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EXECUTIVE SUMMARY

Hoyle, S.D. (2020). Investigation of potential CPUBodel improvements for the primary index
of Southern Bluefin Tuna abundance.

Draft New Zealand Fisheries Assessment Report 202&/. 33 p.

Indices of southern bluefin tuna abundance are byethe Commission for the Conservation of
Southern Bluefin Tuna in both the stock assessemahthe management procedure. In 2019, the Base
CPUE model produced an index value for 2018 that wentified as anomalous. This research
explored reasons for the high estimate and fourad iicreasing effort concentration produced
increasingly sparse coverage in the catch andteff@miaset. This sparse coverage led to unstable
predictions from the ‘Base’ GLM model in strata wdtt observed CPUE. A new prediction
diagnostic was developed based on the number adfregtvalues predicted by the model, and a set of
new standardisation models was developed. Spatipdeal smoothing in a generalised additive
model using the R packagegcv provided more stable predictions for areas withrsp data and
fitted the data better as measured by the AIC. Alehwas recommended for the purposes of the 11th
Operating Model and Management Procedure TechWleating. Further work to develop the model
was recommended.
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1. INTRODUCTION

Indices of southern bluefin tund@{unnus maccoyii(SBT) abundance are used by the Commission
for the Conservation of Southern Bluefin Tuna (CCEB both the stock assessment (Butterworth et
al. 2003) and the management procedure (CCSBT28)20b develop the primary indices used for
both purposes, data are fitted using the ‘Baseidstadisation model. Next, two indices are derived
from this model using prediction under two alteivetveighting schemes, the constant squares (CS)
and variable squares (VS) models. These two indees then recombined using alternative
weightings; in recent years these have been derstéde WO0.8 and WO0.5 indices (Nishida & Tsuiji
1998, Itoh & Takahashi 2019).

The Base model used to generate the CS and VSemdlica linear regression model that includes
categorical variables for all spatial and tempef&dcts, along with three interaction terms asoioh:

log(cpue+ 0.2) ~yf + mf + areaf+ latf + cpue.bet+ cpue.yft+ mf*areaf + yf* latf + yf*areaf

Here the parametey$, mf, latf, andareafare categorical variables (factors) representady ,ymonth,
statistical area, and latitude respectively. Thelcaer unit effort (CPUE) of bigeye tunep(ie.bet
and yellowfin tuna ¢pue.yft are calculated as catch per thousand hooks #&ed fas continuous
variables. For southern bluefin tungueis SBT catch per thousand hooks. A constant ofs0e2ided

to all cpuerecords to avoid taking the logarithm of zero. Vakue of 0.2 is approximately 10% of the
meancpue which has been found to minimise the bias du¢hi® adjustment of the catch rate
(Campbellet al. 1996; Campbell 2004). Interaction terms thablve the year effect are sometimes
ignored but, if substantial, may lead to a biasettx (Maunder & Punt 2004). In this case they are
justified by clear differences among statisticaear in catch rate trends through time. Procedares f
calculating the index in these circumstances at@ldd by Campbell (2015).

In recent years CPUE standardisation methods haea ghore consideration to spatial and temporal
correlations (Nishida & Chen 2004; Chambers 208G¥éss et al. 2019). Many of these methods use
the correlations among adjacent areas to estimatanmeters more efficiently. Approaches using

spatio-temporal smoothers within generalised agglitnodels have been explored for SBT (Chambers
2013; Chambers 2014a; Chambers 2014b) but, to tetgrimary CPUE index has continued to be

based on the categorical variables and linear reddat generate the W0.8 and WO0.5 indices.

However, in 2019, the Base CPUE model producecdhdaxi value for 2018 that was identified as
anomalous (Itoh & Takahashi 2019), and the 202@&tgdenerated a similarly unrealistic index value
for 2018, with some concern about the 2019 estimate

This paper explores reasons why the 2019 Base npodéuced high estimates for recent years and
investigates the potential of generalised additivedels (GAMs) (Hastie & Tibshirani 1990) that
include spatio-temporal smoothers to provide a meliable SBT abundance index.

2. METHODS

2.1 Data preparation

These analyses were based on a slightly differatgsét from the Base model, because the dataset
used in that analysis is only available to Japasesmtists (Itoh & Takahashi 2019). The available
dataset was sufficiently similar to the primaryadagt to provide useful insights. The main diffeesnc
between the two datasets are listed below.
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- The primary dataset uses a set of core vesselbdlathigh SBT catches for at least 3 years,
whereas the available dataset includes data frovesdels.

- The primary dataset includes catches of bigeyeyaitidwfin tuna, but the available dataset
does not.

- The primary dataset is available as operationalbjsset) data (but is aggregated for the Base
analysis) whereas the available dataset is aggregat

The data file ‘CPUEInputs_2020_January.txt’, avdgéarom the private area of the CCSBT website,
was used for the analysis. These data are aggdebgtgear, month, and 5° latitude and longitude,
with catches reported by age class based on dpatial temporally stratified size sampling.

The following processes were then applied to thasg:

- Filter to include effort from 1986 to 2018, with A_CODE ‘COMBINED’, in statistical
areas 4 to 9, and months 4 to 9. Include stratia mitre than 10 000 hooks. Include latitudes
north of 50° S.

- Create numericatchvariable, the sum of catches of all SBT 4+ anenold

- Create categoricdf variable, indicating 5° square that combinesudttand longitude.

- Create categoricareaf variable, which merges statistical area 4 withn8 atatistical area 6
with 7.

- Create categorical variablgt latf, andmf, for year, latitude, and month.

- Adjust numeric longitude variabléof) by adding 360 to all longitudes between -180 4D,
to provide continuity across the spatial domairnhef fishery. Longitudes are recorded as -180
to 180 and so the range of the adjusted longitadalvle was from -95 to 260.

- Create numericpuevariable = catch per 1000 hooks.

- Remove a single outlier wittpue> 120.

2.2 Characterise data
The data were investigated to identify how efford @atches have changed through time.

Effort was plotted by 5° square, and temporallyiwg-month periods, for each 5 years since 1985, to
explore the spatial distribution of effort throutyime and by season.

To explore spatial and temporal changes throughk,tand the possibility that trends have varied by
statistical area, CPUE was modelled separatelytdtysscal area using, in each case, both a main
effects model and a model that included a monttatiyide interaction term.

log(cpue+ 0.2) ~yf + mf + |atf + mf*[atf

2.3 Data coverage and Base model estimates

Data availability and how data gaps in space ame tnight affect the Base model were examined.
Predicted catch rates from the Base model for eaotbined stratum of year, month, statistical area,
and latitude, were generated by predicting frompghemeters of the Base model provided by the
analyst (Tomoyuki Itoh, personal communication).
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2.4 Check relevance of inference from available dataset

The available dataset was standardised using alnsod#éar to the Base model, but without the
parameters for other species. This is the simdlilase model:

log(cpue+ 0.2) ~yf + mf + areaf+ latf + mf*areaf+ yf*latf+ yf*areaf,
where all parameters are categorical variables.

As for the Base model, predicted catch rates weregted for each combined stratumyffmf,
areaf andlatf.

To compare predictions from the Base (with primdataset) and simplified Base (with available
dataset) models, each set of predictions by year maamalised by the means across years and
summed, and then all were plotted on the samedigur

2.5 Changes to the Base model

The fits of the simplified Base model and altewvai@pproaches using categorical data were explored
based on Akaike Information Criterion (AIC) and poation of the deviance explained.

The simplified Base model included three of the pobssible two-way interactions. A fourth
interaction term rof*latf) was added to produce the ‘Base Plus’ model. Tfeete on model fit of
dropping each of these four interactions terms vesmined. A full two-way model was produced
by including all 6 possible interactions terms, dhd effect of dropping each of these in turn was
examined. Finally, the effect on model fit of adglieach of the four possible three-way interaction
terms to the Base Plus model was assessed.

2.6 Spatio-temporal smoothers

Generalised additive models are generalised limemtels that replace or augment the linear function
with an additive function that may include smoothparameters and use a local scoring algorithm to
estimate the smoothing parameters. As implememtatie mgcv package (Wood 2011), they are a
flexible and powerful tool for data modelling. Umdagcva variety of smoothers and other additive
functions are available. Methods for visualisingpuitis are provided in the packaggcViz(Fasiolo

et al. 2020).

With data increasingly sparse both spatially analsseally, spatio-temporal smoothers allow for
correlations between adjacent spatial and tempeid and reduce the number of parameters being
estimated.

The approach used for the simplified Base models rgplicated and then other approaches were
explored that might explain more variability whilgtaining parameter identifiability.

As with the previous analyses, modelling was cdrioeit in R (R Core Team 2019) using the
generalised additive modelling packagegcv(Wood 2011).

All models were fitted to the same dataset. Eaclabke was modelled either as a categorical (factor
variable, as in the simplified Base model, or a®@tinuous variable, which is necessary when using
smoothers. The variableseaf latf, lIf, mf, andyf denote factors (categorical variables) for statbt
area, latitude, 5° cells of latitude and longitud®nth, and year. The variables, lat, mn, andyr
denote continuous variables for longitude, latitudeonth, and year. Interaction terms between
continuous variables were fitted with the tensoodpict functionte(), and individual continuous
variables were fitted with the smooth functgfiusing the default thin-plate regression spline.
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Each model was fitted with thegcvsetting ‘gamma = 2’ to reduce the effective sangite. CPUE
standardisation models ingcvcan suffer from excess variability in the smoosh&isheries data are
often over-dispersed due to dependencies amon@usétstrata, because individual data represent the
combination of multiple sets by the same vesseld, anmodelled effects, such as environmental
patterns and fish behaviour, can lead to overdssperat multiple spatial and temporal scales. These
dependencies reduce the amount of independentriaf@n in the data, which can be allowed for by
reducing the effective sample size. Setting ganorawas an ad hoc choice and further exploration
is warranted.

Initially the simplified Base and Base Plus modetye replicated irmgcvusing factor variables as
before.

Simplified Base:
log(cpue + 0.2)~yf + mf + latf + areaf +mf:areaf + yf:latf + yf:areaf

Base plus:
log(cpue + 0.2)~yf + mf + latf + areaf +mf:areaf + yf:latf +yf:areaf + mf:latf

Next, various smooth functions were used to repéawk augment the factors (Table 1). A variety of
two-way and three-way interactions were trialled folr-way interaction with all the continuous
variables was also explored.

The model gam13 (Table 1) was designed to be ath@dwersion of model ‘Base Plus’, replacing
the factorareaf with te(lon, lat). The factorareafwas replaced witfon in interaction terms so that,
for exampleyf*areaf becamee(yr, lon)

Model assumptions were checked using tmgcv function gam.check()or the equivalent
check.gamViz(junction from themgcVizpackage.

Reasons for skewed residuals were checked by eigrine relationship of effort to residual size,
using a smoothing spline imgcv gampooks~ s(residual), wherehooksis the effort (number of
hooks set) in the stratum.

Individual smoothers were plotted from the modehwhe best combination of low AIC and lack of
extreme (unrealistic) predictions.

Indices from each model were obtained by prediatimtgh rates in all spatial cells that were fishred
at least 15 temporal strata (known as ‘x15’ filtig)i. Catch rates in these spatial cells were piedlic
for all years and months. Based on the unreliafd@mption that all spatial cells have the samerocea
area, catch rates were summed for each year amtedity the mean of the yearly estimates, to give
an index with mean of 1. Because ocean areas chaitigdatitude, and some spatial cells include
land, abundance prediction methods will need todseespondingly adjusted in the future.

To explore the effect on the index of each modetmonent, a progressive series of models that built
up the components of the model recommended forente (gam11) was fitted, as follows. Indices
derived from these models were plotted in sequence.

yf

+ te(lon, lat, k = ¢(40,4))

+ te(mn lat, k = ¢(6,4))

+ te(lon, mn, k = ¢(10, 5))

+ te(yr, lat, k = ¢(20, 4))

+ te(yr, mn, k = ¢(20, 5))

+te(lat, lon, mn, k = c(4,15, 6))

+ te(lat, lon, yr, k = ¢(4,10, 9))

NN
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Table 1: Models run usingmgcv. The factors column reports all variables includedas categorical variables. Smooth terms include twway, three-way, and four-
way (‘All') interactions. The last four columns shav the estimated degrees of freedom (df), the AIC glta AIC, and the percent deviance explained.

Label Factors Smooth terms 4-way df AIC BAIC Dewgnce
explainet
Base 252.0 9845.3 2340 61.7%
Base plus +mf:latf 267.0 9530.7 2025 64.7%
Base_noYrAr .-yfareaf 156.0 10061.8 2556 57.9%
glmmYrAr 199.1 9893.7 2388 60.3%
gam 2 yf+mf lon,lat 95.1 95229 2017 61.8%
gam 3 yf+mf mn,lon,lat 152.4 8562.3 1057 70.3%
gam 4 yf All 322.1 8064.9 559 75.5%
gam 5 yf+IIf All 297.7 7886.2 381 76.3%
gam 6 yf+IIf mn,lat All 2744 7856.4 351 76.2%
gam 7 yf lon,lat mn,lat All 220.8 7839.1 333 75.7%
gam 8 yf lon,lat mn,lat lon,mn All 2489 77585 253 76.4%
gam 9 yf lon,Jat mn,lat lon,mn yr,lat mn,lon,lat lat,lon,yr 262.2 7701.7 196 76.9%
gam 10 yf lonlat mn,at lon,mn yrlat yrlon yrmn 195.8 8048.5 543 74.2%
gam 11 yf lonlat mn,at lon,mn yr,lat yr,mn lahimn lat,lon,yr 267.1  7593.4 88 77.5%
gam 12 yf lonJlat mn,dat lonmn yrlat yrlon yrmrdatlon,mn latlon,yr 283.8 7505.7 0 78.1%
gam 13 yf+mf lonlat mn,at lon,mn yrlat yrlon 217.8 7968.3 463 74.9%
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To identify the causes of the changes at each ,stadiwidual smoothers from these models were
plotted and compared with the distributions of gftemd CPUE with respect to the parameters in the
smoothers.

To identify the effects of data sparsity on thedidate standardisation models, indices of catoh rat
through time were created for each model by lagitatf and by statistical aresreaf

2.7 Extreme prediction diagnhostic

A new prediction reliability diagnostic was devetab(the extreme prediction diagnostic); this is
based on the consistency of model predictions by-genth-statistical area-latitude stratum with the
range of observed CPUE throughout the time sefiég max diagnostic counts the number of
predictions higher than the maximum observed CRUiEeé same year, and then diagnostic counts
the number of observations lower than the miniminseoved CPUE in the same year. These extreme
counts are also classified based on whether tlseeniobserved CPUE in the same stratum, and
whether the stratum is included in results thatased on the x15 criterion.

The preferred version of the ‘extreme predicticeggiostic’ is based on high values, x15 filteringd a
all strata. High extreme predictions tend to be eneariable and influential than low extreme
predictions given that errors are lognormally distred. The x15 filtered values are used to gemerat
the index, and this makes them more relevant tharfiull range of cells. Counts of extreme values in
strata with no observed catch (‘gap’) are provifladinterest, but all strata are used to genetate t
index.

3. RESULTS
3.1 Data characterisation

The statistical area with the most effort (hooksswstatistical area 9, whereas statistical areeam %
had relatively little effort. Statistical areas 4, and 8 had intermediate effort levels, with
approximately 200 million hooks set from 1986 td 2@Figure 1).

Statistical areas 4 and 5 had a relatively higlpgriion of records with zero catch, whereas sta#ist
areas 6, 7, and 9 had very low proportions. Thegnmns of records with zero catch did not change
substantially through time, though there was a bpealk in the early 1990s. By latitude, most of the
effort was between 35° and 45° S. Proportions obe were much higher further north, with over
half the strata reporting zero SBT north of 35E8ort by month was highest in May, June, and July.
Proportions of zeroes were highest in April andided through the season.

Fisheries New Zealand Southern bluefin tuna CPUE model improvements ¢ 7
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Figure 1: Distribution of effort and data records. (a) Total hooks per statistical area; (b) Total reords
per statistical area, including both zero and nonz® catches; (c) number of records per year,
including both zero and nonzero catches; (d) numbeof records per latitude band, including
both zero and nonzero catches; (e) number of recosdper month, including both zero and
nonzero catches.

The spatial distribution of effort changed in catsint ways throughout the year (Figure 2). In April
and May there was effort in the west (statisticebad) and east (statistical areas 4, 5, 6, 7)litdat
effort in statistical area 8. Later in the yeafpefmoved north within these regions and intoistiatl
area 8. Similar seasonal fishing patterns betwésistical areas 8 and 9 were seen for the Korean
fleet (Appendix Figure Al) (Hoylet al. 2019). If these changes in effort distribntreflect SBT
catch rates, they suggest interactions betweenhraod latitude, and between month and longitude
or statistical area.

Long-term changes in effort occurred, with lesorfin all statistical areas during the 2015-2018
period, apart from an increase in statistical &reaApril-May.
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Figure 2: Maps of total effort per two-month period (across), summed over 10-year periods (down)
starting in 1986. Darker blue indicates higher effa. Black indicates land.

Results of standardising catch rates separatebtdiistical area showed catch rates in statisticza
6+7 increasing rapidly from 2007 and stabilisingadtigh level in 2010 and catch rates in statiktica
area 9 increasing rapidly from about 2008 to a ppa&015 (Figure 3). Catch rates in statisticabare
4+5 showed no consistent change through time luspike in 2018. Catch rates in statistical area 8
were variable throughout but have been higher anaae since 2010 than in the previous 10 years.
Including a month*latitude interaction had littléfeext on most statistical areas but substantially
increased standardised catch rates in statistieal@from 2010.
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Figure 3: Standardised CPUE indices for individualstatistical areas.

3.2 Data coverage and Base model estimates

The number of empty strata (by year, statisticehamonth, and latitude) increased progressively
from 1990 to 2018 (Table 2). Predicted CPUE in mgesirs was reasonably consistent with the
observed CPUE in the same strata, apart from anfyative values due to low predictions and the
effect of back-transformation.

The increasing number of empty strata is consistetht figure 1b from Itoh & Takahashi (2019),
which shows operations with SBT aged 4+ concerdraito a steadily reducing number of 5° cells
and 1° cells through time, with minima for bothakfd 5° cells in 2018 (Figure A2). At the same time
the effort per cell has increased since 2010, abdfiort in 2018 was perhaps twice as concentrated
as in 2010. An even stronger pattern of increagitghcentrated effort is apparent in the Korean
data.

The Base model (predictions from parameters pravile Tomoyuki Itoh, NRIFSF, Japan) predicted
very high catches per thousand hooks in 2018 iisstal area 8, with the highest predictions all i
strata with no reported effort (Table 2). Of therBnth-latitude strata in statistical area 8, cd@r
fish per thousand hooks were predicted in foutat@ad almost 20 fish in two strata.
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Table 2: Observed numbers of hooks and catch ratés the aggregated Japanese dataset, and approxineapredicted catch rates in the same strata generatédy
the Base model. Hooks are in thousands and catchtes in SBT per thousand hooks. Anomalously high vaés are highlighted in orange. (Continued on

next page.)
1990 2010 2017 2018
stat area mon lat5 hooks cpue Pred hooks cpue Pred  hooks cpue Pred hooks cpue Pred

cpue cpue cpue cpue
8 4 -4E 0 0.1£ 0 0.54 0 1.01 0 5.17
8 4 -4C 0 0.1¢C 0 0.62 0 1.0¢ 0 5.5
8 4 -3E 0 0.0z 19¢€ 0.4¢ 0.2C 87¢ 0.01 0.0z 534 0.0€ 0.3C
8 5 -4E 0 0.3t 0 0.9¢ 0 1.7z 0 8.3t
8 5 -4C 0 0.2¢ 0 1.12 0 1.84 0 8.9¢€
8 5 -3 0 0.17 427 0.1£ 0.44 54t 0.04 0.1€ 22¢ 0.2t 0.6C
8 6 -45 0 0.9¢ 0 2.37 0 4.0C 0 18.3¢
8 6 -4C 24~ 1.7¢ 0.8t 0 2.6€ 0 4.2t 0 19.71
8 6 -3 0 0.6C 304 1.3¢ 1.1¢ 17 0.0C 0.5¢ 0 1.54
8 7 -4E 0 2.3¢ 0 5.37 0 8.91 0 40.1¢
8 7 -4C 2211 1.7¢ 2.0¢ 0 6.0z 0 9.42 0 43.0¢
8 7 -3E 43C 1.6¢ 1.52 0 2.81 35 2.64 1.4¢ 0 3.57
8 8 -45 0 2.7t 0 6.14 0 10.17 0 45.7:
8 8 -4C 97¢ 2.5 2.4C 18¢ 4.27 6.8¢ 0 10.7¢ 0 49.0(
8 8 -3E 111: 2.1¢ 1.71 662 3.4¢ 3.2t 1841 5.27 1.7z 1857 7.1¢ 4.0¢
8 9 -45 0 2.0¢ 0 4.64 0 7.71 0 34.8:
8 9 -4C 33 1.9¢ 1.7¢ 0 5.2C 0 8.1F 0 37.3:
8 9 -3E 101 0.7¢ 1.3C 43 4.0¢ 2.41 47¢ 8.52 1.2¢ 544 7.9€ 3.07
9 4 -4E 25¢ 2.9C 1.42 0 2.2z 0 5.1¢€ 77 5.64 5.24
9 4 -4C 341¢ 2.1¢ 1.2¢ 79¢ 4.1€ 2.5C 1201 8.07 5.4¢ 160: 6.6 5.62
9 4 -3E 491 0.0C 0.8¢ 20z 0.81 1.11 0 0.7¢ 20 0.0C 0.31
9 5 -45 108 1.9¢ 1.7¢ 0 2.7¢ 25 7.3¢ 6.3¢ 0 6.4
9 5 -4C  407¢ 1.44 1.5€ 120z 3.51 3.1C 207( 6.3 6.74 2741 6.3¢ 6.92
9 5 -3 27¢ 0.27 1.1¢ 282 1.8¢ 1.4C 23 2.3¢ 1.0z 26 0.0C 0.4z
9 6 -4E 20k 1.42 1.9¢ 0 3.0z 0 6.94 0 7.0z
9 6 -4C 4167 1.54 1.71 87( 4.5¢€ 3.3¢ 1171 8.62 7.34 1572 9.21 7.54
9 6 -3E 155¢ 0.6 1.2t 60z 1.4¢ 1.54 0 1.12 0 0.4¢
9 7 -4E 21 1.52 2.5: 0 3.87 0 8.8 0 8.94
9 7 -4C 174¢€ 1.31 2.22 36€ 5.37 4.34 43¢ 8.67 9.34 381 10.97 9.5¢
9 7 -35 3952 0.9¢ 1.65 267 2.3t 2.0C 0 1.47 0 0.6t
9 8 -45 0 2.7¢ 0 4.27 0 9.71 0 9.8:
9 8 -4C 0 2.4¢ 17 1.22 4.7¢ 27 7.1¢ 10.2¢ 0 10.5¢
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The Base model and the simplified Base model gave similar indices (Figure 4), suggesting that
approaches that improve results for the simpliBase model are also likely to work for the Base
model. The primary and ‘available’ datasets ardigantly similar to allow the available dataset to
stand in for the primary dataset for exploratorglgses regarding some issues.

Compare unweighted CPUE indices
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Figure 4: Comparison of the CPUE indices betweerhé predictions generated from the Base parameters
and the predictions generated from standardised dat For each, the predicted CPUE estimates
are summed across all strata without weighting.

3.3 Changes to the simplified Base model

Removing any of the parameters and interactionsidied in the Base plus model resulted in poorer
fit as measured by the AIC (Table 3). Timé* latf interaction term (not included in the simplified
Base model) had the most effect on the AIC of tedl interactions, suggesting that this interaction
should be considered in future analyses. This aot@n term is consistent with the observed
movement patterns of the fleet, which fishes furtherth within each statistical area later in the
season (Figure 2).

Theyf * mfandareaf* latf interactions (also not included in the Base moutefjroved the AIC but
by the smallest amount of all possible two-wayratgions (Table 4).

Three of the four three-way interaction terms invei the AIC of the model, with the most impact
coming frommf* latf * areaf (Table 5).

These trials suggest that including additional seimthe simplified Base model is likely to improve
the fit to the data. The proportion of deviancelaixgd should also be considered when adding terms,
because most CPUE datasets are over-dispersed) ednicmake the AIC oversensitive and lead to
overfitting. Prediction reliability must also bermidered when including additional terms, given the
increasing concentration of the effort and the eqagent sparse data.
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Table 3: Changes in the deviance, degrees of fremd, and AIC as a result of dropping parameters from
the Base plus model.

log(cpue + 0.2) ~ yf + mf + areaf + latf + mf*areaf/f*latf + yf*areaf + mf*latf

DF Deviance AlC
<none> 2049.0 9530.7
mf.areaf 15 2137.6 9682.1
yf:latf 96 2245.9 9731.7
yf.areaf 96 2258.6 9756.0
mf:latf 15 2220.7 9845.3

Table 4: Changes in the deviance, degrees of fremd, and AIC as a result of dropping parameters from
the model with all possible two-way interactions.

log(cpue + 0.2) ~ yf + mf + areaf + latf + mf*areafyf*latf + yf*areaf + mf*latf + yf*mf + areaf*laf

DF Deviance AIC
<none> 1859.6 9443.3
yf:mf 160 2014.4 9465.7
areaf:latf 4 1891.5 9508.1
mf.areaf 15 1909.7 9527.2
yf:latf 96 2030.4 9627.6
yf.areaf 96 2070.5 97114
mf:latf 15 2000.1 9725.3

Table 5: Changes in the degrees of freedom and Al&s a result of adding three-way interactions to th
following model.

log(cpue + 0.2) ~ yf + mf + areaf + latf + mf*areaff*latf + yfrareaf + mf*latf

Interaction term DF AIC
- 267 9530.748
month*lat*area 285 9379.198
year*month*area 764 9453.124
year*lat*area 332 9461.132
year*month*|at 753 9690.653

3.4 Spatio-temporal smoothers

All models with spatio-temporal smoothers fittee thata with lower AIC values than the simplified
Base model (see Table 1). Where checked, mosteokitooth terms explained over 1% of the
deviance (Table 6).

The best model fits according to AIC were (beswtst): gam12, gaml11l, gam9, gam8, gam7, gam6,
gam5, gaml3, gaml0, gam4, gam3, gam2, Base pluspliféd Base, glmm_YrArea,
Base_noYrArea (see Table 1). Given these reshksimodels gam2 to gam8 were dropped, to focus
on the best-fitting GAMs. The model Base plus was dropped to focus on models more relevant to
the discussion, but it was nevertheless the bistgfifactor based model.
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The extreme prediction diagnostic (Table 7) basetigh values showed the best performance across
all cells for model gam11, followed by model gam$am9, Base _noYearArea, gimm_YearArea,
gaml2, simplified Base, and gam10. After removiallsmnot included in index prediction due to x15

filtering, the sequence from best to worst becam@n9, gamll, Base noYearArea, gaml3,
glmm_YearArea, gam10, gam12, simplified Base.

Given their poor performance with extreme preditdiomodels gam10 and gam12 were dropped.
Model gam13, designed to be similar to the Baseahlodgt with smoothers, had lower AIC by 1877,
predicted 5 high values rather than 19, and expthird.9% of deviance rather than 61.7%. The

model selected as the best was gam11, which hacb&ter again by 375, predicted 2 high values,
and explained 77.5% of the deviance.

Residual diagnostic plots showed relatively nordisdributions, although the tails of the GAMs with
better fit to the data did not follow the expectistribution in the tails (Figure A3). This appe#os

be because the strata of aggregated data with Isaveple sizes (fewer hooks set) are more variable
than the strata with more effort, as demonstratgditing a GAM to the relationship between
residual size (x-axis) and effort (y-axis) (Figué).

Spatio-temporal smoothers from model gaml1l showédively smooth catch rate patterns across
space, but it is difficult to interpret individupllots in biological terms given their interactioasd the
fact that the overall effect is the aggregate bfainponents (Figures A5, A6, and A7).

Predictions from model gamll across the spatialailorehowed changing spatial distribution by
month and year (Figure 5).

Table 6: For each three-way smooth term in modelagn 11, the percentage of deviance explained, and
the effect on the AIC of dropping the term from themodel. The model is specified as:
log(cpue + 0.2) ~ yf + te(lon, lat, k = c(40,4)yefmn, lat, k = c(6,4)) + te(lon, mn, k = ¢(10, $)}e(yr, lat, k =

c(20, 4)) + te(yr, mn, k = c(20, 5)) + te(lat, lonp, k = c(4,15, 6)) + te(lat, lon, yr, k = c(4,1))

AlC delta AIC Change in % Deviance explained Smeotiropped

7593.4 0.0

8048.2 454.8 34 te(lat, lon, mn, k =c(4,15, 6))
7859.9 266.5 1.8 te(lat, lon, yr, k = c(4,10, 9))

Table 7: Extreme prediction diagnostic showing thenumber of year-month-latitude-statistical area
stratum predictions that either exceed the maximunobserved values in any stratum per year
(max) or predict less than zero (min). Results areeported for cell filtering methods that
include all cells (full) or only those with at leas 15 records observed (x15). Results are also
reported both for all strata (all) and for only those strata with no observed CPUE in the year of
the prediction (gap). The version of the extreme mdiction diagnostic preferred for inference is

in bold.

Limit  Cellfilter  Strata Models

Simp Base glmm gam gam10 gam1l gam12 gam 13
max full all 34 9 14 4 38 0 19 2
max full gap 30 9 13 4 38 0 18 2
max x15 all 19 4 6 1 11 2 12 5
max x15 gap 15 4 5 0 11 1 11 4
min full all 95 92 90 47 36 40 36 56
min full gap 40 39 38 21 18 17 15 21
min x15 all 88 91 88 44 32 39 33 48
min x15 gap 33 38 36 24 17 19 17 18
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2008, and 2018, in April, June, and August.
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Indices from the three smoothed models were reltisimilar to the factor models for most of the
period, but a little less variable through timegd dacking the anomalously high value for 2018 that
motivated this study (Figure 6).

v ——=— Simplified Base
Base_noYearArea o
aglmm_YearArea
modgam?
—— modgam11
< -~% modgam13
W
-]
o
O
= o
3 f e
r o o iy
O/O/ \o’v
P
T .<>/o
o T
. Fitg, o o
2 Y. 3 P
V,@ @,%; R fo ] 4
TTEEEY b
o 4
T T T T T T T
1985 1990 1995 2000 2005 2010 2015

Year

Figure 6: Mean annual predicted CPUE after x15 filering from the models simplified base,
base_noYearArea, gimm_YearArea, gam9, gaml11, and igd 3.

Progressive changes in the CPUE are shown as tdelrreyms are added (Figure 7). Much of the
change in trend since 2015 is associated withrfgsfdcation, with a large change in the third rdw o
the progressive plot when te(lat, lon) is introdida 2015 there was much more effort in the 385°
latitude band and in the west than in 2018, andsglatial smoother expected this north-western teffor
to have lower catch rates (Figure 8). When thereffmved south the model explained the increase in
catch rates with the spatial effect.

When the year-latitude smoother is introduced (fowof the progressive plot, Figure 7), the
contribution of the year effect increases aftenata®13. This smoother increases the expected CPUE
in the south in 2015, compared with the expectetEER the south in 2010 (Figure 9), which is
consistent with the increasing observed CPUE irstheh (Figure 10).

When the year-month smoother is introduced (row the progressive plot) the contribution of the
year effect after about 2013 increases furthers $hoother reduces the expected CPUE in April and
May compared with June and July, in 2015 relatov®10 (Figure 9). This is consistent with the
increasing difference between April-May and Junlg-during this period (Figure 10).
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Figure 7: Progressive changes in the index as eatdrm of the gam11 model is added, starting with t&
nominal CPUE and the simplest model [log(CPUE + 0)2- yf] in the top two rows. Each row
of the plot includes the model specified in that re (black), the model from the row above
(dashed line), and other models in rows above (grey
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Predictions by latitude and by statistical areaenauch more stable than those from the factor-based
models (Figure 11). High variability associatedhniiparse data was apparent at the northern and
southern latitudes -32.5 and -47.5, and in stetistareas 8, 4+5, and 6+7. Note, however, that

statistical areas with sparse data were given l@mght by the constant squares and variable squares
algorithm and by x15 filtering, which greatly liraid their impact on the resulting indices. These

figures nevertheless illustrate how spatio-tempembothing can stabilise estimates when data are
sparse.
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te(lon, mn, k = ¢(10, 5)) + te(yr, lat, k = ¢(20,)3. (Right) Smoother on yr and mn from the sixth malel in the progressive series: log(cpue + 0.2) ~¥f
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Figure 11: Mean annual predicted CPUE by latitude(above) and statistical area (below) after x15
filtering from the models simplified base, base_no&arArea, gimm_YearArea, gam9, gam11l,
and gam13.
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4, DISCUSSION

This study has shown that the anomalous 2018 rétuift & Takahashi 2019) was likely caused by

sparse data associated with increasing effort carad@n. Generalised additive models with spatio-
temporal smoothers were able to address this prot#eich models may also provide more accurate
indices of abundance by taking into account fadioas cannot be included in the current SBT CPUE
standardisation model.

Effort included in the primary SBT index has beeareasingly concentrated, with a relatively steady
decline since 2006 in cells fished, and an incréase 2010 to 2018 in effort per cell. These change
have been associated with restrictive SBT catchagucubsequent increases in fish abundance, and
associated changes in fishing behaviour. Changéschmology that facilitate fish finding may also
have played a role. Future changes in effort camagon are unpredictable but, if the extent of
concentration remains close to or above currergl$eproblems with prediction behaviour by the
Base model are likely to be repeated.

The reasons for the increasing concentration dfirfgs effort, and its implications, need to be
understood. The increasing concentration is vergkathin both the Japanese and Korean fleets. As
well as causing the analytical problems that mé#iddhis study, it may affect the reliability of GB

as an index of abundance in ways that spatio-temhnoothing does not resolve. If effort is
concentrating because the fleet is getting bettdéinding fish, this would also tend to increase th
average observed catch rate. In this situatiolC®enethod and the GAM with spatial smoothers may
produce a hyperstable CPUE index. It may therdferappropriate to retain an approach that includes
aspects of the VS method.

There may also be concerns about changing stotkbdison due, for example, to the effects of

climate change on oceanic currents and temperat@mgraction and expansion would be easier to
detect if modelling at the 1° cell scale, which Wbbe straightforward with smoothers. Currently

there are only 4 x 5° latitude bands in the modet] changes in distribution must be large to be
detectable. It would also be easier to detect abmiy distribution if data were available from more

vessels, which could be accomplished by includitgiofleets in the analysis, and perhaps including
non-core vessels. Either of these additions ta#iaset would make it more important to consider th

effects of targeting and vessel-specific catchigbili

Spatio-temporal smoothers take advantage of Tabl€t970) ‘First Law of Geography’, that
‘everything is related to everything else, but ndangs are more related than distant things’, a
principle that can also be applied to time. Sp&imporal smoothers implemented in a GAM with
mgcvfitted the catch and effort data better than #itegorical variables used in the Base linear model
or any of the non-smoother alternatives, while gigawer parameters.

Model fits were compared using the AIC which wheediwith CPUE standardisation tends to select
the more highly parameterised model and resultvénfitting. This is not a failing of AIC but due t

the incorrect model assumption that records arepeddent. This is particularly problematic with
CPUE standardisation of operational longline datd tnclude time series of daily sets by the same
vessels. However, it remains a concern with aggeegdata. With aggregated data, these short-term
considerations are less significant, but there siile dependencies within the data that are not
accounted for by the model. These dependenciegdadhctors affecting catchability such as vessel
effects, oceanographic features, and targeting @mbrting behaviour. Factors affecting fish
distribution can also introduce dependence amomgtastand add process uncertainty to the
relationship between CPUE and abundance. Use @fnalive fitting criteria such as the Bayesian
information criterion (BIC) raises the threshold foodel selection but does not address the cause of
the problem. A method commonly used in CPUE statisations is to include only model
components that explain at least 1% of the deviahlat approach was used to check the smoothers
selected in this study for model gam11, and alhsuodel components were included.
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Similarly, lack of independence usually affects tdoafidence intervals estimated for CPUE indices.
Generalised Estimating Equations can help by estignghe dependencies, but these approaches are
not always practical and not often used. To adhestsmooth fitting process for lack of independence
effective sample size was reduced by half by gpttie gamma parameter to 2.

A major advantage of sharing parameters with sgatigporal smoothing is the ability to better
represent the biological features of the populatiime Base model does not include a month by
latitude interaction term, although effort tendsctmsistently move further north later in the seaso
as sea surface temperatures cool during the ausimaér. Adding this interaction term to the
simplified Base model improved the AIC but is likéb worsen prediction problems by increasing the
number of strata. The models with smoothers weke tabinclude these effects and greatly improve
the fit to the data, while at the same time préalictewer extreme values.

The ‘extreme prediction diagnostic’ approach usest is a new approach for assessing the reliability
and utility of model predictions. The upper limst particularly relevant to CPUE modelling of target
species, because more fishing effort can be expéctstrata where catch rates are higher, so strata
that are informed by less information may be exgattd have lower catch rates. Predicted catch rates
that exceed the maximum observed are thereforly likebe unrealistic. Currently, the diagnosti@is
tool for comparing models but there are no establiscriteria for what is acceptable. This is likely
remain subjective and will depend on the dataset species being modelled. Nevertheless,
simulation would be useful to explore the behavigiuthe diagnostic.

Poor prediction beyond the range of the data isbkmown problem that occurs with both factors
and smoothers. Prediction quality was managed thighcriterion of at least 15 records per 5° cell,
and by screening models with the extreme valuendisiic. Prediction behaviour varies among types
of smoother, anangcv provides many alternatives. Interaction-only terns@ducts usindi() were
explored for some terms instead of using full tenm@ducts withte() for every smooth term, but
resulted in many more extreme predictions.

Further work is needed to improve these prelimir@AM models, which can be done with both the
primary dataset and with the dataset available.hsmies to consider include allowing for the
different ocean areas of the spatial cells and @éiamhow different data weighting/filtering mettrsd
affect results. Possible data filtering changesuohe adjusting the required number of records per
stratum from 15, and changing the stratificatiorthia filter to lat-long-month rather than lat-long.
Alternative values of the ‘gamma’ adjustment teeefive sample size should be considered, as should
alternative initial smoothness values (assignedh whie k parameter) in each of the tensor spline
smoothers.

Other and likely more important and influentiallies include: consideration of vessel-specific fighi
power which in many fisheries varies consideralolgl #ends to increase through time; adjusting for
targeting; the use of hurdle or zero-inflated medel deal with zero-catch strata instead of adding
constant; and the effects of quotas on vessel l@mimraand catch rates, particularly within-season.

Given that sparse data are causing problems, imgjuthta from other fleets is likely to be helpiful
it fills in some of the gaps.

The residual distributions were distinctly non-natmperhaps mostly because the dataset was
aggregated and catch rates for strata with lowtefflere more variable than those with more effort.
This is potentially problematic because effortikglly to be higher in strata with higher catch sate
Issues like this are complex, and simulation mathbebest approach for addressing them.

Preliminary analysis and QQ plots suggested thatTiveedie model may give the best fit to the
observed residual distributions. The fit of therlognal ¢pue+ 0.2) model was reasonable for the
Base model but less so for GAMs with spatio-temipameaothers.
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Using spatial smoothers in GAMs withgcvhas successfully addressed problems due to sgatse
GAMs are very efficient for data exploration anglgpng a variety of statistical methods but areyonl
one of the potential approaches available. A recentparison of standardisation methods found that
VAST (Thorson et al. 2015) performed slightly bettean GAM-based approaches (Grigdsal.
2019). VAST also has potential to include multipgegories in a model, and therefore it can model
size and catch rate data jointly (e.g., Maundeal.e020). This approach has potential to avoid the
age slicing currently used to generate the 4+ dgtaich introduces some error.
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Figure Al: Monthly effort per CCSBT statistical area by the Korean longline fleet, from Hoyle et al.

(2019).
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Figure A2: Number of cells fished by Japanese coreessels (above) and Korean vessels (below), copied
from CCSBT-ESC/1909/BGD05 and CCSBT-ESC/1909/39. figer plot for each fleet): The
bars represent the number of major cells (5x5° by wnth) fished by CCSBT statistical area
and year, see left y-axis. The line represents theean annual operations per cell, see right y-
axis. (Lower plot for each fleet): As for upper pla, but with minor cells (1x1° by month)
instead of major cells. The colours represent thetatistical areas and differ between the
Japanese and Korean figures.
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Figure A3: Residual checking plots for the simplifed Base model (above) and the gam11 model (below).
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Figure A4: Relationship between residuals from thenodel gam11 and the effort (hooks) in the stratum,
showing that higher variability (the tails of the residual distribution) is associated with less
effort in a stratum.
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Figure A5: Two-way lon:lat smoother from model gam1.
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Figure A6: Smoothers from model gam11: mn:lat, lormn, yr:lat, and yr:mn.
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Figure A7: Three-way interaction smoothers from mo&l gamll: lat:lon:mn (above) and lat:lon:yr
(below).
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