# 2015年の日本によるミナミマグロ耳石収集および年齢査定活動ならびに年齢データの分析

Activities of southern bluefin tuna otolith collection and age estimation and analysis of the age data by Japan in 2015

山崎いづみ1・平井明夫2・表健一郎2・伊藤智幸1

Izumi Yamasaki <sup>1</sup>, Akio HIRAI<sup>2</sup> and Kenichiro OMOTE<sup>2</sup> and Tomoyuki ITOH<sup>1</sup>

1: (国研) 水産研究教育機構 国際水産資源研究所 2: マリノリサーチ株式会社

1: National Research Institute of Far Seas Fisheries, Japan Fisheries Research and Education Agency2: Marino-Research Corporation

### 要約

日本は 2015 年にミナミマグロ耳石を 794 個体から収集した。2015 年に漁獲されたミナミマグロ 210 個体の年齢を査定し、2016 年にデータを CCSBT 事務局へ提出した。4512 個体の年齢データを分析し、尾叉長と年齢との関係を示した。

## Summary

Japan collected otoliths from 794 SBT individuals in 2015. Ages were estimated from 210 SBT individuals which were caught in 2015. The data were submitted to the CCSBT Secretariat in 2016. Age data of 4512 SBT individuals were analyzed to show relationships between fork length and age estimated.

## 1. Activities of otolith collection and age estimation

#### 1) Otolith Collection:

In 2015, Japan collected otoliths from a total of 794 southern bluefin tuna *Thunnus maccoyii* (SBT) individuals. The number of otolith samples had been from 300 to more than 500 in early to mid2000s, however it had been kept less than 300 from late 2000s to early 2010s. Number of otolith samples had exceeded more than 500 again in 2014, and this has been same in 2015, too. All of them came from commercial longline vessels through the scientific observer program (Yamasaki et al. CCSBT- ESC/1609/20). These fish were caught from March to September 2015, and fork length of them were 87 to 185 cm.

## 2) Age estimation:

Ages of 210 individuals were estimated using otoliths following to the CCSBT manual (Anon. 2002), "A manual for age determination of southern bluefin tuna *Thunnus maccoyii*." Each of two staff members in Marino-Research Cooperation, who did the same work for years, estimated the age once respectively and independently. Then, one of them determined the final estimated age with referring to their previous estimation.

The data of age estimated with capture information were sent to the CCSBT Secretariat in 2016. The number of individuals by year caught and CCSBT area in the 2016 data is shown in Table 1. Number of individuals by year caught and at fork length class in the 2016 data is shown in Table 2. The range of age estimated was from 2 to 29.

#### 2. Analysis of age data

The aging data for 210 individuals which estimated in 2015 were added into accumulated aging dataset to apply the analysis. The sampling period of Japan starts from 1997, and total number of aging data reached 4512 individuals by 2015 (Table 3). Table 4 shows frequency of reliability of age estimation by fork length class, twenty-six otoliths out of 4538 individuals (0.57%) were not able to be estimated its ages (readability is 0). No otolith was assigned to readability 5 (no doubt). These age data have been submitted to CCSBT from 2005.

Statistical values of 4512 individuals that analyzed are shown for age estimated by 5 cm fork length class (Table 4) and fork length by age estimated (Table 5).

Relationships between fork length and age estimated are shown in Fig. 1 and Fig. 2. While there are a few outliers, majority of plots seems to be appropriate. Parameters of von Bertalanffy growth equation were estimated by the least square method as follows.

Linf = 181.6 cm, K = 0.167, t0 = -1.567 (year)

The length at age relationship used in CCSBT (mean length at age for 2005 catch) is corresponded well with the von Bertalanffy growth curve by the otolith data (Fig. 3).

## References

- Anon. 2002. Report of the Direct Age Estimation Workshop. Victoria, Australia. 11-14 June 2002.
- Izumi, Y., T. Itoh, K. Oshima and H. Matsunaga. 2015. Report of Japanese scientific observer activities for southern bluefin tuna fishery in 2014 and 2015. CCSBT-ESC/1609/20.

Table 1 Number of otoliths, by year caught and CCSBT area, which were analyzed and submitted its data to CCSBT in 2016. The otolith samples had been analyzed in 2015 were taken from the fish which had been caught in 2014.

|       | Year | Total |       |  |
|-------|------|-------|-------|--|
| Area  |      | 2014  | TOLAT |  |
| 2     |      | 2     | 2     |  |
| 7     |      | 74    | 74    |  |
| 8     |      | 37    | 37    |  |
| 9     |      | 97    | 97    |  |
| Total |      | 210   | 210   |  |

Table 2 Number of otoliths which were analyzed and submitted its data to CCSBT in 2016 by year caught and at fork length class

|       | Year |      | Total |
|-------|------|------|-------|
| Size  |      | 2014 | TOLAT |
| 80    |      | 1    | 1     |
| 90    |      | 1    | 1     |
| 100   |      | 5    | 5     |
| 110   |      | 20   | 20    |
| 120   |      | 23   | 23    |
| 130   |      | 23   | 23    |
| 140   |      | 51   | 51    |
| 150   |      | 53   | 53    |
| 160   |      | 16   | 16    |
| 170   |      | 15   | 15    |
| 180   |      | 2    | 2     |
| Total |      | 210  | 210   |
|       |      |      |       |

Table 3 Total number of otoliths, by year of catch and CCSBT statistical area, which have been analyzed and submitted its data to CCSBT since 2005.

|   |       | Area  |       |       |       |       |       |         |                  | Total |
|---|-------|-------|-------|-------|-------|-------|-------|---------|------------------|-------|
| _ | Year  | Area1 | Area2 | Area4 | Area5 | Area7 | Area8 | Area9 A | <u> 11 real1</u> | Total |
|   | 1997  | 14    | 10    |       |       |       | 33    |         |                  | 57    |
|   | 1998  |       |       | 25    |       |       | 204   | 20      |                  | 249   |
|   | 1999  | 1     |       | 73    |       | 144   | 334   | 36      |                  | 588   |
|   | 2000  |       | 13    | 24    |       | 37    | 96    | 110     |                  | 280   |
|   | 2001  | 13    |       |       |       | 71    | 57    | 208     |                  | 349   |
|   | 2002  | 15    |       | 6     |       | 47    | 28    | 159     |                  | 255   |
|   | 2003  |       |       | 60    |       | 42    | 78    | 302     |                  | 482   |
|   | 2004  | 21    | 2     | 43    |       | 31    | 93    | 157     |                  | 347   |
|   | 2005  |       | 29    | 46    |       | 5     | 83    | 251     |                  | 414   |
|   | 2006  |       | 1     | 6     |       |       | 17    | 84      |                  | 108   |
|   | 2007  |       | 1     |       |       |       | 194   | 104     |                  | 299   |
|   | 2008  |       |       | 5     |       | 33    | 106   | 93      |                  | 237   |
|   | 2009  |       |       | 7     |       |       | 141   | 77      |                  | 225   |
|   | 2010  |       | 5     | 12    |       |       | 57    |         | 6                | 80    |
|   | 2011  |       | 10    | 5     | 18    |       | 26    | 39      | 3                | 101   |
|   | 2012  |       |       | 2     |       | 5     | 46    | 55      |                  | 108   |
|   | 2014  |       | 2     | 1     |       | 222   | 37    | 97      |                  | 359   |
|   | Total | 64    | 73    | 315   | 18    | 637   | 1630  | 1792    | 9                | 4538  |

Table 4 Statistical values of fork length and age estimated at 5 cm fork length class in age estimated data by Japan.

| Fork   | N_readal | bilit | у        |      |      |    |   | Age est | imated | (readal | oilit | y 1-5) |       |
|--------|----------|-------|----------|------|------|----|---|---------|--------|---------|-------|--------|-------|
| Length | N        | 0     | 1        | 2    | 3    | 4  | 5 | N       | mean   | median  | min   | max    | SD    |
| class  |          |       | <u>'</u> |      |      |    |   |         |        |         |       |        |       |
| 30-    | 2        |       |          | 2    |      |    |   | 2       | 0.0    | 0       | 0     | 0      | 0.00  |
| 35-    | 0        |       |          |      |      |    |   |         |        |         |       |        |       |
| 40-    | 0        |       |          |      | •    |    |   | •       |        |         | _     | _      | 0.00  |
| 45-    | 6        |       |          | 4.0  | 6    |    |   | 6       | 1.0    | 1       | 1     | 1      | 0.00  |
| 50-    | 43       |       |          | 12   | 31   |    |   | 43      | 1.1    | 1       | 1     | 2      | 0. 29 |
| 55-    | 27       | 1     |          | 13   | 13   |    |   | 26      | 1.3    | 1       | 1     | 2      | 0. 45 |
| 60-    | 2        |       |          | 2    |      |    |   | 2       | 2. 0   | 2       | 2     | 2      | 0.00  |
| 65-    | 0        |       |          |      |      |    |   |         |        |         | _     | _      |       |
| 70-    | 1        |       |          | 1    |      |    |   | 1       | 2. 0   | 2       | 2     | 2      |       |
| 75-    | 1        |       |          | 1    |      |    |   | 1       | 2. 0   | 2       | 2     | 2      |       |
| 80-    | 9        | 1     |          | 8    |      |    |   | 8       | 2.8    | 3       | 2     | 4      | 0.71  |
| 85-    | 69       |       | 1        | 53   | 15   |    |   | 69      | 2. 7   | 3       | 2     | 6      | 0.74  |
| 90-    | 96       |       | 4        | 69   | 23   |    |   | 96      | 2.8    | 3       | 2     | 5      | 0.78  |
| 95-    | 104      | 1     |          | 66   | 37   |    |   | 103     | 3.6    | 4       | 2     | 11     | 1.14  |
| 100-   | 166      | 2     | 3        | 111  | 47   | 3  |   | 164     | 3.8    | 4       | 1     | 7      | 0.91  |
| 105-   | 223      | 2     | 7        | 142  | 68   | 4  |   | 221     | 4. 2   | 4       | 2     | 7      | 0.98  |
| 110-   | 177      |       | 1        | 117  | 58   | 1  |   | 177     | 4. 7   | 5       | 2     | 9      | 1.09  |
| 115-   | 211      |       | 10       | 127  | 73   | 1  |   | 211     | 5. 2   | 5       | 2     | 11     | 1.16  |
| 120-   | 200      |       | 5        | 123  | 71   | 1  |   | 200     | 5.5    | 5       | 3     | 12     | 1. 27 |
| 125-   | 186      |       | 4        | 108  | 68   | 6  |   | 186     | 6. 1   | 6       | 4     | 10     | 1. 22 |
| 130-   | 197      |       | 4        | 114  | 75   | 4  |   | 197     | 6.3    | 6       | 4     | 10     | 1. 11 |
| 135-   | 215      |       | 6        | 126  | 80   | 3  |   | 215     | 7. 1   | 7       | 4     | 13     | 1.52  |
| 140-   | 261      | 2     | 4        | 152  | 95   | 8  |   | 259     | 7.8    | 8       | 4     | 13     | 1. 51 |
| 145-   | 309      | 1     | 7        | 182  | 113  | 6  |   | 308     | 8. 5   | 8       | 4     | 19     | 1. 78 |
| 150-   | 407      | 4     | 11       | 248  | 139  | 5  |   | 403     | 9.4    | 9       | 5     | 17     | 1.98  |
| 155-   | 359      |       | 10       | 224  | 113  | 12 |   | 359     | 10. 2  | 10      | 6     | 19     | 2.03  |
| 160-   | 364      | 3     | 14       | 221  | 120  | 6  |   | 361     | 11.5   | 11      | 6     | 24     | 2.68  |
| 165-   | 270      | 2     | 15       | 166  | 81   | 6  |   | 268     | 13.0   | 12      | 4     | 31     | 3.60  |
| 170-   | 283      | 4     | 29       | 157  | 87   | 6  |   | 279     | 15.4   | 15      | 6     | 29     | 3.91  |
| 175-   | 156      | 1     | 20       | 82   | 53   |    |   | 155     | 17.0   | 16      | 7     | 36     | 5. 26 |
| 180-   | 108      | 1     | 15       | 58   | 33   | 1  |   | 107     | 19. 2  | 19      | 9     | 32     | 4.63  |
| 185-   | 46       |       | 7        | 29   | 10   |    |   | 46      | 19.6   | 19      | 8     | 35     | 6.09  |
| 190-   | 21       | 1     | 6        | 10   | 4    |    |   | 20      |        |         |       |        |       |
| 195-   | 11       |       | 1        | 5    | 5    |    |   | 11      | 24. 0  | 23      | 11    | 33     | 6. 18 |
| 200-   | 5        |       | 1        | 3    | 1    |    |   | 5       | 25.0   | 27      | 20    | 28     | 3.39  |
| 205-   | 3        |       |          | 2    | 1    |    |   | 3       | 26.7   | 28      | 24    | 28     | 2.31  |
| Total  | 4538     | 26    | 185      | 2734 | 1520 | 73 | 0 | 4512    |        |         |       |        |       |

Table 5 Statistical values of fork length at age in age estimated data by Japan.

| Age | N_  | mean   | median | min   | max | SD     |
|-----|-----|--------|--------|-------|-----|--------|
| 0   | 2   | 32. 6  | 32. 6  | 32. 2 | 33  | 0.57   |
| 1   | 65  | 53.8   | 53     | 48    | 103 | 6.66   |
| 2   | 110 | 88. 2  | 90     | 51    | 118 | 13.64  |
| 3   | 271 | 100.6  | 101    | 80    | 124 | 9. 12  |
| 4   | 366 | 109.4  | 108    | 84    | 165 | 11. 02 |
| 5   | 450 | 118.6  | 118    | 92    | 154 | 10.86  |
| 6   | 407 | 128.6  | 128    | 88    | 171 | 12. 58 |
| 7   | 428 | 139.4  | 139    | 103   | 176 | 11. 84 |
| 8   | 405 | 146. 4 | 147    | 116   | 185 | 10. 54 |
| 9   | 399 | 152. 3 | 152    | 112   | 185 | 9.00   |
| 10  | 309 | 155. 9 | 156    | 121   | 182 | 9. 13  |
| 11  | 246 | 158. 9 | 159    | 96    | 195 | 9. 59  |
| 12  | 216 | 161. 2 | 162    | 124   | 188 | 9. 22  |
| 13  | 139 | 165.3  | 166    | 138   | 188 | 8.68   |
| 14  | 126 | 166. 5 | 167    | 146   | 187 | 8.36   |
| 15  | 102 | 169.4  | 170    | 149   | 187 | 8. 02  |
| 16  | 108 | 171.6  | 172    | 148   | 190 | 7. 93  |
| 17  | 60  | 171.5  | 172    | 152   | 184 | 6.63   |
| 18  | 61  | 175. 2 | 175    | 163   | 195 | 8. 22  |
| 19  | 52  | 174. 4 | 175    | 145   | 191 | 8. 42  |
| 20  | 29  | 176. 4 | 175    | 164   | 201 | 7. 34  |
| 21  | 38  | 179.4  | 179. 5 | 167   | 196 | 7. 26  |
| 22  | 22  | 179. 9 | 178. 5 | 170   | 195 | 7. 70  |
| 23  | 20  | 179.6  | 174    | 168   | 200 | 10.80  |
| 24  | 17  | 181.5  | 180    | 162   | 207 | 9.08   |
| 25  | 7   | 179.9  | 184    | 167   | 191 | 9. 15  |
| 26  | 15  | 178. 3 | 178    | 165   | 197 | 7. 43  |
| 27  | 9   | 184. 8 | 181    | 174   | 203 | 10. 58 |
| 28  | 10  | 187. 7 | 184    | 172   | 205 | 12. 72 |
| 29  | 5   | 183. 2 | 184    | 172   | 195 | 9. 73  |
| 30  | 5   | 184. 0 | 182    | 178   | 196 | 6.96   |
| 31  | 3   | 178. 3 | 185    | 165   | 185 | 11. 55 |
| 32  | 2   | 187. 5 | 187. 5 | 184   | 191 | 4. 95  |
| 33  | 1   | 197. 0 | 197    | 197   | 197 |        |
| 34  | 1   | 186. 0 | 186    | 186   | 186 |        |
| 35  | 3   | 185. 0 | 188    | 176   | 191 | 7. 94  |
| 36  | 1   | 177. 0 | 177    | 177   | 177 |        |
| 37  |     |        |        |       |     |        |
| 38  |     |        |        |       |     |        |
| 39  |     |        |        |       |     |        |
| 40  |     |        |        |       |     |        |
| 41  |     |        |        |       |     |        |
| 42  |     |        |        |       |     |        |
| 43  |     |        |        |       |     |        |
| 44  |     |        |        |       |     |        |
| 45  | 1   | 191.0  | 191    | 191   | 191 |        |

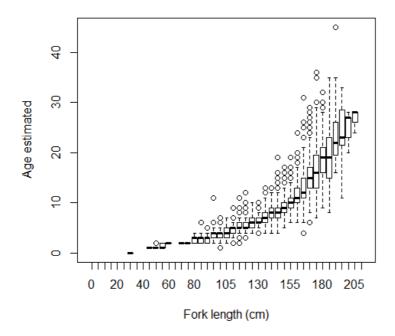



Fig. 1 Box plot of age estimated at fork length in 5 cm class in Japanese age estimated data

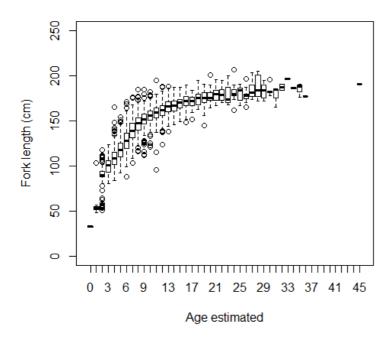



Fig. 2 Box plot of fork length at age estimated in Japanese age estimated data.

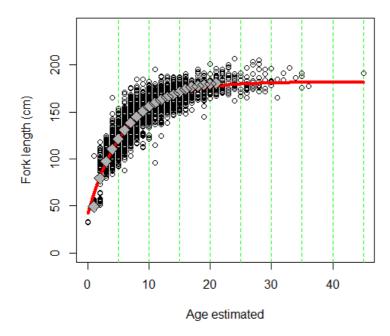



Fig. 3 von Bertalanffy curve and length plots for Japanese age estimated data. Diamonds are length-at-age used in CCSBT.