0.75 (0.493–1.142)	0.84	2 003	19	2007– 2018
cloud_cover	199.832	200.027	0.195	-0.010	0.007	-0.024-0.004	0.99 (0.977-1.004)	0.82	1 944	18	2010
snood_signal_time	181.046	182.370	1.324	-0.071	0.085	-0 238-0 096	0.93 (0.789-1.1)	0.82	1 942	16	2017
vessel_speed	181.967	183.945	1.978	0.040	0.272	-0.493-0.573	1 04 (0 611–1 774)	0.76	1 801	16	2007-2018
vessel_heading	181.556	182.987	1.431	-0.003	0.004	-0.011-0.005	1 (0.989–1.005)	0.74	1 763	16	2010
tori_length	121.811	123.653	1.842	-0.003	0.007	-0.017-0.011	1 (0.983-1.011)	0.58	1 365	11	2010
tori_height	121.811	123.766	1.955	0.032	0.154	0.27.0.334	1 (0.983-1.011)	0.57	1 364	11	2018
line_entry_yn	121.765	123.347	1.582			-0.27-0.334	1.05 (0.704-1.390)	0.57	1 362	11	2007– 2018

Fisheries New Zealand

	line_entry_ynY				0.436	0.683	-0.903-1.775	1.55 (0.405–5.898)				
bait_stream		121.423	123.369	1.946	-0.034	0.157	0.242.0.274	0.07 (0.711, 1.215)	0.55	1 294	11	2007-
mitigation_1	none	68.981	68.981	0.000			-0.342-0.274	0.97 (0.711–1.313)	0.24	573	6	2018
bottom_dep	th	30.552	32.141	1.589	-0.001	0.002	0.005 0.002	1 (0.005, 1.002)	0.15	355	3	2018
light_sticks_	_yn						-0.005-0.003	1 (0.995–1.003)	0.13	302	0	2018 2018–
dist_stern_to	o_bait_min								0.13	302	0	2019 2018– 2019
acoustic_bir	rd_deterrent_yn								0.13	302	0	2019
deck_light_	yn								0.13	302	0	2019
fishing_geau	r_discard_yn								0.13	302	0	2019
hook_type									0.13	302	0	2019
mainline_m	aterial								0.13	302	0	2019 2018–
mainline_di	ameter								0.13	302	0	2019 2018–
float_line_le	ength								0.13	302	0	2019 2018–
number_snc	oods								0.13	302	0	2019 2018–
setting_path	1								0.13	301	0	2019 2018–
dist_bait_to	_tori								0.13	301	0	2019 2018–
discards_du	ring_setting								0.13	301	0	2019 2018–
line_setting	height								0.13	301	0	2019 2018–
attach1 heig	ght								0.13	300	0	2019 2018–
attach1 dist	tance								0.13	300	0	2019 2018–
long stream	ner yn								0.13	300	0	2019 2018–
light stream									0.13	300	0	2019 2018–
setting turn	s.								0.13	297	Ũ	2019 2018–
second_com	~								0.15		v	2019

0.12	286	0	2018-
0.12	284	0	2019
			2019
0.12	284	0	2018-
			2019
0.12	284	0	2018-
			2019
0.12	278	0	2018-
			2019
0.11	258	0	2018-
			2019
0.11	272	0	2018-
			2019
0.11	272	0	2018-
			2019
0.11	272	0	2018-
			2019
	0.12 0.12 0.12 0.12 0.12 0.12 0.11 0.11	0.12 286 0.12 284 0.12 284 0.12 284 0.12 284 0.12 278 0.11 258 0.11 272 0.11 272 0.11 272	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

4. WORKSHOP OUTCOME

Date and Time: Wednesday 09 February **Location:** Teams

Chair: Stefan Meyer (Proteus) William Gibson (FNZ)

Attendees: Anton van Helden (DOC); Campbell Murray (FNZ); Chris Dick (FNZ); Clinton Duffy (DOC); Dominic Vallieres (FNZ); Tosin Olateju (FNZ); Jack Fenaughty (FNZ); Heather Benko (FNZ); Dave Goad (Vita Maris): Janice Malloy (Southern Seabirds); Jennifer Devine (NIWA); John Cleal (DWG); Karen Middlemiss (DOC); Shannon Weaver (DOC); Clara Schlieman (FNZ); Igor Debski (DOC); Tiffany Plencner (DOC); Jordi Tablaba (DOC); Rosa Edwards (FINZ); John Wilmer (FINZ); Sue Maturin (F&B);

A workshop has been held on 09/20/2022 to discuss to identify variables that could be used for defining new or re-assessing existing bycatch mitigation methods, and to discuss improvements that could be applied to observer forms to better quantify and analyse variables that could have an influence on protected species captures. Results from the analysis in this report were presented during the meeting and a follow-up discussion was held with focus on:

- 1. Variables for development of new or improvement of existing mitigation measures.
- 2. Data gaps and how these can be addressed as part of the observer programme.

The discussion was predominantly based around bycatch mitigation for seabirds.

Variables for development of new or improvement of existing mitigation measures.

Mandatory bycatch mitigation measures. Initially discussed were whether the effect of already implemented bycatch mitigation measures should have been detected through the modelling. As per Fisheries (Seabird Mitigation Measures—Surface Longlines) Circular 2018 Mandatory bycatch mitigation measures in SLL fisheries include:

- Deploying tori (streamer) lines AND
- Setting at night AND/OR
- Using line weighting (but required at night) OR
- Using hook-shielding device (not included in this analysis)

Figure 12 shows the number of fishing events with and without tori lines between the 2006–07 and 2018–19 fishing years. The results suggested that the configuration of tori lines (e.g., whether the tori line was over the bait entry point, the attachment height, etc.) is influencing seabird captures rather than the pure presence of tori lines.

Figure 12: Number of fishing events in PSC database for small-vessel (< 45 m) surface longline fisheries with and without tori lines (including missing records) between the 2006–07 and 2018–19 fishing years.

The distribution of fishing start times in each year are provided in Fig. 13. During the workshop questions were raised as to why day vs night fishing was not identified as a variable influencing capture rates. The variable time of the day was defined as: Night (nautical dusk to nautical dawn), day (nautical dawn to nautical dusk); and the calculation was based on the start time of the fishing event. While fishing events could have started during the day most fishing would have occurred during night, or alternatively some fishing might have finished during daylight hours. In this analysis, the number of night hours (i.e., how many hours between start and end of fishing events were at night) were identified as influencing capture rates of seabirds and might therefore be the preferred variable (under the given data structure) to assess the effect of night fishing in seabird captures.

Fig. 13 also shows the number of fishing events using weights since the 2017–18 fishing year. The number of weighted snoods could not be included to the model given that data for this variable have not been fully recorded and it is therefore difficult to distinguish between unweighted snoods and weighted snoods that have not been recorded. However, variables such as the distance between weight and hook seemed to have a, even if weak, effect on seabird capture rates indicating an effect of this mitigation measure on seabird captures.

Figure 13: Hourly distribution of fishing events in PSC database for small-vessel (< 45 m) surface longline fishing between the 2006–07 and 2018–19 fishing years; red bars: without weighted line; blue bars: with weighted line.

Tori line setup. Seabirds are known to favourably forage directly behind the vessel and that the aerial section (or aerial extent) behind the vessels being covered by the tori line is counteracting this behaviour. The results in this analysis suggest that the aerial extent had a positive effect on captures rates (i.e., capture rates would increase with larger aerial extent). The data collection methods/instructions for observers were discussed during the workshop, and it was anticipated that the aerial extent variable might be inaccurate as it is estimated by the observer. The working group agreed that the attachment height of the tori line, which had a strong negative correlation with capture rates, would be a reasonable proxy for aerial extent, or that a wider set of additional variables could be collected to retrospectively calculate the aerial extent of the tori line.

Workshop participants agreed that it is important to determine whether the line is over the line entry point, as birds would otherwise not be deterred from the bait. This is supported by the results of this analysis showing that the capture rate decreased when the tori line was positioned over the bait entry point.

Gear and fishing behaviour-related variables. Workshop participants agreed that variables influencing the sink rate of hooks should be a focus of data collected by observers. For example, increasing setting speed would allow setting hooks faster, hence reducing the amount of time that hooks are exposed. On the other hand, it was suggested that setting too fast could lead to shallower hooks setting than intended leading to an increased risk of capturing birds. The latter would imply some type of quadratic relationship between capture rates of seabirds and vessel speed. There was support, based on the results here, that increased vessel speed (during hauling) reduces the capture rate. It was also suggested that models with non-linear relationships could have been explored. Fitting, for example, a quadratic function (done post-hoc on request) for vessel speed, however, does not seem receiving enough support (AIC difference between models with linear and quadratic relationship between speeds employed by the analysed vessels have not offset the negative relationship between seabird captures and vessel speed.

Data gaps and how these can be addressed as part of the observer programme. Overall, there was wide agreement that the sink rate of hooks should be another focus of the observer programme. Anecdotal evidence exists that line shooters increase sink rate by decreasing tension on the backbone (Turner, 2021). The use of line shooters, however, does not seem being recorded in the COD. The analysis showed that increasing snood signal time (the set interval of the snoods in seconds, either measured by line shooters or manually) leads to a reduced capture rate but this would be closely related to the effects of vessel speed.

There was consensus that instructions for data collections on observer forms require clarification or being simplified to reduce ambiguity of recorded observations. For example, the variable *deck_light_yn* (whether there was unnecessary deck lighting while setting) could be useful to see whether seabirds might be attracted to deck lighting and thus are therefore at increased risk to interact with fishing gear. However, there is no instruction as to what unnecessary deck lighting means and thus is subject to the observer's opinion. It was suggested that observers could be equipped with light meters, although that would also require clear instructions as to which area of the boat would be crucial for such measurement (e.g., instructions could be adjusted for observers to see if sea is illumined aft of vessel). In addition, it was suggested to record whether the vessel deck is sheltered, as this would reduce the amount of deck light being reaching the rest of the vessel. A counterargument against reduced deck lighting was raised as this could reduce the visibility of tori lines potentially leading to birds colliding with tori lines as seen in longline fisheries in South Georgia (as per Jack Fenaughty).

Further of interest would be to get comprehensive records of fishing end times as this would allow calculating the fishing duration and number of night hours. However, that would require the observer to observe the entire haul event, which might be impractical. As a solution, the crew could assist with filling in these details. Another suggestion was to measure the length of every snood as each has an

independent sink time with potentially snood-specific capture rate. The detected effect of snood length in this analysis would support this hypothesis.

In general, recommendations included to clarify an/or simplify instructions for collection specific variables. Further, it was suggested to identify which variables are collected on the trip level and fishing event level. While fishing event-based variables require a prioritisation approach (i.e., some variables could be mandatory but not all of them as this would be impractical), trip-based variables are more feasible to be collected comprehensively.

Interpretation of vessel freezer effect. As per analysis, vessels with freezer on-board had a higher a chance of capturing birds than vessels where freezers were absent. There was some discussion as to whether vessel freezers are used to store processed catch or bait; the meaning of this field is currently under investigation (to be updated in this report). It was suggested that vessel freezers are most likely being used as bait freezer, because the last vessels to use freezers for processed fish were the Japanese charter fleet. In that regard, a request was made during the workshop to summarize bait type and state (whether dyed and/or frozen) for vessels with and without vessel freezer. For most fishing events, bait species and state were unreported (Tables 29 to 31). For those fishing events with reported bait state (54 out of 414 events), all vessels with vessel freezer used undyed bait (Table 30), which could be one reason for increased capture rates on events with vessel freezers (i.e., vessel freezer is simply a proxy for fishing with undyed bait), though more data would be needed to confirm this. Both, vessels with and without vessel freezer all seemed to use thawed or semi-thawed bait (for those events with recorded bait state) (Table 31).

Table 29: Bait species and percentage composition grouped by vessels with and without vessel freezer.

vessel_freezer	bait_1_species	bait_2_species	bait_3_species	avg_bait_1_composition	avg_bait_2_composition	avg_bait_3_composition	n_events	
FALSE							1884	
FALSE	SQU			100			206	
FALSE	SQU	SAU		76	24		24	
FALSE	SQU	SAN		81	19		30	
FALSE	SQU	PIL		87	13		19	
FALSE	SAN	SQU		40	60		3	
FALSE	SQU	FIS		85	15		11	
FALSE	SQU	FIS	SQU	75	17	8	3	
FALSE	SQX	SAN		69	31		8	
FALSE	FIS	SQX		10	90		1	
FALSE	SQX	FIS		90	10		5	
FALSE	SQX			100			3	
TRUE							360	
TRUE	SQU	SAU		73	27		38	
TRUE	SQU	SAU	JMD	73	18	8	3	
TRUE	SQU	SAN		85	15		6	
TRUE	SQU			100			7	

Table 30: Bait dyeing per bait species (see Table 32) grouped by vessels with and without vessel freezer.

Table 31: Bait dyeing per bait species (see Table 32) grouped by vessels with and without vessel freezer.

szer	te	ę	te	
essel_free	ait_1_sta	ait_2_sta	ait_3_sta	events
			<u>م</u>	2 1005
FALSE	NA	INA	NA	1003
FALSE	Т	NA	NA	205
FALSE	S	NA	NA	3
FALSE	Т	Т	NA	98
FALSE	Т	Т	т	3
FALSE	F	F	NA	1
FALSE	S	S	NA	2
TRUE	NA	NA	NA	360
TRUE	S	S	NA	10
TRUE	Т	Т	NA	34
TRUE	S	S	S	3
TRUE	S	NA	NA	1
TRUE	Т	NA	NA	6

5. DISCUSSION

Non-target species captures in small-vessel SLL fisheries between the 2006–07 and 2018–19 fishing years have been analysed to identify risk factors that have not been formally integrated into previous capture estimates. Negative binomial generalised linear models were fitted to observed captures of seabirds, NZ fur seals and turtles. There were not enough observed captures of other taxa (e.g., dolphins and whales) for a meaningful statistical analysis.

The variables included in this analysis predominantly included variables that were related to the configuration of mandatory bycatch mitigation measures (e.g., the attachment height of the tori line) and variables being specific to vessel/fishing behaviour (e.g., vessel speed). However, many of the variables included here were only recorded sporadically or in recent fishing year years (2017–18 to 2018–19). The sparseness of these variables limited the number of parameters that could be explored in a single modelling approach. Therefore, a two-phase modelling approach was applied. First, a small but complete set of parameters were explored via AIC model selection. Second, the best-supported model from the first model fitting phase was expanded by additional variables that were incomplete, but only a single incomplete variable was added to the top model each time to restrict the degree of data pruning due to missing values.

For seabirds, models suggested that captures are influenced by moon phase and timing of fishing during the year (i.e., during which month or season). Bycatch mitigation measures seemed effective but strongly depended how these were employed. For example, tori line efficacy was substantially reduced if not properly aligned with the bait or mainline entry point, and bycatch mitigation was improved if the tori lines were attached high enough at the stern of the vessel (one variable that determines the aerial extent of the tori line). Further factors influencing seabird captures were gear configuration and vessel behaviour variables such as the number of turns during setting, vessel speed, and snood length – all factors affecting the sink rate of the mainline and/or hooks and therefore the amount of time during which hooks are exposed to seabirds.

The results, specifically regarding seabird captures, were discussed during a workshop. A main outcome was that there exists the need for specific observer instructions for the collection of gear- and bycatch mitigation measure-specific variables. For example, aerial extent, expected to reduce the risk of seabird captures, is a variable where accuracy strongly depends on the observer's ability to estimate the length of the tori line from the attachment point at the vessel to the point where the line submerges. Consequently, the effect of aerial extent on seabird captures could not be successfully determined in this analysis. The attachment height of tori lines provided a reasonable proxy for aerial extent, and was negatively correlated with seabird capture rates, but more variables would be required to estimate the actual effect of aerial extent on seabird captures (e.g., aerial extent would be a function of attachment height, tori line length, vessel speed, and buoy attachment).

Similarly, deck lighting could attract birds, hence leading to a higher risk of seabird captures. However, there was no effect of deck lighting detected in this analysis and this was most likely due to the subjective instruction of "whether there was unnecessary deck lighting while setting". Suggestions from the workshop included to equip observers with light meters, to adjust the wording of instructions to as to see whether the sea is illumined aft of vessel, and to record whether the deck was sheltered, which would reduce the amount of light emitted from the deck to the rest of the vessel.

Another recommendation was that variables influencing the sink rate of hooks should be a focus of observer data collection. For example, increasing setting speed would allow setting hooks faster, hence reducing the amount of time that hooks are exposed, but there could be reverse effects if vessel speed is too fast which could result in shallower hooks setting than intended.

One main effect increasing the capture of seabirds was the presence of a vessel freezer and a suggestion from the workshop was that most vessels with freezer used these to freeze bait and that this

might imply an effect of bait quality on seabird capture rates. COD data imply that vessels with freezer on-board used undyed bait, which would explain the estimated higher capture rates, but the data re bait state were too sparse for final conclusions. Consequently, bait composition and bait state (dyed vs. undyed, frozen vs. thawed or semi-thawed) was suggest by the workshop participants as another data collection focus for observers.

NZ fur seal captures were influence by factors such as the month of fishing, bathymetry, and whether tori line was deployed. In addition, gear-configuration, and vessel-behaviour variables (including bycatch mitigation measures aimed to reduce bird bycatch) affected fur seal captures. For example, an increasing number of night hours resulted in a substantial decrease of fur seal captures. However, there results suggest that this effect was offset by the presence of light sticks resulting in higher fur seal capture rate, probably because fur seals are attracted to light sticks. Both, fishing events with and without light sticks were characterised by the same average night hours (approximately 3 hours on average), similar number of fishing events (179 and 123 fishing events with and without light sticks, respectively), and raw captures rates being clearly elevated when light sticks were utilized (on average 0.42 captures per 1 000 hooks vs. 0.01 captures per 1 000 hooks for events with and without light sticks, respectively). Consequently, there exists potential to impose regulations re light sticks use to reduce NZ fur seal captures in SLL fisheries. Note, that estimates for light stick use were characterised by wide uncertainty because this variable has only been collected very recently (since the 2017–18 fishing year) and more data is needed to get accurate estimates of the effect of light sticks on NZ fur seal captures.

Vessels with tori lines deployed appeared to have higher captures rates of NZ fur seals. Tori line streamer might act as a visual attractor to fur seals, or as an acoustic cue especially during strong winds (raw capture rates for vessels with tori lines suggest that captures rates increased from 0.05, 0.06 to 0.07 captures per 1 000 hooks when wind strength increases from low (\sim 2 kts), to medium (\sim 4kts), and high (\sim 7 kts), respectively). Alternatively, the variable for presence/absence of tori lines could be a proxy for another gear configuration not being included in this analysis.

While this work has not revealed any novel mitigation strategies for bycatch mitigation it highlights important areas of improvement to understand and improve employed measures applied in small-vessel SLL fisheries. Information re gear and bycatch mitigation measure configuration requires a mandatory set of variables, and for these clear instructions are required to reduce the level of subjectivity that could result otherwise during data collection. The low observation of some species and variables might have biased some of the estimates from this analysis, but detected effects emphasise areas for potential focus for future data collection (e.g., whether tori line was positioned over the bait entry point). More data (i.e., observed captures) are required to assess risk factors for turtles, sharks & rays, and dolphins & whales. Non-linear relationships have not been explored during this assessment, primarily given the limited sample size for most of the variables explored in this project but should be considered once more data are available.

6. **REFERENCES**

- Abraham ER, Berkenbusch K (2019). Preparation of data for protected species capture estimation, updated to 2016–17. New Zealand Aquatic Environment and Biodiversity Report No. 233. 49 p.
- Abraham ER, Richard Y (2019). Estimated capture of seabirds in New Zealand trawl and longline fisheries, to 2016–17. New Zealand Aquatic Environment and Biodiversity Report 226. 85 p.
- Abraham ER, Thompson FN (2015). Captures of all birds in southern bluefin longline fisheries, in the New Zealand Exclusive Economic Zone, during the 2017–18 fishing year. Retrieved from https://psc.dragonfly.co.nz/2019v1/released/birds/southern-bluefin/all-vessels/eez/2017-18/, Jan 7, 2021."
- Abraham ER, Tremblay-Boyer L, Berkenbusch K. (2019). Estimated captures of New Zealand fur seal, common dolphin, and turtles in New Zealand commercial fisheries, to 2017–18. New Zealand Aquatic Environment and Biodiversity Report No. XXX. 89 p. DRAFT
- Abraham, ER, Richard Y (2020). Estimated captures of seabirds in New Zealand trawl and longline fisheries, to 2017–18. New Zealand Aquatic Environment and Biodiversity Report No. 249. 86 p.
- Baird SJ, Doonan, I (Manuscript held by the Ministry, 2017) Characterisation of seabird captures in trawl nets in New Zealand fisheries 2008-15. Draft report held by Ministry for Primary Industries. Available on request.
- Bull L (2007). A review of methodologies for mitigating incidental catch of seabirds in New Zealand fisheries (p. 57). Science & Technical Pub., Department of Conservation.
- Hamilton S, Baker GB (2019). Technical mitigation to reduce marine mammal bycatch and entanglement in commercial fishing gear: lessons learnt and future directions. Reviews in Fish Biology and Fisheries, 29(2), 223-247.
- Howard S (2015). Mitigation options for shark bycatch in longline fisheries. New Zealand Aquatic Environment and Biodiversity Report No. 148. 47 p.
- Melvin EF, Guy TJ, Read LB (2014). Best practice seabird bycatch mitigation for pelagic longline fisheries targeting tuna and related species. Fisheries Research, 149, 5-18.
- Middleton DAJ, Abraham ER (2007). The efficacy of warp strike mitigation devices: trials in the 2006 squid fishery. Final Research Report for Ministry of Fisheries contract IPA2006-02
- R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL <u>https://www.R-project.org/</u>.
- Richard Y, Abraham ER & Berkenbusch K (2020). Counts of seabirds around commercial fishing vessels within New Zealand waters. 43 pages. (Unpublished report prepared for the Department of Conservation, retrieved from https://files.dragonfly.co.nz/publications/pdf/Richardetal_2020_seabird-counts.pdf, Dec 3, 2020.)
- Sanders BM, Fisher DO (2018). Database documentation for the Ministry for Primary Industries Centralised Observer Database cod NIWA Fisheries Data Management Database Documentation Series Revised Oct 2018
- Stan Development Team (2020). RStan: the R interface to Stan. R package version 2.21.2. <u>http://mc-stan.org/</u>.
- Swimmer Y, Gutierrez A, Bigelow K, Barceló C, Schroeder B, Keene K, Shattenkirk K, Foster DG (2017). Sea Turtle Bycatch Mitigation in U.S. Longline Fisheries. Front. Mar. Sci. 4:260. doi: 10.3389/fmars.2017.00260

- Turner, P (2021). Towards Improving Seabird Bycatch Mitigation in New Zealand's Surface Longline Fleet: Fishers' Behaviours, Barriers and Drivers. Social research report - prepared for: Southern Seabirds Trust.
- Vehtari A, Gelman A, Gabry J (2017). Practical Bayesian model evaluation using leave-one-out crossvalidation and WAIC. Statistics and Computing. 27(5), 1413--1432. doi:10.1007/s11222-016-9696-4 (journal version, preprint arXiv:1507.04544).
- Venables WN, Ripley BD (2002) Modern Applied Statistics with S. Fourth Edition. Springer, New York. ISBN 0-387-95457-0
- Waugh SM, MacKenzie DI, Fletcher D (2008). Seabird bycatch in New Zealand trawl and longline fisheries, 1998-2004. In Papers and Proceedings of the Royal Society of Tasmania (Vol. 142, No. 1, pp. 45-66).

APPENDIX A: INITIAL DATA SUMMARY PRESENTED TO AEWG IN NOVEMBER 2021

Table 32: Proportion of small-vessel surface longline fishing events with each variable recorded in each year between 2006–07 and 2018–19, and average proportion across years. Additional columns from the COD were pre-fixed with the associatedCOD table (e.g., $x_surface_lining_effort$).

	-07	-08	60-	-10	I II	-12	-13	-14	-15	-16	-17	-18	-19	rage
Variable	2006	2007	2008	2005	2010	2011	2012	2013	2014	2015	2016	2017	2018	Ave
fishing year	1	1	1	1	1	1	1	1	1	1	1	1	1	1
total hook num	1	1	1	1	1	1	1	1	1	1	1	1	1	1
season	1	1	1	1	1	1	1	1	1	1	1	1	1	1
area	1	1	1	1	1	1	1	1	1	1	1	1	1	1
area name	1	1	1	1	1	1	1	1	1	1	1	1	1	1
area seabirds	1	1	1	1	1	1	1	1	1	1	1	1	1	1
 fishery	1	1	1	1	1	1	1	1	1	1	1	1	1	1
fishery seabirds	1	1	1	1	1	1	1	1	1	1	1	1	1	1
fma area	1	1	1	1	1	1	1	1	1	1	1	1	1	1
x surface lining effort hooks set	1	1	1	1	1	1	1	1	1	1	1	1	1	1
mitigation tori	1	1	0.99	1	0.99	1	1	0.98	1	1	0.99	0.99	1	1
moon phase	1	1	1	1	1	1	1	1	1	1	1	1	1	1
region seabird	1	1	1	1	1	1	1	1	1	1	1	1	1	1
start lat	1	1	1	1	1	1	1	1	1	1	1	1	1	1
start long	1	1	1	1	1	1	1	1	1	1	1	1	1	1
start month	1	1	1	1	1	1	1	1	1	1	1	1	1	1
start solar altitude	1	1	1	1	1	1	1	1	1	1	1	1	1	1
start time	1	1	1	1	1	1	1	1	1	1	1	1	1	1
stats area	1	1	1	1	1	1	1	1	1	1	1	1	1	1
target	1	1	1	1	1	1	1	1	1	1	1	1	1	1
x surface lining effort tori used yn	1	1	0.99	1	0.99	1	1	0.98	1	1	0.99	0.99	1	1
vessel class	1	1	1	1	1	1	1	1	1	1	1	1	1	1
vessel key	1	1	1	1	1	1	1	1	1	1	1	1	1	1
vessel length	1	1	1	1	1	1	1	1	1	1	1	1	1	1
vessel nation	1	1	1	1	1	1	1	1	1	1	1	1	1	1
vessel size	1	1	1	1	1	1	1	1	1	1	1	1	1	1
x surface lining effort baskets num	1	1	0.99	1	0.92	1	1	1	0.99	1	1	1	1	0.9
ber			,		,	0.02	,	,	,	,		0.00	0.00	9
x_surface_lining_effort_line_length		1	1	1	1	0.92	1	1	1	1	1	0.99	0.99	0.9 9
catch		0.99	1	0.96	1	1	0.87	0.92	1	1	0.95	1		8
distance_to_shore	1	1	1	0.96	1	1	0.87	0.92	1	1	0.95	1	1	8
night_hours	1	1	0.99	0.96	1	1	0.87	0.92	1	1	0.95	1	1	8
x_surface_lining_effortmin_depth	1	0.99	0.85	1	0.88	1	0.98	0.79	0.98	0.96	0.94	1	0.99	0.9 5
x_surface_lining_effortmax_depth	1	0.99	0.85	0.99	0.88	1	0.98	0.79	0.98	0.83	0.94	1	1	4
x_surface_lining_effortstart_wind_dire	0.99	0.92	0.93	0.93	0.95	0.92	0.92	0.88	0.89	0.93	0.89	0.99	0.94	0.9
x haul effort haul time	1	1	1	1	1	1	1	1	1	1	1	0.52	0	0.8
x surface lining effort bait thrower u	1	1	0.97	1	1	1	1	0.97	1	1	0.99	0.52	0	0.8
sed yn	1	1	1	0.00	0.99	1	1	1	0.97	1	0.99	0.52	0	0.8
x_haul_efforthaul_latitude	1	1	1	0.99	0.99	1	1	1	0.97	1	0.99	0.52	0	5
x_haul_etforthaul_longitude	1		0.07	1	1	1	1	0.07	1	1	0.99	0.52	0	5
mitigation_other	1	0.75	0.97	0.02	1	1	1	0.97	0.75	0.71	0.99	0.02	0.71	5
x_surface_lining_effortcloud_cover	0.89	0.75	0.00	0.95	0.98	0.00	0.99	0.04	0.75	0.71	0.71	0.59	0.71	3
x_surface_lining_effort_number_of_lon gliners	0.94	0.93	0.98	0.89	1	0.99	1	0.94	0.99	0.99	0.99	0.52	0	3
x_surface_lining_effortnumber_of_ves sels	0.94	0.93	0.99	0.89	1	0.99	1	0.93	0.99	0.99	0.97	0.52	U	3

x_haul_effortwind_beaufortscale	0.99	1	0.94	0.95	0.98	1	1	0.98	0.89	0.96	0.97	0.51	0	0.8
x_surface_lining_effortsnood_signal_t	0.8	0.65	0.83	0.58	0.76	0.97	0.99	0.54	0.78	0.9	0.86	0.94	0.9	0.8
me x haul effort wind direction	0.99	0.95	0.85	0.85	0.93	0.75	0.85	0.89	0.79	0.88	0.86	0.49	0	0.7
x haul effort vessel speed	0.95	0.94	0.88	0.91	0.83	0.88	0.98	0.81	0.79	0.81	0.87	0.28	0	0.7
x haul effort vessel heading	0.95	0.92	0.86	0.9	0.83	0.88	0.95	0.79	0.77	0.74	0.87	0.25	0	0.7
x haul effort surface temperature	0.85	0.87	0.6	0.8	0.69	0.78	0.67	0.39	0.71	0.75	0.81	0.4	0	0.6
x_surface_lining_effortline_entry_y	0.76	0.82	0.92	0.55	0.39	0.23	0.21	0.48	0.42	0.79	0.93	0.51	0	0.5 8
n x surface lining effort tori height	0.76	0.82	0.92	0.55	0.39	0.23	0.21	0.49	0.42	0.79	0.93	0.51	0	0.5
x surface lining effort tori length	0.76	0.82	0.92	0.55	0.39	0.23	0.21	0.49	0.42	0.8	0.93	0.51	0	8 0.5
x surface lining effort bait stream	0.75	0.82	0.82	0.51	0.38	0.23	0.21	0.48	0.39	0.74	0.87	0.44	0	0.5
mitigation_none	0.22	0.15	0.09	0.32	0.5	0.6	0.66	0.37	0.52	0.21	0.01	0	0	0.2
x surface lining effort bird area	1	1	1	0.4	0	0	0	0	0	0	0	0	0	0.2
x_surface_lining_effort_acoustic_bird_ deterrent_vn	0	0	0	0	0	0	0	0	0	0	0	0.48	1	0.1 4
x_haul_effort_bottom_depth	0.16	0.02	0.11	0.03	0.07	0.11	0.12	0.06	0.05	0.36	0.34	0.05	0	0.1
x_surface_lining_effortdeck_light_yn	0	0	0	0	0	0	0	0	0	0	0	0.48	1	0.1
x_surface_lining_effort_discards_durin g_setting	0	0	0	0	0	0	0	0	0	0	0	0.48	1	0.1 4
x_surface_lining_effortdist_bait_to_to ri	0	0	0	0	0	0	0	0	0	0	0	0.47	0.93	0.1 4
x_surface_lining_effortdist_stern_to_b ait_min	0	0	0	0	0	0	0	0	0	0	0	0.48	1	0.1 4
x_sll_basketshook_type	0	0	0	0	0	0	0	0	0	0	0	0.46	1	0.1 4
x_surface_lining_effort_light_sticks_yn	0	0	0	0	0	0	0	0	0	0	0	0.48	1	0.1 4
x_surface_lining_effort_line_setting_he ight	0	0	0	0	0	0	0	0	0	0	0	0.48	0.99	0.1 4
x_surface_lining_effortsetting_path	0	0	0	0	0	0	0	0	0	0	0	0.48	1	0.1 4
x_surface_lining_effortsetting_strateg	0	0	0	0	0	0	0	0	0	0	0	0.48	0.93	0.1 4
x_surface_lining_effortsetting_turns	0	0	0	0	0	0	0	0	0	0	0	0.46	0.98	0.1 4
x_sll_basketsnumber_weighted_snood	0	0	0	0	0	0	0	0	0	0	0	0.37	0.87	0.1 2
x_sll_basketsdistance_weight_to_hook	0	0	0	0	0	0	0	0	0	0	0	0.37	0.73	0.1
x_sll_basketsweight	0	0	0	0	0	0	0	0	0	0	0	0.37	0.73	0.1
x_sll_basketsweighting_type	0	0	0	0	0	0	0	0	0	0	0	0.37	0.73	0.1 1
x_surface_lining_effort_avg_sticks_per basket	0	0	0	0	0	0	0	0	0	0	0	0.31	0.68	0.0 9
x_surface_lining_effort_line_feed_rate	0.25	0.14	0.09	0	0.08	0.04	0	0.05	0.07	0	0.09	0	0	0.0 5
fishing_duration	0	0	0	0	0	0	0	0	0	0	0	0	0.38	0.0 3
x_surface_lining_effortbait_sink_dista nce	0	0	0	0	0	0	0	0	0	0	0	0	0	0
x_surface_lining_effortbait_surface_di stance	0	0	0	0	0	0	0	0	0	0	0	0	0	0
x_fishing_event_haul_offal_discharge	0	0	0	0	0	0	0	0	0	0	0	0	0	0
mitigation_baffler	0	0	0	0	0	0	0	0	0	0	0	0	0	0
x_fishing_eventshot_offal_discharge	0	0	0	0	0	0	0	0	0	0	0	0	0	0
total_net_length	0	0	0	0	0	0	0	0	0	0	0	0	0	0
x_fishing_eventtow_offal_discharge	0	0	0	0	0	0	0	0	0	0	0	0	0	0
x_surface_lining_effortweather_code	0	0	0	0	0	0	0	0	0	0	0	0	0	0

APPENDIX B: INITIAL BAYESIAN MODEL EXPLORATION (IN PROGRESS)

(2)

An initial model exploration was carried out to compare result from Bayesian generailsed linear models as described in Abaraham & Richard (2019) against negative binomial genarelised linear models using the glm.nb function using the MASS-package in R (Venables & Ripley, 2002).

Adopting the modelling approach by Abaraham & Richard (2019), the mean catch rate (μ_i) for a single fishing event *i* of events was assumed to be the product of the effects:

$\mu_i = lpha X_i$,

where α is the intercept, with a log-normal prior, defined with a mean of -3 and a standard deviation of 5 on the log scale, and *X* being a matrix of fixed effects for fishing event *i*. Fixed effects that were fitted in this pre-liminary assessment were:

- 1. Area (see Fig. 3)
- 2. Bathymetry
- 3. Fishing year
- 4. Fishery management area
- 5. Number of hooks set
- 6. Presence/absence of tori lines
- 7. Moon phase
- 8. Season
- 9. Start month
- 10. Start solar altitude
- 11. Target species
- 12. Number of counted birds around fishing vessels (only applied to seabird models) based on paper forms (Richard et al. 2020), as a proxy for seabird density (seabird density layers were not available for this initial assessment) (Fig. 14).

In progress:

- Models were fitted separately to each bird species, NZ fur seals and to groups of turtles, dolphins & whales, and sharks & rays.
- Model selection: AIC for glm.nb; LOO for Bayesian GLM
- Model were fitted separately to each variable and the model with lowest AIC or LOO was carried forward by adding next variable; if there was support for including another variable then the procedure was repeated until there was no further support.

Figure 14 Comparison of observed fishing event locations for small vessel surface-longline fisheries (black; domestic and Australian) vs. locations of 'Seabirds arounds vessels' data (red) for all fishing methods (fishing years for both datasets ranging from 2007–08 to 2017–18; left panel). RHS panel: Same data but fishing years 2006–07 and 2018–19 included in observed fishing event locations.

Table 33 Initial model exploration based on (1) generalized linear model fitting with negative binomial distribution (model selection based on AIC) and (2) standardized captures model by Abraham & Richard (2019) (model selection based on LOO).

Species	AIC	LOO
Black petrel	Season + black petrel mean counts	Season
Buller's albatross	FMA + moon phase + target	FMA + moon phase + target
Flesh-footed shearwater	Season	NULL MODEL
Grey petrel		NULL MODEL
Other albatrosses	Start month + moon phase + area + solar	Start month + moon phase
	altitude	
Other birds	FMA	FMA
Salvin's albatross	-	NULL MODEL
Sooty shearwater	-	NULL MODEL
White-capped albatross	FMA + moon phase	FMA + moon phase
White-chinned petrel	Start month + FMA	Start month
Dolphins and whales	-	NULL MODEL
Turtles	Start solar altitude	NULL MODEL
New Zealand fur seals	Start month + fishing year + area	Season
Sharks and rays	-	NULL MODEL

Failed models (full data set): Sooty shearwater, mean_counts and bathymetry: 5 203 and 689 divergent transitions, respectively.

	elpd_diff	se_diff	elpd_loo
season	0	0	-115.244
start_month	-2.94993	3.431776	-118.194
target	-14.1361	3.16111	-129.38
mean_counts	-19.438	6.966615	-134.682
start_sloar_altitude	-24.7188	5.822268	-139.963
fma_area	-27.1977	6.822544	-142.442
area	-27.5027	7.036571	-142.747
hooks_set	-36.8716	7.863391	-152.116
bathymetry	-38.4916	7.859956	-153.736
fishing_year	-38.6167	8.779816	-153.861
moon_phase	-39.1562	7.835877	-154.401
Null-model	-39.7601	7.83784	-155.004
mitigation_tori	-39.9649	8.037415	-155.209
line_weight_yn	-40.7032	8.129682	-155.948

Table 34 Expected log pointwise predictive density: Black petrel

Table 35 Expected log pointwise predictive density: Buller's albatross

	elpd_diff	se_diff	elpd_loo
fma_area	0	0	-408.275
area	-2.5248	3.404307	-410.8
mean_counts	-26.0215	9.250507	-434.296
start_month	-26.45	10.65899	-434.725
season	-27.3355	10.56735	-435.61
target	-42.5967	9.749899	-450.871
moon_phase	-50.2234	11.85572	-458.498
fishing_year	-55.0008	10.9132	-463.276
bathymetry	-56.9942	11.60728	-465.269
start_sloar_altitude	-59.1748	11.86313	-467.45
line_weight_yn	-60.9664	11.93088	-469.241
hooks_set	-62.0859	12.14864	-470.361
Null-model	-62.0939	11.94831	-470.369
mitigation_tori	-63.0038	12.01664	-471.279

Table 36 Expected log pointwise predictive density: Flesh-footed shearwater

	elpd_diff	se_diff	elpd_loo
season	0	0	-49.5795
start_month	-0.14833	2.698791	-49.7278
bathymetry	-3.49372	4.455379	-53.0732
start_sloar_altitude	-3.56685	3.992644	-53.1463
moon_phase	-4.96108	4.686585	-54.5405
target	-5.06332	4.196269	-54.6428

Null-model	-5.2504	4.667226	-54.8299
line_weight_yn	-5.88682	5.070139	-55.4663
fishing_year	-6.11006	5.536715	-55.6895
hooks_set	-6.47016	4.603463	-56.0496
mitigation_tori	-6.5223	4.826447	-56.1018
area	-8.32546	4.092285	-57.9049
fma_area	-9.11058	4.617771	-58.69
mean_counts	-11.675	7.120126	-61.2545

Table 37 Expected log pointwise predictive density: Grey petrel

	elpd_diff	se_diff	elpd_loo
fishing_year	0	0	-90.6262
start_month	-0.0681	5.907351	-90.6943
fma_area	-0.69238	5.886952	-91.3186
area	-1.9073	5.850439	-92.5335
target	-3.45379	6.008065	-94.08
moon_phase	-3.46444	7.253245	-94.0907
line_weight_yn	-5.10836	5.738221	-95.7346
bathymetry	-5.18287	6.372814	-95.8091
hooks_set	-5.34013	5.780881	-95.9664
start_sloar_altitude	-6.19832	6.571463	-96.8245
Null-model	-6.77879	5.840452	-97.405
season	-7.36622	5.976161	-97.9924
mitigation_tori	-7.41508	6.074552	-98.0413
mean_counts	-8.7271	7.597976	-99.3533

Table 38 Expected log pointwise predictive density: Other albatrosses

	elpd_diff	se_diff	elpd_loo
start_month	0	0	-428.375
season	-3.87091	5.073709	-432.245
area	-6.48912	9.574874	-434.864
fma_area	-19.2207	9.735106	-447.595
target	-21.7703	7.996192	-450.145
start_sloar_altitude	-21.961	9.072268	-450.336
fishing_year	-24.8318	9.890337	-453.206
moon_phase	-28.5546	13.43949	-456.929
mean_counts	-40.818	11.73462	-469.193
mitigation_tori	-41.9786	13.49702	-470.353
line_weight_yn	-44.0676	13.09992	-472.442
Null-model	-44.1023	13.01416	-472.477
bathymetry	-45.0456	13.08931	-473.42
hooks_set	-45.1275	13.10475	-473.502

	elpd_diff	se_diff	elpd_loo
fma_area	0	0	-213.07
area	-1.52191	1.492196	-214.592
mean_counts	-12.0833	7.917149	-225.153
season	-20.2641	6.29939	-233.334
bathymetry	-23.6036	6.549159	-236.673
start_month	-25.6304	6.274355	-238.7
target	-28.0293	7.671179	-241.099
mitigation_tori	-28.1336	8.704545	-241.203
line_weight_yn	-29.7899	8.568345	-242.86
hooks_set	-29.8977	8.783841	-242.967
fishing_year	-30.8901	9.115666	-243.96
start_sloar_altitude	-32.2009	9.015548	-245.271
Null-model	-32.3402	9.060947	-245.41
moon_phase	-32.6561	9.056405	-245.726

Table 39 Expected log pointwise predictive density: Other birds

Table 40 Expected log pointwise predictive density: Salvin's albatross

	elpd_diff	se_diff	elpd_loo
moon_phase	0	0	-34.7052
line_weight_yn	-2.0762	1.298769	-36.7814
Null-model	-2.46631	1.426362	-37.1716
fma_area	-2.84064	1.619003	-37.5459
target	-2.84636	2.177296	-37.5516
hooks_set	-2.96686	1.857192	-37.6721
start_sloar_altitude	-3.39705	1.902839	-38.1023
bathymetry	-3.78633	1.914319	-38.4916
fishing_year	-4.03304	2.016492	-38.7383
area	-4.45101	2.950758	-39.1563
mitigation_tori	-4.51445	2.949913	-39.2197
season	-5.24132	3.760174	-39.9466
start_month	-6.70035	3.492558	-41.4056
mean_counts	-10.3798	5.663363	-45.0851

Table 41 Expected log pointwise predictive density: Sooty shearwater

	elpd_diff	se_diff	elpd_loo
season	0	0	-9.48811
target	-0.14592	0.140431	-9.63402
start_sloar_altitude	-0.51581	0.331134	-10.0039
bathymetry	-0.78739	0.850075	-10.2755
fma_area	-0.99807	0.976165	-10.4862
mitigation_tori	-1.10568	1.059614	-10.5938
area	-1.23672	1.182543	-10.7248

Null-model	-1.33246	1.275175	-10.8206
moon_phase	-1.58349	1.457664	-11.0716
line_weight_yn	-1.72097	1.686029	-11.2091
hooks_set	-2.13764	2.051457	-11.6257
start_month	-2.31239	2.244431	-11.8005
mean_counts	-2.44041	2.009178	-11.9285
fishing_year	-2.91837	2.838297	-12.4065

Table 42 Expected log pointwise predictive density: White-capped albatross

	elpd_diff	se_diff	elpd_loo
fma_area	0	0	-341.006
area	-4.46362	2.301838	-345.47
mean_counts	-33.2948	9.683907	-374.301
season	-43.3167	10.63335	-384.323
start_month	-45.3265	10.21564	-386.332
bathymetry	-60.7757	13.23606	-401.782
target	-65.4913	11.45532	-406.497
fishing_year	-66.239	12.66293	-407.245
moon_phase	-73.3852	13.59922	-414.391
line_weight_yn	-75.9605	13.64207	-416.966
start_sloar_altitude	-82.351	13.65613	-423.357
mitigation_tori	-82.6221	14.16904	-423.628
Null-model	-82.9454	13.79517	-423.951
hooks_set	-83.5914	13.87051	-424.597

Table 43 Expected log pointwise predictive density: White-chinned petrel

	elpd_diff	se_diff	elpd_loo
start_month	0	0	-92.3256
area	-1.26471	5.668174	-93.5903
fma_area	-3.36351	5.93883	-95.6891
start_sloar_altitude	-7.2098	5.717744	-99.5354
mean_counts	-7.60376	9.687835	-99.9293
mitigation_tori	-8.39756	5.373788	-100.723
fishing_year	-9.65552	3.652231	-101.981
target	-10.786	5.86774	-103.112
season	-11.4711	4.929223	-103.797
hooks_set	-12.4819	5.416738	-104.807
Null-model	-12.7681	5.22085	-105.094
line_weight_yn	-12.8962	5.086436	-105.222
moon_phase	-13.6242	5.407156	-105.95
bathymetry	-13.8248	5.298387	-106.15

	elpd_diff	se_diff	elpd_loo
Null-model	0	0	-60.5353
fishing_year	-0.38857	2.573942	-60.9239
mean_counts	-0.50827	1.062222	-61.0436
mitigation_tori	-0.64495	0.761526	-61.1802
start_month	-0.84662	0.395651	-61.3819
hooks_set	-0.89271	0.475127	-61.428
bathymetry	-0.91433	0.474535	-61.4496
line_weight_yn	-1.76867	1.662834	-62.304
fma_area	-1.883	2.091856	-62.4183
area	-2.20875	3.392648	-62.744
start_sloar_altitude	-3.012	1.726895	-63.5473
moon_phase	-3.76768	2.64931	-64.303
season	-4.77395	3.011971	-65.3092

Table 44 Expected log pointwise predictive density: Dolphins and whales

Table 45 Expected log pointwise predictive density: New Zealand fur seal

	elpd_diff	se_diff	elpd_loo
season	0	0	-464.405
start_sloar_altitude	-8.82268	6.732675	-473.228
moon_phase	-17.2274	5.470554	-481.632
area	-18.137	7.921673	-482.542
start_month	-18.4109	6.189621	-482.816
fishing_year	-21.1832	9.021905	-485.588
fma_area	-24.7602	7.540417	-489.165
line_weight_yn	-39.277	6.89402	-503.682
mitigation_tori	-41.6028	7.281775	-506.008
Null-model	-42.3876	6.891484	-506.793
mean_counts	-43.006	7.198008	-507.411
bathymetry	-43.2784	6.978879	-507.684
hooks_set	-43.3158	6.895282	-507.721

Table 46 Expected log pointwise predictive density: Sharks and rays

	elpd_diff	se_diff	elpd_loo
bathymetry	0	0	-19.8646
area	-2.17853	1.396544	-22.0432
fma_area	-3.30866	2.047007	-23.1733
start_sloar_altitude	-3.7721	2.330322	-23.6367
mean_counts	-3.96017	2.431246	-23.8248
start_month	-4.4121	2.809829	-24.2767
moon_phase	-4.6222	2.808933	-24.4868

Null-model	-4.66502	2.808723	-24.5297
hooks_set	-5.15011	3.137889	-25.0148
mitigation_tori	-5.68366	3.616869	-25.5483
line_weight_yn	-5.72672	3.413603	-25.5914
season	-6.87303	4.320309	-26.7377
fishing_year	-7.20604	4.541794	-27.0707

Table 47 Expected log pointwise predictive density: Turtles

	elpd_diff	se_diff	elpd_loo
start_month	0	0	-103.954
fma_area	-2.42491	4.696251	-106.379
start_sloar_altitude	-3.15273	3.200175	-107.107
area	-3.62058	4.543349	-107.575
line_weight_yn	-5.55163	4.198867	-109.506
moon_phase	-7.0613	5.564933	-111.015
Null-model	-7.63201	4.384262	-111.586
mitigation_tori	-8.36363	4.601375	-112.318
mean_counts	-8.52776	4.648874	-112.482
bathymetry	-8.63346	4.581196	-112.588
hooks_set	-8.72125	4.786638	-112.675
fishing_year	-8.97243	6.231516	-112.926
season	-9.57166	6.431044	-113.526

Removed from initial glm.nb fitting due to issues (not enough captures): grey petrel and Salvin's albatross

variable	AIC	delta_AIC
season	233.6863	0
start_month	242.7354	-9.0491
target	263.4031	-29.7168
black_petrel_mean_counts	269.3939	-35.7076
fma_area	291.4026	-57.7163
start_solar_altitude	291.9494	-58.2631
area	292.7238	-59.0375
bullers_albatross_mean_counts	299.7606	-66.0743
grey_petrel_mean_counts	300.058	-66.3717
white_capped_albatross_mean_counts	300.9872	-67.3009
other_albatrosses_mean_counts	302.9398	-69.2535
hooks_set	307.0183	-73.332
moon_phase	307.7927	-74.1064
bathymetry	308.1179	-74.4316
mitigation_tori	309.7739	-76.0876

Table 48 Model selection for black petrel captures

fishing_year	309.9078	-76.2215
NULL_model	309.9156	-76.2293
sooty_shearwater_mean_counts	310.2387	-76.5524
white_chinned_petrel_mean_counts	310.3398	-76.6535
flesh_footed_shearwater_mean_counts	310.7304	-77.0441
line_weight_yn	311.3435	-77.6572
other_birds_mean_counts	311.8168	-78.1305
salvins_albatross_mean_counts	311.9016	-78.2153

Table 49 Model selection: Buller's albatross captures

variable	AIC	delta_AIC
fma_area	828.124	0
area	829.0482	-0.92419
start_month	869.7481	-41.6241
season	872.3034	-44.1794
grey_petrel_mean_counts	892.6924	-64.5684
white_capped_albatross_mean_counts	903.8283	-75.7043
target	904.2915	-76.1674
moon_phase	912.8787	-84.7546
bullers_albatross_mean_counts	913.1737	-85.0497
fishing_year	919.6125	-91.4885
start_solar_altitude	930.3447	-102.221
white_chinned_petrel_mean_counts	936.0275	-107.903
bathymetry	936.0871	-107.963
black_petrel_mean_counts	939.1295	-111.005
other_birds_mean_counts	939.3297	-111.206
sooty_shearwater_mean_counts	940.1948	-112.071
NULL_model	940.292	-112.168
line_weight_yn	941.5243	-113.4
mitigation_tori	941.5856	-113.462
other_albatrosses_mean_counts	942.0126	-113.889
salvins_albatross_mean_counts	942.1179	-113.994
hooks_set	942.1942	-114.07
flesh_footed_shearwater_mean_counts	942.29	-114.166

Table 50 Model selection:	Flesh-footed	shearwater captures
---------------------------	--------------	---------------------

variable	AIC	delta_AIC
season	99.11723	0
start_month	105.7519	-6.63467
bathymetry	108.0286	-8.91141
start_solar_altitude	108.2977	-9.18046
other_albatrosses_mean_counts	108.453	-9.33576
sooty_shearwater_mean_counts	108.9649	-9.84764
moon_phase	109.0793	-9.9621
target	109.2099	-10.0927
NULL_model	109.3955	-10.2782
bullers_albatross_mean_counts	109.7786	-10.6614
flesh_footed_shearwater_mean_counts	110.768	-11.6508
black_petrel_mean_counts	110.8525	-11.7353
line_weight_yn	110.9111	-11.7938
grey_petrel_mean_counts	110.9397	-11.8224
hooks_set	111.0056	-11.8883
white_capped_albatross_mean_counts	111.2196	-12.1024
mitigation_tori	111.2485	-12.1313
white_chinned_petrel_mean_counts	111.3814	-12.2641
other birds mean counts	111.3901	-12.2729
salvins albatross mean counts	111.3944	-12.2772
fishing year	117.9337	-18.8165
fma_area	120.1886	-21.0714
area	121.8288	-22.7115
variable	AIC	delta AIC
-------------------------------------	----------	-----------
start_month	851.8726	0
season	860.2856	-8.41304
start_solar_altitude	865.6868	-13.8142
area	868.1865	-16.314
fma_area	892.3891	-40.5165
target	898.6936	-46.8211
fishing_year	899.8103	-47.9377
moon_phase	905.6474	-53.7748
flesh_footed_shearwater_mean_counts	914.188	-62.3154
salvins_albatross_mean_counts	928.544	-76.6714
other_albatrosses_mean_counts	933.8653	-81.9928
mitigation_tori	935.4242	-83.5516
bathymetry	939.2358	-87.3632
bullers_albatross_mean_counts	940.372	-88.4994
other_birds_mean_counts	941.2167	-89.3441
line_weight_yn	941.5677	-89.6951
NULL_model	941.9127	-90.0401
grey_petrel_mean_counts	942.2398	-90.3673
white_chinned_petrel_mean_counts	942.6123	-90.7397
hooks_set	942.6325	-90.7599
white_capped_albatross_mean_counts	943.1777	-91.3051
black_petrel_mean_counts	943.8913	-92.0188
sooty_shearwater_mean_counts	943.8986	-92.026

Table 52 Model selection: Other birds captures

variable	AIC	delta_AIC
fma_area	435.8771	0
area	436.6884	-0.81126
season	466.8341	-30.957
bullers_albatross_mean_counts	469.6628	-33.7857
grey_petrel_mean_counts	471.7833	-35.9062
bathymetry	475.7644	-39.8873
white_capped_albatross_mean_counts	477.0286	-41.1515
start_month	478.0223	-42.1452
mitigation_tori	483.2608	-47.3837
flesh footed shearwater mean counts	484.5909	-48.7137
other birds mean counts	484.7118	-48.8347
target	486.3995	-50.5224
line_weight_yn	486.6635	-50.7864
white_chinned_petrel_mean_counts	487.6236	-51.7465
black_petrel_mean_counts	488.6003	-52.7232
fishing_year	488.7744	-52.8972
hooks_set	489.6729	-53.7957
NULL_model	490.8737	-54.9966
start_solar_altitude	491.3173	-55.4401
salvins_albatross_mean_counts	491.3309	-55.4538
moon_phase	491.5927	-55.7155
other_albatrosses_mean_counts	492.2134	-56.3363
sooty_shearwater_mean_counts	492.6734	-56.7962

variable	AIC	delta_AIC
fma_area	691.1313	0
area	695.4536	-4.32229
season	766.1979	-75.0665
start_month	775.1775	-84.0461
white_capped_albatross_mean_counts	787.8982	-96.7669
grey_petrel_mean_counts	788.0169	-96.8855
bullers_albatross_mean_counts	806.9761	-115.845
target	811.9204	-120.789
fishing_year	816.1486	-125.017
bathymetry	821.6382	-130.507
moon_phase	829.5971	-138.466
white_chinned_petrel_mean_counts	834.7506	-143.619
other_birds_mean_counts	837.3591	-146.228
start_solar_altitude	838.9796	-147.848
line_weight_yn	841.3242	-150.193
black_petrel_mean_counts	844.3338	-153.202
flesh_footed_shearwater_mean_counts	846.5993	-155.468
NULL_model	847.9274	-156.796
mitigation_tori	848.1448	-157.013
salvins_albatross_mean_counts	849.8096	-158.678
sooty_shearwater_mean_counts	849.9116	-158.78
hooks_set	849.9156	-158.784
other albatrosses mean counts	849.9209	-158.79

Table 54 Model selection:	White-chinned	petrel captures
---------------------------	---------------	-----------------

variable	AIC	delta_AIC
start_month	187.9789	0
flesh_footed_shearwater_mean_counts	194.4478	-6.46888
area	195.2599	-7.28103
fma_area	196.1382	-8.15929
mitigation_tori	199.2966	-11.3177
start_solar_altitude	200.0849	-12.106
other_birds_mean_counts	201.7121	-13.7332
salvins_albatross_mean_counts	203.9418	-15.9629
season	205.4726	-17.4937
fishing_year	205.6692	-17.6904
sooty_shearwater_mean_counts	205.9361	-17.9573
grey_petrel_mean_counts	206.7974	-18.8186
target	206.8411	-18.8622
black_petrel_mean_counts	206.9773	-18.9984
white_capped_albatross_mean_counts	207.5615	-19.5826
NULL_model	208.0273	-20.0484
hooks_set	208.153	-20.1741
white_chinned_petrel_mean_counts	208.5324	-20.5536
line_weight_yn	208.74	-20.7611
other_albatrosses_mean_counts	209.2633	-21.2844
moon_phase	209.9189	-21.94
bathymetry	209.9313	-21.9524
bullers_albatross_mean_counts	209.99	-22.0112

Table 55 Model selection: Turtle captures

variable	AIC	delta_AIC
start_solar_altitude	211.0655	0
target	217.5358	-6.47026
fma_area	219.8003	-8.73483
season	221.0291	-9.96354
line_weight_yn	221.0634	-9.99785
other_birds_mean_counts	222.0916	-11.0261
bullers albatross mean counts	222.0925	-11.0269
area	222.1002	-11.0347
white capped albatross mean counts	222.8664	-11.8009
grey_petrel_mean_counts	222.8769	-11.8113
flesh footed shearwater mean counts	223.27	-12.2044
NULL_model	223.4645	-12.399
other albatrosses mean counts	224.4054	-13.3399
salvins_albatross_mean_counts	224.5535	-13.488
start_month	224.8848	-13.8193
moon_phase	224.9025	-13.837
sooty_shearwater_mean_counts	225.0204	-13.9549
mitigation_tori	225.1944	-14.1289
white_chinned_petrel_mean_counts	225.3161	-14.2506
black_petrel_mean_counts	225.3955	-14.33
hooks_set	225.398	-14.3325
bathymetry	225.4319	-14.3664
fishing_year	228.038	-16.9725

Table 56 Model selection: New Zealand fur seal captures

variable	AIC	delta_AIC
start_month	936.2606	0
target	946.7912	-10.5306
season	963.2848	-27.0242
start_solar_altitude	963.7214	-27.4608
fishing_year	964.5304	-28.2698
area	972.1175	-35.8569
fma_area	986.4944	-50.2338
black_petrel_mean_counts	995.9208	-59.6602
line_weight_yn	1001.98	-65.7196
white_chinned_petrel_mean_counts	1003.161	-66.9001
bullers_albatross_mean_counts	1003.32	-67.0593
grey_petrel_mean_counts	1009.382	-73.1217
sooty_shearwater_mean_counts	1011.038	-74.7777
salvins_albatross_mean_counts	1011.78	-75.5193
other_birds_mean_counts	1012.448	-76.1869
white_capped_albatross_mean_counts	1012.648	-76.3875
hooks_set	1012.863	-76.6024
NULL_model	1013.365	-77.1043
other albatrosses mean counts	1014.464	-78.2038
bathymetry	1014.673	-78.4123
mitigation_tori	1014.794	-78.5335
moon_phase	1014.871	-78.6103
flesh footed shearwater mean counts	1015.207	-78.9467

APPENDIX C: PREDICTIVE CHECKING FOR ALL SEABIRDS CAPTURES MODEL

Figure 15: Mean predicted vs. mean observed all birds captures in each area for top-10 models fitted to all seabirds captures where model fits included variables with 100% data completeness (Table 4).

Figure 16: Residuals vs predictors from top all seabirds captures model (model 1) where model fits included variables with >75% data completeness (Table 5).

Figure 17: predicted vs. mean observed all birds captures in each area for top-10 models fitted to all seabirds fitted to all birds captures where model fits included variables with >75% data completeness (Table 5).

Figure 18: Residuals vs. predictor variables from top all bird captures model fitted to data set pruned to 60% of original data set.

Figure 19: Mean predicted vs. mean observed all birds captures in each area for top-10 models fitted to all seabirds fitted to all birds captures where model fits included variables with >60% data completeness (Table 6).

Figure 20: Residuals vs. predictor variables from top all bird captures model fitted to data set pruned to 50% of original data set.

Figure 21: Mean predicted vs. mean observed all birds captures in each area for top-10 multi-species models fitted to all birds captures where model fits included variables with $\geq 20\%$ data completeness (Table 7).

APPENDIX D: PREDICTIVE CHECKING FOR MULTI-SPECIES CAPTURES MODEL: BLACK PETREL, WHITE-CAPPED ALBATROSS, BULLER'S ALBATROSS

Figure 22: Mean predicted vs. mean observed black petrel captures in each area for top-11 multi-species models fitted to black petrel, white-capped albatross, and Buller's albatross captures where model fits included variables with 100% data completeness (Table 13).

Figure 23: Mean predicted vs. mean observed white-capped albatross captures in each area for top-11 multi-species models fitted to black petrel, white-capped albatross, and Buller's albatross captures where model fits included variables with 100% data completeness (Table 13).

Figure 24: Mean predicted vs. mean observed Buller's albatross captures in each area for top-11 multi-species models fitted to black petrel, white-capped albatross, and Buller's albatross captures where model fits included variables with 100% data completeness (Table 13).

Figure 25: Residuals vs predictors from top multi-species seabird captures model (model 1) where model fits included variables with >75% data completeness (Table 14).

Figure 26: Mean predicted vs. mean observed black petrel captures in each area for top-10 multi-species models fitted to black petrel, white-capped albatross, and Buller's albatross captures where model fits included variables with >75% data completeness (Table 14).

Figure 27: Mean predicted vs. mean observed Buller's albatross captures in each area for top-10 multi-species models fitted to black petrel, white-capped albatross, and Buller's albatross captures where model fits included variables with >75% data completeness (Table 14).

sqrt(obs)

Figure 28: Mean predicted vs. mean observed white-capped albatross captures in each area for top-10 multi-species models fitted to black petrel, white-capped albatross, and Buller's albatross captures where model fits included variables with >75% data completeness (Table 14).

Figure 29: Residuals vs predictors from top multi-species seabird captures model (model 1) where model fits included variables with >60% data completeness (Table 15).

Figure 30: Mean predicted vs. mean observed black petrel captures in each area for top-10 multi-species models fitted to black petrel, white-capped albatross, and Buller's albatross captures where model fits included variables with >60% data completeness (Table 15).

Figure 31: Mean predicted vs. mean observed Buller's albatross captures in each area for top-10 multi-species models fitted to black petrel, white-capped albatross, and Buller's albatross captures where model fits included variables with >60% data completeness (Table 15).

Figure 32: Mean predicted vs. mean observed white-capped albatross captures in each area for top-10 multi-species models fitted to black petrel, white-capped albatross, and Buller's albatross captures where model fits included variables with >60% data completeness (Table 15).

Figure 33: Residuals vs predictors from top multi-species seabird captures model (model 1) where model fits included variables with >20% data completeness (Table 15).

Figure 34: Mean predicted vs. mean observed black petrel captures in each area for top-10 multi-species models fitted to black petrel, white-capped albatross, and Buller's albatross captures where model fits included variables with >20% data completeness (Table 16).

Figure 35: Mean predicted vs. mean observed Buller's albatross captures in each area for top-10 multi-species models fitted to black petrel, white-capped albatross, and Buller's albatross captures where model fits included variables with >20% data completeness (Table 16).

Figure 36: Mean predicted vs. mean observed white-capped albatross captures in each area for top-10 multi-species models fitted to black petrel, white-capped albatross, and Buller's albatross captures where model fits included variables with >20% data completeness (Table 16).

APPENDIX D: PREDICTIVE CHECKING FOR NZ FUR SEAL CAPTURES MODEL

Figure 37: Mean predicted vs. mean observed NZ fur seal captures in each area. Mean predicted vs. mean observed NZ fur seal captures in each area for top-10 multi-species models fitted to all birds captures where model fits included variables with 100% data completeness (Table 18).

Figure 38: Residuals vs predictors from top NZ fur seal captures model (model 1) where model fits included variables with >75% data completeness (Table 19).

Figure 39: Mean predicted vs. mean observed NZ fur seal captures in each area. Mean predicted vs. mean observed NZ fur seal captures in each area for top-10 multi-species models fitted to all birds captures where model fits included variables with >70% data completeness (Table 19).

Figure 40: Residuals vs predictors from top NZ fur seal captures model (model 1) where model fits included variables with >60% data completeness (Table 20).

Figure 41: Mean predicted vs. mean observed NZ fur seal captures in each area. Mean predicted vs. mean observed NZ fur seal captures in each area for top-10 multi-species models fitted to all birds captures where model fits included variables with >60% data completeness (Table 20).

bait_stream

Figure 42: Residuals vs predictors from top NZ fur seal captures model (model 1) where model fits included variables with >20% data completeness (Table 21).

Figure 43: Mean predicted vs. mean observed NZ fur seal captures in each area. Mean predicted vs. mean observed NZ fur seal captures in each area for top-10 multi-species models fitted to all birds captures where model fits included variables with >20% data completeness (Table 21).

APPENDIX E: PREDICTIVE CHECKING FOR TURTLE CAPTURES MODEL

Figure 44: Mean predicted vs. mean observed turtle captures in each area for top-10 models fitted to turtle captures where model fits included variables with 100% data completeness (Table 25).

APPENDIX F: RESIDUALS VS ADDITIONAL PREDICTORS FOR ALL BIRDS CAPTURES MODEL

APPENDIX G: RESIDUALS VS ADDITIONAL PREDICTORS FOR MULTI-SPECIES CAPTURES MODEL: BLACK PETRELS, WHITE-CHINED PETREL, BULLER'S ALBATROSS

APPENDIX H: RESIDUALS VS ADDITIONAL PREDICTORS FOR FUR SEAL CAPTURES MODEL

APPENDIX I: RESIDUALS VS ADDITIONAL PREDICTORS FOR TURTLE CAPTURES MODEL

APPENDIX J: HISTOGRAMMS FOR DATA OF SIGNIFICANT ADDITIONAL PREDICTORS FOR ALL SEABIRDS MODEL

Figure 45: Histograms of significant additional variables added to model 1 fitted to unpruned data during initial model fitting (Table 4), and capture rate on actual scale for each variable (all else being equal; see Table 8 for fixed effect base cases).

APPENDIX K: HISTOGRAMMS FOR DATA OF SIGNIFICANT ADDITIONAL PREDICTORS FOR MULTI-SPECIES SEABIRDS MODEL: BLACK PETREL, WHITE-CAPPED ALBATROSS, BULLER'S ALBATROSS

Figure 48: Fig. XX continued

APPENDIX L: HISTOGRAMMS FOR DATA OF SIGNIFICANT ADDITIONAL PREDICTORS FOR NZ FUR SEAL CAPTURES MODEL

Figure 49

