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Abstract

The CCSBT ESC is about to begin a new round of MP development and testing. A number of new
data sources are being collected for use in the OM. This paper details how they can be simulated in
the OM projections and their potential information content for use in a new MP. We outline a flexible
model for simulating the gene tagging data that can incorporate additional variance. For the parent-
offspring close-kin data we detail a flexible simulation approach and also how to use the empirical data
(numbers of comparisons and detections) as an indicator of spawning abundance. The simulation of
the next generation of close-kin data, finding half-sibling pairs among juveniles, is outlined. We also
show how these data, again in their empirical form, can be developed into very informative indices
for both relative spawning abundance - independent of the POP data - and mean adult total mortality
rate.

1 Background

The Extended Commission has requested the development of a new MP, by 2019, which will potentially
use a new recruitment index and other sources of data. [1]. This paper focusses on the data generation
of indices that can be considered for potential inclusion in any future candidate MPs. This will allow
for simulation testing of new MPs using data generated in the OM projections. This paper should be
read in conjunction with the paper focussing on required structural changes to the OM to incorporate
new data sources [2]. To simulate the various data sets we employ an SBT-like Operating Model. We
use a simplified OM with all the key life-history and fishery characteristics of SBT (growth, reproductive
output, natural mortality, population selectivity across all fisheries) and with the same current spawner
abundance. We explore the main population change drivers: three similar trends (in terms of logarithmic
change) for both mean recruitment and overall fishing mortality in the future. This allows us to see the
potential information content in the various data sources across a plausible range of overall abundance
change scenarios, and given the two obvious drivers: mortality and recruitment.

Gene tagging has been recommended as an essential recruitment index for a new MP, following extensive
work done both for and at last year’s ESC which demonstrated the need for such an index [1]. The general
design study for the pilot gene tagging program can be found in [3] and the successful release of 3,800
fish occurred in January of this year. In [2] we outlined the mathematical and statistical features of the
gene tagging estimator, and the associated beta-binomial likelihood we suggest for the OM in conditioning
mode. In this paper we propose to use the same generic likelihood in the OM in projection mode. We
also explore the information content in the simulated gene tagging data, with respect to trends in mean
recruitment under a variety of future scenarios.

In both the OM and the adopted MP, the major index of non-juvenile abundance is the long-line CPUE.
Figure 1.1 shows that these data have a complex, non-linear relationship to the OM-estimates of spawner
abundance. Only from 1969 to the mid-1980s (i.e. higher SSB levels) is the relationship close to being
linear. From that point on to the present (where CPUE levels drop below 1 consistently), and even before
factoring in the additional uncertainty in CPUE given the over-catch in the majority of this period, there
is little strong correlation between CPUE and spawner abundance. The more recent long-line CPUE
data are very clearly important indices relating to the sub-adult fish and, given the general move to target
younger, smaller fish over the last two decades (although slightly different in 2015), are also more informa-
tive on recruitment than they once were. Future changes in targeting as the stock recovers might increase
their information content with respect to mature animals, but presently they are not as informative. With
only gene tagging and long-line CPUE we have no potential indices for inclusion in an MP that overlap
significantly with the major reproductive age-classes (an issue we faced with the current MP also). The
primary focus of any current candidate MP is, however, to drive the recovery of the spawning population
to Commission agreed levels (in terms of both overall level and probability of attaining it).

The Commission has agreed to continue the collection and genotyping close-kin tissue samples [4]. Ef-
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Figure 1.1: CPUE observations (y-axis) versus current OM estimates of SSB (x-axis) in terms of median
and 80%CI.

forts are underway to process the historical backlog of samples using the next-generation sequencing
technology that is both cheaper than the original microsatellite approach and will allow us to find both
parent-offspring pairs and half-sibling pairs among the juvenile samples. The primary use of the POP
data has been in the OM [5], where they have been very influential with respect to both current absolute
and relative spawning abundance, but also adult mortality rates. The half-sibling pair (HSP) data have
the potential to be very influential given they directly relate to spawner abundance, adult mortality, and
relative reproductive output (RRO) independently of the POP data [6]. In this paper we also explore the
potential information content in both the POP and HSP data in an empirical setting - methods to structure
the data in such a way as to be informative on relative spawner abundance (POPs/HSPs) and mean adult
mortality (HSPs only).

2 Material & Methods

The same simulation model is used for all data sources so we outline the specifics of that model first. It is
an annual age-structured model, with the same key life-history and fishery characteristics as the CCSBT
OM:

• The model has the same median M -vector, length-at-age distribution, recruitment variability (σr),
and RRO (ϕa) as the SBT OM

• A single selectivity, constructed by normalising across current fleet-aggregated fishing mortality, is
assumed

• Initial F s are set so as to obtain an initial spawning abundance very close the median current
spawning abundance predicted in the reference OM

We omit a stock-recruit relationship for simplicity, and we purposely explore trends in both mean recruit-
ment and F . We are not testing the performance of candidate MPs or stock rebuilding times; we are
exploring the generation and information content of data sources focussed on monitoring recruitment and
spawner abundance. For both the mean recruitment and annual F multiplier we explored three simple
scenarios: constant, and ±1% log-scale trends over time. We cross these scenarios with each other to
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obtain 9 scenarios in total, and each one is explored for all three data sources. This allows us to efficiently,
but also simply, explore a number of scenarios for both fish entering the fishery for the first time (where
gene-tagging is focussed), and for the spawning stock and where abundance trends can have differing
and antagonistic/synergistic drivers (i.e. recruitment and/or mortality).

2.1 Gene Tagging

For the gene tagging design study [3] a simple Petersen estimator was outlined, where we assumed we
can target age 2 releases and age 3 recaptures perfectly. In [2] we detail the specifics of how the gene
tagging estimator will work, where this idealised targeting of specific age classes will not be quite so clear
cut. Figure 2.1(a) shows the probable length distribution of age 2, 3 and 4 in the GAB in summer and,
given our OM assumptions, is also the same as that in our simulation model explorations.
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Figure 2.1: (a, left) the probable length distribution of ages 2, 3 and 4 year old fish in the simulation model
given current mortality rates; (b, right) the distribution of length-at-age assumed in the simulation model.

The length partition used for the population is in 5cm bins, from 30cm to 210cm. The length-at-age
distribution in the simulation model can be found in Figure 2.1(b). In terms of tag releases they are
assumed to be uniformly released into the three length bins between 65 and 75cm (65-80cm). The
subsequent recapture effort (1 year after the releases) focusses on the three length bins between 95 and
105cm (fish in sizes 95-110cm), so most likely to be age 3 fish, very very few age 2 fish, but with a higher
chance of sampling age 4 fish as well.

The simple estimator we explore focusses only on effective numbers of recaptures of age 3 fish, tagged
a year before at age 2. We say effective because we estimate the number of actual age 2 and 3 fish in
the releases and recapture samples, respectively. Eqn. (2.2) in [2] outlines the distribution of age given
length in the samples. We then estimate the (prior) age composition of the given length samples, for
the length-at-age distribution (see Figure 2.1(b)), given the length distribution of both the release and
scanned-for-recapture fish. This approach explicitly accounts for the potential information loss we are
likely to get, in terms of not being able to target only age 2 releases and age 3 recaptures. As noted in [2]
there will be additional information gained (via multi-year recaptures on the same cohort), but we focus on
the MP-centric idea of getting an abundance index of age 2 fish. This information gain will feature more in
an OM sense, but should not be ignored in the wider discussions of the merits or otherwise of these data.

The main potential bias identified in the gene-tagging design study can occur if some of the juvenile fish
spawned on the spawning grounds never, or intermittently, spend the majority of their summers in the
GAB between ages 2–4. The Global Spatial Dynamics project suggested the evidence for a significant
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part of the juvenile population behaving in this way was weak, but it is still an ongoing hypothesis. It
was proposed in the Gene-Tagging design study that we could investigate this through a q factor for the
proportion in the GAB. Alternatively, probably the simplest method is to impose a cap on the selectivity of
the surface fishery. For a “fully mixed” population where all fish of the relevant ages visit the GAB at the
time of the fishery, that selectivity will have a maximum of one, as is currently assumed in the SBT OM.
We can explore scenarios where the maximum selectivity of the surface fishery is capped at some value
ζ < 1, and the true probability of finding a released tag in the GAB is then not proportional to 1/N but
1/ζN . In this scenario 1−ζ is the age-independent fraction of the juvenile population that never visits the
GAB. Note none of the other mixing scenarios examined in the design study resulted in biased estimates
of age 2 abundance - see [3] - but it is worth exploring results for this case detailed as scenario 2b in [3].
It is also testable in a non-spatial OM context (as described herein via capped selectivity).

For the purposes of data generation in the MP context we explore the information content in a simple
moving average of relative recruitment, much as how the aerial survey is currently used. We explore the
correlation of the gene-tagging derived estimates of (relative) age 2 abundance with their true simulation
model counterparts, for all 9 recruitment and fishing mortality scenarios (below).

2.2 Parent-Offspring Pairs (POPs)

The original POP data have been officially included in the SBT OM since 2013 [5]. The current format
for the data is as follows: we have juvenile sample, i, and an adult sample, j, each with either a direct
estimate of age, or an expected age given its length. The probability of finding a POP will be the same for
the same year of adult capture and age, and the juvenile birth-year (cohort), and the data are currently
grouped in this manner. We use this (adult capture year and age, y and a, respectively; juvenile cohort,
c) as the base disaggregation level for simulating the POPs. The probability of finding a POP for an
juvenile-adult comparison {i, j} is as follows:

ppop = I (c < y < c+ a)
2ϕa−(y−c)∑
k

Nc,kϕk
, (2.1)

where I(•) is the indicator function, and ϕa is the RRO at age a. There is a fairly obvious set of constraints
about what kind of samples are legitimate, given Eqn. (2.1):

• If the distance between the birth year of the juvenile and the capture year of the adult exceeds the
capture age of the adult - i.e. (y − c) > a - that comparison cannot be made (the adult was not
alive to potentially sire the juvenile).

• If the adult capture year was before the birth year of the juvenile - i.e. c > y - then that comparison
cannot be made (again the adult was not alive at the time of the juvenile’s birth given sampling is
lethal).

• Comparisons between adults caught in the same year as the juvenile was born - i.e. y = c - are
also not made (the adult could have been caught prior to spawning)

So, even if we describe the sampling regime in terms of Mi juveniles and Mj adults per year, we will
always have less thanMiMj total comparisons given these rules for fair comparisons. The base likelihood
assumed in the current OM is binomial, and the evidence for over-dispersion is estimated to be very weak
[5]. However, in the MP context it makes sense to use the more flexible beta-binomial likelihood to simulate
these data just in case we wish to explore some over-dispersion scenarios in a robustness test.
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{R,F} scenario corr(N̄true
y,2 , N̄gt

y,2)

{0, 0} 0.92 (0.83–0.95)
{0.01, 0} 0.9 (0.77–0.95)
{−0.01, 0} 0.96 (0.93–0.98)
{0, 0.01} 0.92 (0.83–0.96)
{0.01, 0.01} 0.9 (0.81–0.96)
{−0.01, 0.01} 0.97 (0.93–0.98)
{0,−0.01} 0.91 (0.82–0.96)
{0.01,−0.01} 0.91 (0.8–0.95)
{−0.01,−0.01} 0.97 (0.93–0.98)

Table 3.1: Temporal correlation (median and 80%CI in brackets) for first 50 years of projection between
the GT-derived 5 year moving average of age 2 abundance and its “true” model counterpart.

2.3 Half-Sibling Pairs (HSPs)

The likelihood for the comparison of two juveniles i and i′, assumed to come from different cohorts ci and
ci′ , is detailed in [2] and is given by the following:

phsp =
4qhsp

Scmax

(∑
a

[
γcmin,a exp

(
−
cmax−1∑
y=cmin

Zy,a

)
ϕa+|ci−ci′ |

])
, (2.2)

where Sy =
∑

aNy,aφa is the spawning abundance, cmax is the most recent cohort, cmin is the earliest
cohort, qhsp (with default value of 1) is a “catchability” term explained in [2], and γy,a is the age distribution
of adults in year y:

γy,a =
Ny,aφa
Sy

. (2.3)

With the POP data there are certain combinations of juveniles and adults that are not fair comparisons, but
this is not the case with the HSP data. The only stipulation we enforce is that all comparisons are cross-
cohort - i.e. ci 6= ci′ - for the reasons explained in [2]. We have no empirical evidence either in favour or
against over-dispersion in the HSP data, unlike the POP case. We therefore use the beta-binomial as the
simulation distribution, as with the GT and POP data, with the reference case being no over-dispersion.

3 Results

For all three data sources we explored 3 scenarios - status quo and ±1% - for the (logarithmic) trend
in mean recruitment and overall fishing mortality, so 9 in total when crossing them. In terms of notation,
a scenario labelled as {0.01,−0.01} would denote mean recruitment increasing by 1% and total fishing
mortality decreasing by 1%, whereas {0, 0} would imply no change in either over time. Figure 3.1 details
the spawner abundance dynamics for each of these future recruitment and fishing mortality scenarios.

3.1 Gene Tagging

For the gene tagging data, we set the following sample sizes for releases, T , and the scanning of recap-
tures, S: T = 4, 000 and S = 8, 000. Note these are slightly lower than recommended for the actual SBT
pilot study [3] because the corresponding age 2 abundances in this particular model are slightly lower
than for SBT. The sample sizes here will still produce the same level of expected recaptures (around 16–
25) and, hence, precision as in [3] for “current” model abundances. This will ensure that the simulated
correlation between the GT-derived and “true” age 2 abundance trends are meaningful in the real-world
SBT context.

We simulate the GT data for each of the 100 projection years, given the sample sizes outlined, and with
year 99 the last year of an estimate (given it needs recaptures from year 100). The default assumption

CCSBT-OMMP/1609/7 | 5



{0,0} {0,0.01} {0,−0.01}

{0.01,0} {0.01,0.01} {0.01,−0.01}

{−0.01,0} {−0.01,0.01} {−0.01,−0.01}

Figure 3.1: The spawner abundance projections (100 years, median and 80%CI) for each of the 9 mean
recruitment and total fishing mortality scenarios. Each simulation starts with the same spawner abun-
dance (purposely set at the current SBT level) and the minimum level in the plot is zero. The first and
second terms in brackets at the top of each panel denote the log-scale mean recruitment and total fishing
mortality trends, respectively.

was no over-dispersion and the actual index we focus on is a moving average of the GT age 2 estimates:

N̄gt
y,2 =

1

τ

y∑
i=y−τ+1

N̂i,2, (3.1)

where N̂y,2 are the GT estimates of true age 2 abundance. We choose a 5-year (τ = 5) moving average
time-scale, just as is done in the current MP with respect to the aerial survey part of the rule. Table 3.1
summarises the results, in terms of the temporal correlation between the trends in true (simulated) and
GT-derived moving average age 2 abundance, across all the 9 scenarios.

Median correlations across all scenarios are 0.9 or higher, with the lower 10%ile never going below 0.75. If
mean recruitment, and obviously age 2 abundance, experiences a downward trend the median correlation
rises to above 95% (and almost always above the 0.9 level). This is driven by an increasing number of
recaptures and, hence, a more accurate estimate of current true abundance. Even if mean recruitment
increases (eventually by 50% at the end of the simulations), the median correlation still holds at 0.9, for
these fixed sample sizes, there were and with very very few - less than 0.1% - years in the simulation
where no recaptures were detected.

3.2 Parent-Offspring Pairs (POPs)

The GT data are easier to generate into a workable mean recruitment index, given we already have a
simple, workable estimator in place. The close-kin data, in both the POP and HSP settings, require
detailed population dynamic and statistical models to estimate actual abundance and mortality [6]. In the
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Figure 3.2: Number of comparisons (left) and the number of POPs (right) for the full suite of 99 cohorts
simulated for the {0, 0} recruitment/fishing mortality scenario.

following two sections we explore options for generating empirical indices from the close-kin data (of both
types) that are (potentially) informative on relative spawner abundance and adult mortality.

For the POP data we define a simple, time-invariant sampling strategy: the number of juvenile (age 3)
fish sampled is Mi = 2, 000, and the number of adult samples taken is Mj = 2, 000 also. The raw
POP data are simulated for the 100 year projection period, and all 9 scenarios, using the beta-binomial
likelihood with probability defined by Eq. (2.1), but with over-dispersion set to zero. Figure 3.2 shows the
number of effective comparisons and resultant POPs across the future cohorts of interest in the projection
model, for the full status quo {0, 0} recruitment/fishing mortality scenario. Both the number of effective
comparisons and POPs increase quite rapidly with increasing cohorts observed and equilibrate for many
years, then rapidly decreasing as the number of observations (and, hence, POPs) of the very last cohorts
goes to zero. The important feature for the purposes of this paper, is what happens to the ratio of effective
comparisons to POPs - for this example it holds very steady over time, much as the spawner abundance
does.

For the simple relative spawner abundance index we propose to basically use a modified version of the
original “cartoon” estimator [6]:

N̂ =
2MiMj

R
, (3.2)

where R is the number of POPs and N̂ is the adult abundance. We use this fundamental idea, that the
ratio of comparisons to POPs is informative about spawner abundance, when constructing the index. For
each juvenile cohort, c, and year, y, and age, a, of adult capture we have a number of comparisons,
Mc,y,a, and detected POPs, Rc,y,a. In a given year, the age distribution of samples is assumed to be
multinomial with probability given by the adult age distribution, γy,a, and sample size Mj .

To construct the index we first sum over the adult capture ages:

Mc,y =
∑
a

Mc,y,a, (3.3)

Rc,y =
∑
a

Rc,y,a, (3.4)

Ic,y =
Mc,y

Rc,y
. (3.5)
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To finally obtain an index that focusses on the particular cohort, we use a weighted sum:

Ic =
∑
y

Ic,yωc,y, (3.6)

where the weighting term ωc,y is defined as follows:

ωc,y =
Rc,y∑
y
Rc,y

. (3.7)

This makes the weighting effectively proportional to the inverse square of the CV of the cartoon estimate
and, as such, a simple proxy for an inverse variance type weighting (more POPs, more weight effectively).
As with the GT we focus on the first 50 cohorts, in terms of examining the relationship between the index
(and statistics derived from it) and the spawner abundance, to avoid complications in the latest years
when sampling and, hence, POPs reduces to zero.

The first analysis we did was to explore the evidence for the following relationship between the POP index,
Ic, and the true spawner abundance, Sc, and looked at the following form: logSc = α log Ic. If the index
is a “good” spawning index we would want it to approach zero as S does and be as close to linear in real
space (i.e. α = 1) as possible. For all 9 scenarios, and across all the random samples simulated, α was
both highly significant and ranged from 0.96–0.99. We cannot explain why the relationship is very slightly
sub-linear across all population scenarios explored, but what is clear is that the base index is very close
to linearly related to spawner abundance.

To offset to some degree the sampling variability in the single-cohort index we explore to alternatives:

1. A moving average index, similar to the GT index:

Īpop
y =

1

τ

y∑
c=y−τ+1

Ic, (3.8)

and here we explored τ = 7, mostly because changes in spawner abundance will be on a slower
time-scale than for age 2 abundance and so we can afford to average over a longer time-scale

2. Estimating the log-linear trend λy in the cohort-specific index, much as we do in the trend part of
the MP with respect to CPUE:

λpop
y =

y∑
c=y−τ+1

(
(Ic − Ī)(c− c̄)

)
y∑

c=y−τ+1
((c− c̄))2

(3.9)

where Ī and c̄ are the respective means of the index and cohort over the relevant time-frame, but
we use a τ = 10 time-scale here. The reason behind this is for the same reason as using a longer
time-scale for the moving average index above: changes will be slower and we will, in principle,
follow less noise by doing this

We look at the correlation between these derived indices and their true counterparts from the OM over
the first 50 years in the simulation. For some perspective on what these correlations might imply, we also
compare them to a hypothetical unbiased survey of the spawner abundance with a CV of 0.3. Obviously,
we cannot achieve this kind of index in practice, but it will hopefully give an indication of what we can
obtain by comparing it to a more familiar type of abundance index.

Table 3.2 details the correlations for both types of derived index (moving average and log-scale trend),
for the POP-derived and hypothetical survey “raw” indices, relative to their “true” model counterparts.
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{R,F} scenario corr(S̄true
y , Īpopy ) corr(S̄true

y , S̄surv
y ) corr(λtruey ,λpopy ) corr(λtruey ,λsurvy )

{0, 0} 0.4 (-0.14–0.73) 0.52 (-0.01–0.73) 0.09 (-0.28–0.4) 0.26 (-0.08–0.56)
{0.01, 0} 0.68 (0.13–0.89) 0.73 (0.29–0.92) 0.1 (-0.24–0.42) 0.32 (-0.04–0.61)
{−0.01, 0} 0.73 (0.29–0.89) 0.74 (0.28–0.89) 0.09 (-0.25–0.45) 0.32 (-0.05–0.61)
{0, 0.01} 0.75 (0.29–0.92) 0.75 (0.39–0.91) 0.1 (-0.25–0.45) 0.29 (-0.07–0.6)
{0.01, 0.01} 0.42 (-0.14–0.74) 0.53 (-0.04–0.82) 0.08 (-0.27–0.41) 0.26 (-0.09–0.57)
{−0.01, 0.01} 0.91 (0.74–0.97) 0.88 (0.73–0.95) 0.13 (-0.3–0.5) 0.4 (-0.03–0.58)
{0,−0.01} 0.59 (0.04–0.84) 0.68 (0.16–0.89) 0.12 (-0.27–0.41) 0.31 (-0.09–0.57)
{0.01,−0.01} 0.84 (0.58–0.94) 0.87 (0.63–0.95) 0.12 (-0.24–0.45) 0.32 (-0.02–0.6)
{−0.01,−0.01} 0.44 (-0.13–0.78) 0.51 (-0.02–0.84) 0.08 (-0.3–0.43) 0.28 (-0.12–0.58)

Table 3.2: Temporal correlation (median and 80%CI in brackets) for first 50 years of projection between
both the 7 year moving average and the log-scale linear trend and their “true” model counterparts, for the
POP-derived index and a hypothetical unbiased survey with a CV of 0.3.

Focussing on the moving average trend first, the hypothetical survey index marginally outperforms the
POP-derived index for scenarios where little to no change in spawner biomass occurs over time, with
median correlation values for both types of index all at 40% or above in these cases. For scenarios
where spawner biomass is changing over time, be it up or down, the POP-derived index is at least as
good as, and sometimes better than (for pessimistic scenarios), the survey-based index. For the log-
scale linear trend the survey consistently outperforms the POP-derived index across all scenarios, with
median correlation levels 2.5–3 times that of the POP-derived index. What is very noticeable about the
log-scale index trends, however, is the overall poor performance of either index - POP-derived or survey-
based. Median correlations never exceed 0.4 for the most pessimistic scenario, with the lower 10%ile
permanently sitting at between -0.3 to -0.05 for either index across all scenarios.

3.3 Half-Sibling Pairs (HSPs)

One very important point to make first is that the HSP data are independent of the POP data. Whatever
we may derive from the HSP data, even though it is informative on the spawning population, it can be
used alongside - and, potentially, in combination with - any POP indices we care to use. The HSP data
present more of a challenge than the POP data, which really relate to spawner abundance in a given year.
The HSP data, when considering the comparison of two juveniles i and i′, informs us about spawner
abundance in the most recent juvenile cohort and the cumulative mortality of the adult population in
between the two cohorts. In conjunction with other data (catch biomass and composition, abundance
data) it could also inform us on the RRO ogive as it is free from adult sampling effects (like selectivity)
[6]. Given the likely information content of the HSP data, and the results of the POP-derived indices, we
explore the following two possibilities as potential candidates as input series for candidate MPs:

• Derivation of a relative spawner abundance index, similar in concept to that derived from the POP
data

• Derivation of an adult mortality index, which can only be attempted for the HSP data (and is not
derivable from any hypothetical survey)

We simulate the sampling of Mi = Mi′ = 2, 000 juveniles per year, so the total number of comparisons
between two cohorts is always MiMi′ = 4e+ 6, and never compare two samples from the same cohort.
Figure 3.3 outlines two plots of the simulated HSPs for the {0, 0} full status quo recruitment and fishing
mortality scenario: (i) the total number of HSPs relating to each of the first 96 cohorts of interest (recall the
target is sampling age is 3, so we cannot have information for any cohorts after 96); and (ii) the number
of HSPs found between the first cohort and all the subsequent ones.

A number of key points can be made using Figure 3.3:

• There will be, for the current proposed sample sizes and in general, more HSPs than POPs - they
are a weaker (genetically) relationship than parent-offspring and, therefore, more common. In this
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Figure 3.3: Number of HSPs for each of the 96 cohorts (left) and between the first cohort and all the
subsequent ones (right). In each case the number of total comparisons made between each cohort is
4e+6.

example almost 3 times as common. In the cartoon it is 2 times as many but when accounting
for lost comparisons in the POP framework, whereas none save intra-cohort comparisons are lost
when comparing juvenile samples, we actually obtain more than 2 times the number of HSPs. This
means any comparable HSP-derived indices are likely to be more informative than for the POP-
derived ones based on sample sizes alone.

• Looking at the plot on the right of Figure 3.3 we see the adult mortality effect in the HSP data. As
we compare progressively more distant cohorts, the number of HSPs found between them declines
because the probability of an adult living that long (which it would have to for there to be any HSPs)
becomes smaller and smaller. There is a sort-of-analogy with catch curves here, where catches
often decrease down a cohort with total mortality. The crucial difference with the HSPs is that they
are not biased by selectivity effects, which catch-curves are.

• The status quo scenario is the easiest with which to make this distinction between the abundance
and mortality signals in the data. With changing abundance and/or adult mortality over time these
two will inevitably alias for one another. The key is how do we derive the two indices to see if we
can tease the signals apart? To make the most of the HSP data in an empirical sense we want to
derive two indices that could reflect abundance and mortality effects as independently as possible.

The HSP spawner relative abundance index for a given cohort, c, is derived as follows:

Ic,c′ =
McMc′

Rc,c′
, (3.10)

Ic =

c−1∑
i=c−ν

Ic,iεc,i, (3.11)

(3.12)

where c′ < c, ν is a back-averaging time-scale, and εc,c′ is a weighting proportional to the number of
HSPs found between the two reference cohorts c and c′. The parameter ν is set at 3 - it should not be set
too large so as to avoid including mortality trend effects in the abundance index. The actual abundance
index, Īhsp

c , is defined much as the POP index as a moving average of the “raw” index Ic (with the same
time-frame of τ = 7. The time-frames over which the HSP index actually works are somewhat different to
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{R,F} scenario corr(S̄true
y , Īhspy ) corr(S̄true

y , S̄surv
y ) corr(Ztrue

y ,Zhsp
y )

{0, 0} 0.79 (0.48–0.91) 0.58 (0.07–0.85) 0.08 (-0.14–0.32)
{0.01, 0} 0.89 (0.68–0.96) 0.79 (0.41–0.92) 0.05 (-0.2–0.3)
{−0.01, 0} 0.92 (0.77–0.97) 0.77 (0.44–0.91) 0.1 (-0.13–0.32)
{0, 0.01} 0.92 (0.77–0.97) 0.84 (0.59–0.93) -0.38 (-0.58– -0.09)
{0.01, 0.01} 0.77 (0.4–0.92) 0.59 (0.1–0.84) -0.38 (-0.58– -0.08)
{−0.01, 0.01} 0.97 (0.94–0.99) 0.93 (0.83–0.96) -0.37 (-0.61– -0.09)
{0,−0.01} 0.85 (0.63–0.95) 0.75 (0.31–0.91) -0.02 (-0.28–0.24)
{0.01,−0.01} 0.94 (0.86–0.98) 0.9 (0.78–0.96) -0.03 (-0.29–0.25)
{−0.01,−0.01} 0.79 (0.5–0.93) 0.57 (0.03–0.81) -0.04 (-0.3–0.22)

Table 3.3: Temporal correlation (median and 80%CI in brackets) for first 50 years of projection between the
7 year moving average, and the “true” model counterparts, for the HSP-derived index and a hypothetical
unbiased survey with a CV of 0.3. Also included is the correlation between the true weighted mean adult
total mortality and the HSP-derived index.

the POP index. For the raw index we are initially summing over cohorts that precede the reference cohort
c, and we do not compare within a cohort, so c = 4 is the first year we can derive a raw index point for.
For the moving average we than add τ = 7 years to this so c = 11 is effectively the first year we get an
HSP index for. For the POP data it is c = 8, given we do not compare juveniles and adults from the same
year of capture (ruling out c = y = 1).

The adult mortality index is more subtle. For unrelated pairs (UPs) of juveniles i and i′, the likely time
between their respective birth years (cohorts), ∆i,i′ = |ci − ci′ |, is unaffected by adult abundance and
mortality; for HSPs it is strongly affected - see Eq. (2.2). The expected value of ∆i,i′ is, for the example
of no changes in adult abundance, always going to be smaller for HSPs than UPs because of the adult
mortality effect (see also the r.h.s. of Figure 3.3 for this effect). To derive and adult mortality index using
this idea we explore the following:

Zhsp
c = log

E
(

∆hsp
i,i′

)
E
(

∆up
i,i′

)
 , (3.13)

where the expection in Eq. (3.13) is taken over the cohorts c to c− ψ + 1, and we chose a time-frame of
ψ = 10 for this example (thus making c = 11 the first cohort with the index available). The mean adult
total mortality rate, Z̄y, that we explore for correlation with Zhsp is calculated via

Z̄y =
∑
a

γy,aZy,a, (3.14)

where γy,a is the relative age distribution of the adults in year y.

Table 3.3 summarises the correlations of the HSP (as well as the POP and hypothetical survey) derived
abundance indices, and the adult mortality index, with their “true” model counterparts. Unlike the POP
example, the HSP-derived abundance index outperforms an unbiased survey with a CV of 0.3 in all cases
- not just for declining abundance scenarios. For the HSP index median correlation never goes below 0.77
and the lower 10%ile never less than 0.4; for the survey-derived index comparison the minimum median
correlation is 0.58 and the minimum lower 10%ile is 0.03.

For the adult mortality index, where if there is a relationship the correlation should be negative, the sit-
uation is very case dependent. For scenarios where F (and, hence, Z) is time-independent we see no
obvious linkage, as one would expect given the nature of the index and the level of sampling variability
inherent in it. For decreasing Z we see a very very weak effect (marginally negative correlation). It is
only for the case of increasing adult Z that we see a clear and consistent signal. This is to be expected
given both the comparatively low levels of adult Z overall, and the signal in the HSP data. For increasing
Z the distribution of the temporal distance between cohorts of the HSPs begins to increasingly contract

CCSBT-OMMP/1609/7 | 11



over time, resulting in the relationship (negative correlation) we see in Table 3.3. From the originally fairly
low level, if Z decreases the opposite widening effect in the cohort difference distribution of the HSPs is
much weaker, resulting in the minimally negative correlations in Table 3.3 for these scenarios.

4 Discussion

This paper focusses on the statistical specifics of the generation of new data sources, specifically gene-
tagging and both POP and HSP close-kin data. It also explores on their potential information content
for use in an MP, exploring the derivation of empirical indices of relative spawner abundance and adult
mortality. Given the impending cessation of the current MP, and the initialisation of a new round of MP
and OM development to replace it, we decided that the SBT OM and constant catch projections was
not the best way to explore the generation of new data sources and their potential information content.
Instead, we employed an SBT-like OM with very similar life-history, overall fishery selectivity, and current
spawner abundance properties as the SBT OM. This permitted us to efficiently explore a wide range of
future abundance scenarios, as well as a wide range of potential indices given sampling regimes directly
relevant to the current SBT situation. We explored three different mean recruitment and overall fishing
mortality trends (status quo, ±1% log-scale) and crossed them for a total of nine scenarios to obtain a
very wide variety of future dynamics for both the stock and fishery from which to generate the new data
sources.

In relation to gene tagging, we employed a hypothetical sampling regime with the similar release and re-
capture properties (overall expected range of recapture numbers) as outlined in the design study [3]. The
default assumption was a straight binomial distribution (no over-dispersion at this stage) for simulating the
recaptures of age 2 releases, with the associated information loss likely to result from imperfect cohort
identification included directly. In terms of indices for more MP related purposes, we explored the correla-
tion of a 5-year moving average of relative age 2 abundance with its simulated counterpart. For all future
recruitment and fishing mortality scenarios median correlation over the first 50 years were all at 0.9 levels
or above, with the lower 10%iles all above 0.75. These correlations will hold true even if there is some
fixed (or lightly varying mean) fraction of the overall recruits that never enter the GAB - absolute abun-
dance may be biased in these extreme mixing scenarios but the relative trend is well represented in the
actual empirical data. This suggests the gene tagging data have the potential to be a highly informative
recruitment index for use in any candidate MPs.

For the close-kin POP data we explored a variant on the original “cartoon” abundance estimator [6] to
generate a relative spawner abundance index. The cohort-specific index, weighted over adult recapture
years using the relative number of POPs linked to each year, was compared to a hypothetical survey
of spawning abundance with a (non-autocorrelated) observation error CV of 0.3. Both were converted
to moving averages with a 7 year time-frame to reduce sampling error effects. For scenarios where
spawner abundance was not changing very much over time, the survey marginally outperformed the
POP-derived index. For scenarios where spawner abundance was changing quite strongly over time
(both up but especially down) the POP-derived index performed at least as well, and sometimes better
than, the survey. Median correlations over the first 50 years of the simulation were never lower than
0.4 and sometimes as high as 0.9 for the POP index. An alternative index, focussed on the log-scale
linear trend in the two indices over time, performed poorly. The survey performed better, in terms of
relative magnitude of correlation, but never exceeded a median correlation of 0.4 - even for strong trends
in spawner abundance. A likely reason the POP-derived trend index performed consistently worse than a
hypothetical survey is the more temporally complex and compound sampling error (in terms of both adult
age sampling and in relation to POPs, given the juvenile and adult samples). Another curiosity relating to
the POP index in general is that it will experience a period of precision increase over time as the number
of POPs relating to a particular cohort build up in the data set. The impact of this would be observed in
a full MP testing context, but this initial work was focussed only on generating the data and their overall
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information content.

For the HSP data we explored both a relative abundance index (independent of, but complimentary to,
the POP index) and a mean adult mortality index also. This is, in principle, made possible by the addi-
tional information content inherent to the HSP data. A similar weighted approach as that used for the
POP-derived index was used to generate the HSP abundance index, and a 7 year moving average also
used to compare to the hypothetical spawner survey. In this case the HSP abundance index universally
outperformed the survey across all scenarios: median correlations with true spawner abundance never
fell below 0.75 and the lower 10%ile never fell below 0.4. This improvement in performance, relative to
the POP index, is driven by both a higher overall number of HSPs relative to POPs (and, therefore, lower
variability) and no additional sampling variability arising from having to sample the adults across their
age-range (as is the case in the POP framework). The HSP adult mortality index was derived using the
relative difference in the distribution of times between birth years for both unrelated and half-sibling pairs.
The HSP mortality index was shown to correlate fairly well with mean adult mortality only in cases where
it was increasing over time. This is because of the asymmetric nature of what happens to the distribution
of cohort differences across unrelated and half-sibling pairs when adult mortality changes over time for
this particular example.

In terms of operational changes required in the projection component of the current OM to accommodate
these new data sources, we will require additional routines in sbtproj.tpl to simulate and store
in external files similar to the current sbtOMdata format. These changes are fairly straightforward,
and certainly possible using the current ADMB software structure, but will need some care to ensure
the temporal build up of data in the POP paradigm, as well as the combination of actual historical and
simulated close-kin data (be it POP or HSP related), is correctly handled.

The results in this paper clearly demonstrates that the gene tagging data have the potential to be a
very informative data source on relative recruitment levels and, therefore, for use as input data series
to candidate MPs. Using them in a manner similar to that employed for aerial survey in the current MP,
a 5-year moving average, results in indices that show strong correlation with the true average age-2
abundance over time. As seen clearly in Figure 1.1 the CPUE index exhibits a complicated and highly
non-linear relationship with estimated spawner abundance over time. Over the last two decades, and for
future spawner abundance levels we are likely to be able to rebuild to over the next two decades, the
relationship between CPUE and spawner abundance is very far from being linear. Given the CCSBT has
funded the collection and genotyping of future C-K samples, and plans are underway to process historical
ones, it makes sense to explore if we can generate actual indices of spawning abundance from these
data.

The close-kin POP data have clearly been informative with respect to absolute abundance and adult
mortality in the SBT OM [5], and the new HSP data could be very informative also [6]. In this work we
have also demonstrated their empirical potential, in relation to indices that can be derived from the raw
data and considered as input series to candidate MPs. This would be in addition to their value in either the
standalone models [6] or the SBT OM [5] in terms of estimating absolute adult abundance and mortality.
From the POPs we can derive a relative spawner abundance index that performs close to, and sometimes
better than, a high quality unbiased hypothetical survey with a CV of 0.3. From the HSP data we can
derive a relative spawner abundance index that easily outperforms such a survey with a similar CV of 0.3.
In combination - i.e. a combined POP and HSP index - we could obtain an index that correlates with true
spawner abundance as well as a high quality survey with a CV of 0.2–0.25. In addition to this, using the
HSP data we can derive an index that can detect if mean adult mortality is increasing over time, providing
a basis to separate causes of decline in spawning abundance.
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