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要約 

2021 年の ESC26 において、OM および MP に含めるミナミマグロの新たな CPUE 資源量指数

を作成することになった。方法論は CCSBT と契約したコンサルタントが検討したが、日本の延

縄操業データは日本漁業者の知的財産であることから公開はできない。実データへの当てはめ

は、データへのアクセス権を有する日本科学者が担うこととなった。本文書ではその結果と、

様々な頑健性試験を行った結果を示す。新たに GAM の 2 段階のデルタログノーマル法で CPUE

を標準化して、面積重みづけして作成した資源量指数を得た。資源量指数は 2006 年を最低値と

して 2019 年まで多くの年で増加した。2020 年と 2021 年には 2015-2017 年水準に低下した。モデ

ル選択、レトロスペクティブ解析、船の ID、海域範囲の変更、対象年齢の変更、データおよび

モデルの分解能の変更を含む様々な感度分析に対して資源量指数は頑健であった。最近年のデ

ータが追加されると過去の相対値が変化することが見られた。 

 

Summary 

At ESC26 held in 2021, it was decided to develop a new CPUE abundance index of southern bluefin 

tuna to be used in OM and MP. The methodology is examined by a consultant contracted with CCSBT, 

but Japanese fishermen's longline operation data cannot be disclosed because it is the intellectual property 

of Japanese fishermen. The application to actual data will be carried out by Japanese scientists who have 

access to the data. This document summerizes the results of the base case and the results of various 

robustness tests. CPUE was newly standardized by GAM with two-step delta log normal method, and the 

abundance index with area weighting was obtained. The abundance index was the lowest in 2006 and 

increased in most years until 2019. In 2020 and 2021, it fell to 2015-2017 levels. The abundance index 

was robust for a variety of sensitivity analyses, including model selection, retrospective analysis, vessel 

ID, area range changes, age range changes, and data and model resolution changes. It was observed that 

the relative values of the past changed when the data of the recent year was added. 
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1. Introduction 

Stock assessment and stock management through MP of southern bluefin tuna (Thunnus maccoyii) have 

historically been strongly relied on the abundance index obtained from the CPUE (number of fish / 1000 

hooks) of the Japanese commercial longline fishery. In the olden days, stock assessment was carried out 

using the abundance index obtained by the generalized linear model (GLM) developed by Nishida and 

Tsuji (1998). Since 2007, we have been using the core vessel CPUE standardized by GLM in response to 

the shrinking operating area in time and space and the problem of target fish species (ESC12 report, Itoh 

et al. 2008). For the area weighting, we assumed two types of hypotheses, Constant Squares (CS) that the 

distribution time and space of fish does not change over time depending on the stock abundance, and 

Variable Squares (VS) that the distribution changes in time and space, and used intermediate values (W0.8 

and W0.5). The abundance index obtained from the Japanese longline has been used as one of the main 

abundance indices in the two MPs of the Bali procedure used for the TAC calculation from 2012 to 2020 

and the Cape Town Procedure (CTP) used for the TAC calculation from 2021. Thus, the index directly 

affects the calculation of TAC. 

It was recognized that the 2018 value of the CPUE abundance index was anomalously high in ESC24 

held in 2019. The report of ESC26 stated in the paragraph 90 that ”This prompted further investigation, 

which subsequently identified that this estimate was generated due to a prediction bias in the GLM 

standardisation method being used, which generated anomalously high estimates for cells with no effort 

(Report of OMMP 11, paras 11-24 and Report of ESC 25, paras 94-100). The ESC agreed that, even 

though the 2018 estimate was within the bounds of the range for which the MP had been tested and the 

immediate implications for the current TAC recommendation were small, this technical bias needed to be 

addressed through the development of a CPUE standardisation method that more effectively dealt with 

the spatial-temporal variation in the CPUE data.” 

At ESC26 in 2021, it was agreed that a new CPUE abundance index should be prepared by May 2022 

to assess its impact on MP (ESC26 report). A consultant hired by CCSBT will consider the methodology. 

However, since the Japanese fishermen's longline operation data is the intellectual property of Japanese 

fishermen, it cannot be disclosed. The application to actual data will be carried out by Japanese scientists 

who have access to the data. This document summarises the results of the base case run and the results of 

various robustness tests. 

 

2. Materials and Methods 

2-1. Dataset used 

The dataset was made from logbook data by Japanese longline fishery, which includes the period from 

1969 to the latest year (currently 2021). Following the conventional CPUE abundance index, records in 

CCSBT statistical area between 4 and 9 and from April to September were selected. From the logbook 

data, year, month, latitude (in 1 degree), longitude (in 1 degree), vessel ID (available from 1979), number 

of hooks used, number of fish caught of southern bluefin tuna (SBT), bigeye tuna (T. obesus, BET), 

yellowfin tuna (T. albacares, YFT), albacore (T. alalunga, ALB) and swordfish (Xiphias gladius, SWO) 

were used. At the stage of trial and error, the number of hooks between floats (HBF; available since 1975) 

and other fish species (several species of marlines, and butterfly kingfish (Gasterochisma melampus; 

available since 1994)) was also included. 

From the size data of the CCSBT database, the age composition of Japanese commercial catch was 

calculated and converted into the number of fish caught over 4 years old (age-4 plus). The age 

composition was first applied to the fork length composition of 50 or more individuals measured at the 

same month, 5 degrees longitude, and 5 degrees latitude. At this stage, 97% of the number of SBT caught 
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was applicable, and the ratio of age-4 plus was calculated. If the conditions for 50 or more individuals 

are not met the time and space were gradually expanded to correspond to fork length composition , such 

as the same month - longitude 15 degrees - latitude 5 degrees, the same moon - longitude 15 degrees - 

latitude 15 degrees, the same quarter - longitude 15 degrees - latitude 5 degrees, the same quarter - 

statistical area, and the same year - statistical area, and the same year. The fork length was converted to 

age by the age-length relationship used CCSBT. Sensitivity analysis was conducted for age-5 plus and all 

ages. 

The following records have been deleted: hooks 500 or less, hooks 4500 or more, CPUE 200 or higher. 

As a result of the examination, with the agreement in the CPUE working group discussion, the record of 

50S (50S to 54S), which had a small number of data, was also deleted. 

 

2-2. Cluster analysis 

A cluster analysis was performed to consider the target species of fishing operation. The 

clust_PCA_run function of the R package cpue.rfmo was used. Cluster analysis was performed using the 

number of fish caught of five species, SBT, BET, YFT, ALB and SWO as data. 

 

2-3. Standardization by GAM 

Standardization by the generalized additive model (GAM) was carried out by delta log normal. The 

mgcv package of R was used. The bum function, which is suitable for large volumes of data, is used. 

Based on the results of the study by consultant, a binomial submodel (hereinafter referred to as BSM) and 

a positive catch submodel (hereinafter referred to as PCSM) are used, and gamma = 2, binomial 

distribution and gauss distribution are used respectively (Hoyle 2022). For the smoother, s (spline) was 

used for the offset term (hook logarithmic value), and ti (tenor product suitable when there was an 

interaction with the main effect) was used for the others. cs (cubic regression spline with shrinkage) was 

used for the basis function (bs) of ti. Gamma is a coefficient multiplied by EDF (described later) and 

promotes smoothing with 1> (= 1.5 is common). 

 

Binomial submodel 

cpue > 0 ~ yf +ti(month) + ti(lon) + ti(lat) +  

ti(lon,  lat) + ti(month, lat) + ti(lon, month) + ti(year, lat) + ti(year, lon) + ti(year, month) +  

cl + s(log(hook)) 

 

Positive catch submodel 

log(cpue) ~ yf +ti(month) + ti(lon) + ti(lat) +  

ti(lon,  lat) + ti(month, lat) + ti(lon, month) + ti(year, lat) + ti(year, lon) + ti(year, month) +  

ti(lat, month, year) + ti(lat,  lon, month) + ti(lat, lon, year) +  ti(year, lon, month) +  

cl + s(log(hook)) 

 

where, 

yf: year. In factor. 

year: year. In number 

month: month. In number 
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lat: Latitude in 5 degree. In number. Represented by the middle (e.g. -47.5 from 45.0S to 49.9S) 

lon: Longitude in 5 degrees. In number. Represented by the middle (e.g. 32.5 for 30.0E to 34.9E). 

Convert to 360 degree while >240 was converted by -360 so that lon ranged from -22.5 to 187.5 

continuously. 

cl: Cluster. In factor. 1, 2, 3, and 4. 

hook: Number of hooks used. In number. 

 

R code actually used is as follows. 

Binomial submodel 

modA2 <- cpue > 0 ~ yf + 

ti(month, k=kA.month11,bs="cs")+  

 ti(lon,    k=kA.lon11,bs="cs")+   

 ti(lat,    k=kA.lat11,bs="cs")+   

 ti(lon,  lat,    k=c(kA.lon21,  kA.lat21), bs="cs")+  

 ti(month, lat,    k=c(kA.month22,kA.lat22), bs="cs")+  

 ti(lon, month,  k=c(kA.lon23,  kA.month23), bs="cs")+  

 ti(year, lat,    k=c(kA.year24, kA.lat24), bs="cs")+  

 ti(year, lon,    k=c(kA.year25, kA.lon25), bs="cs")+  

 ti(year, month,  k=c(kA.year26, kA.month26), bs="cs")+  

 cl+ 

 s(log(hook)) 

mgcv::bam(modA2, data =data, gamma = 2, method = 'fREML', family = binomial, discrete=F) 

 

Positive catch submodel 

modB3 <- log(cpue) ~ yf +      

 ti(month,  k=kB.month11,bs="cs")+   

 ti(lon,     k=kB.lon11,bs="cs")+   

 ti(lat,     k=kB.lat11,bs="cs")+   

 ti(lon,  lat,     k=c(kB.lon21,  kB.lat21), bs="cs")+  

 ti(month,lat,     k=c(kB.month22,kB.lat22), bs="cs")+  

 ti(lon,  month,   k=c(kB.lon23,  kB.month23), bs="cs")+  

 ti(year, lat,     k=c(kB.year24, kB.lat24), bs="cs")+  

 ti(year, lon,     k=c(kB.year25, kB.lon25), bs="cs")+  

 ti(year, month,   k=c(kB.year26, kB.month26), bs="cs")+  

 ti(lat,  month,year,  k=c(kB.lat31, kB.month31, kB.year31), bs="cs")+    

 ti(lat,  lon, month,  k=c(kB.lat32, kB.lon32, kB.month32), bs="cs")+      

 ti(lat,  lon, year,   k=c(kB.lat33, kB.lon33, kB.year33), bs="cs")+        

 ti(year, lon, month,  k=c(kB.year34, kB.lon34, kB.month34), bs="cs")+    

 cl+      
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 s(log(hook)) 

mgcv::bam(modB3, data = data.positive, gamma = 2, method ="fREML", discrete=F) 

 

The larger the k value (basis dimension for smooths) of the interaction, the better, but the longer the 

calculation time (Wood, help of choose.k in mgcv). The effective degree of freedom for a model term 

(EDF) value is calculated by the k.check function in mgcv package, and when EDF is close to k' (the 

maximum possible EDF for the term), “and” the p-value of k-index is < 0.05, a larger k value was set. 

The k values were obtained by trial and error. Since the k value of the interaction is treated as the value 

of 2 multiplications (3 multiplications for 3 interactions), it is not necessary to set them separately. It was 

set separately, however, for the purpose of organizing the work, and the k value of each variable in the 

interaction was set to the same value (i.e. k for year = 20 is used for all interaction terms which include 

year). 

For the diagnosis of the GAM result, the fit was confirmed by the plot diagram (QQ plot, residual 

distribution) by the gam.check function of the mgcv package. AIC is calculated. The distribution of the 

residuals for each variable was examined. It was examined whether the predicted values were consistent 

with our knowledge of distribution of SBT and plausible trend of SBT stock abundance. We made a 

comprehensive judgment by looking at these information as well as AIC. 

Calculation is performed by desktop PC (CPU = Intel (R) Core (TM) i9-10900T CPU @ 1.90GHz and 

1.90 GHz, RAM = 64.0GB, 64 bit, Windows 10 Pro) and laptop PC (CPU = Intel (R) Core) (TM) i7-

7500U CPU @ 2.70GHz and 2.90 GHz, RAM = 16.0 GB 64 bit, Windows 10 Pro). However, the making 

the dataset was limited to the desktop because it could not be made because the memory was over on the 

laptop PC. R (R4.0.5) was used to make the dataset. Microsoft R Open 4.0.2 was used to calculate GAM. 

 

2-4. Calculation of abundance index 

After creating data with all combinations of year / month / latitude / longitude (using R's expand.grid 

function), we made a dummy data set limited to the month / latitude / longitude where the fishing was 

operated in the past. The predict value was calculated for each submodel for the dummy data set, and the 

product was calculated. Since the expected value is biased when the logarithmic normal distribution is 

restored, the predicted value is corrected by adding mean squared error (MSE) / 2 in the case of the 

positive catch submodel. 

Furthermore, the area weighting coefficient was calculated in consideration of the fact that the distance 

of 1 degree of longitude differs depending on the latitude and the number of 1 degree squares that SBT 

have been caught in the past within the 5 degree x 5 degree squares. 

The abundance index can be calculated by the following formula. 

Σ(predicted value of binomial submodel of dummy data set × predicted value of positive catch  

submodel of dummy data set * Area weighting coefficient) / Overall average value . 

 

2-5. Sensitivity analysis 

Various sensitivity analyses were performed along the way in selecting the dataset and method. The 

following sensitivity analysis was performed at the final stage. 

Model selection: In some cases, estimation did not converge, and in some cases, even if the AIC was 

low, the abundance index behaved significantly differently from the others, so a simple selection by AIC 

seemed inappropriate. For the binomial submodel, we tried the case where all the interactions were 

removed from the base case, the case where the two-way interaction was removed one by one, and the case 
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where the three-way interaction was added one by one. For the positive catch submodel, we tried the case 

where all the interactions were removed from the base case, the case where the two-way interaction was 

removed one by one, and the case where the three-way interaction was removed one by one. 

Retrospective analysis: Excludes data from the last year up to the past 10 years. It is also carried out in 

a part of the sensitivity analysis (i.e. latitude-longitude resolution in the model, core vessel). 

Selection of k: Effect when k is increased by one step. 

Effect including vessel ID: The effect of including vessel ID in each of BSM and PCSM. 

Effect excluding 30S: We saw the effect excluding 30S from the dataset.  

Effect of changing age: Basically, age-4 plus used, but limited to age-5 plus, or all ages were tried. 

Data resolution: We used shot-by-shot data, aggregated data by month, 1 degree latitude and 1 degree 

longitude, and aggregated data by month, 5 degrees latitude and 5 degrees longitude. 

Latitude-longitude resolution in the model: The latitude and longitude in the model is based on the 5-

degree. We tried the effect when this was made into one degree resolution. 

2 clusters: 4 clusters were the basis, but I tried clusters in 2 groups. 

Core vessel: From the dataset prepared for this analysis (note that it differs from the tradi tional GLM 

dataset), we tried to select core vessels and create CPUE index. A core vessel is defined as a vessel that 

has been included in the top xx rank in terms of SBT catch in number of a year for yy years. 

 

3. Results 

3-1. Dataset used 

Data from 1969 to 2021 amounted to 794,481 records. Of these, 702,481 records included catch of SBT 

age-4 plus, accounting for 88% of the total. A fairly high positive catch rate is characteristic of this dataset. 

By year, the positive catch rate dropped to about 60% in the mid-1990s and around 2010, but otherwise 

remained above 80% and has been increasing for the last five years (Fig. 1). The CPUE of the positive 

catch dataset is high in the 1970s, low in the 1980s to 2000s, and high after 2010.  

Similar figures are shown for other variables (month, longitude, latitude, latitude and longitude maps) 

(Fig. 2 and Fog. 3). There is no strong tendency for the month and longitude. For latitude, positive rate 

and CPUE in the positive catch data was low at 30S, high up to 35S (CPUE) or 40S (positive rate), and 

45S was similar. 30S exists only in the Pacific Ocean (Area 4 and Area 5). 

 

3-2. Cluster analysis 

The cluster analysis was divided into four groups. Relevant figures are shown in Fig. 4 to Fig. 8. Since 

the eigenvalues are greatly reduced to 2 groups and the decrease to 4 groups is not so large, it may be 

appropriate to divide them into 2 groups. However, in the analysis of the data up to 2020, there was a 

problem that the BSM of GAM did not converge when divided into two groups (the data up to 2021 

converged in a short time). Therefore, we decided to analyze in 4 groups. In addition, the case of 2 groups 

was carried out by sensitivity analysis. 

The fish species included five species: SBT, BET, YFT, ALB and SWO. At the stage of trial and error, 

we also tried 3 species (SBT, BET and YFT) and obtained the similar results as 5 species. But 3 species 

are few and cover all species that can be the main target of operation, it was decided by the CPUEWG to 

have 5 species. We also tried to include several species of marlines and butterfly kingfish, but because 

the catch record was limited in recent years, the number of fish caught was smaller than the 5 species, 

which was not considered to be the main target, there was no substantial difference from the 5 species 

case, 5 species were selected. 
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The latitudes of the four clusters differed (Fig. 7). There were no noticeable trends in year, month, 

longitude, number of hooks used, or hooks between floats(HBF). It is probable that HBF had a narrow 

range in the dataset and did not make a difference because it contained few data of deep longline targeting 

on BET. Such an effect may have been seen in the waters north of the Area 4-9. The main catch in the 

first cluster which locate southernmost was SBT. SBT and ALB were caught in the second cluster. The 

third cluster was a mixture of SBT, ALB and BET and the fourth cluster was a mixture of five species. 

 

3-3. Standardization by GAM 

For the binomial submodel, a model including all main effects and two-way interaction terms was 

selected mainly from AIC. There was a problem that the run did not converge when the three-way 

interaction term was included. For the positive catch submodel, a model including the main effect and all 

the two-way and three- way interaction terms was selected mainly from AIC. 

The k value was examined independently for each submodel. As a result of trial and error, the settings 

were set as shown in Table 1. Table 2 shows relevant statistics including the EDF value for k and the p 

value for k-index. There are cases where EDF is close to k' (e.g. positive catch submodel ti (lat)), but since 

the p value is well above 5% in that case, k is large enough and there is no problem. 

The diagnosis results are shown in Table 3, Fig. 9, and Fig. 10. The binomial submodel explained 73.2% 

deviance, and the positive catch submodel explained 49.1%. For BSM, the QQ plot is generally good, 

although some parts do not fit at both ends. The residual histogram has a single peak and is skewed to near 

0 residual. For PCSM, the QQ plot is generally good, and the residual has a single peak. In the expected 

and residual plots, the data up to 2020 showed a small bias at the left end, which was in the north area of 

of NZ, but now with the addition of 2021 data, the bias has been reduced. In the plot of the fit value and 

the response variable, there is a roughly upward-sloping relationship. Both are judged to be not bad fit. 

The residuals were further examined. Plots were made for year, month, latitude, and longitude (Figs. 11 

and 12). Note that these figures are not from gamVis, which uses simulation. There was too much data and 

gamVis caused a memory over and couldn't get any results. These are simply box plots of residuals. For 

BSM, the median residuals were positively biased in 2004-2007 in the year. There was a slight positive 

bias for month. At latitude, the negative bias was large at 30S, a slight positive bias was seen at 35S, and 

the bias was small at 40S and 45S. At the western end of the longitude, there was a large negative bias.  

For PCSM, the bias was small by year and month. At latitude, the range was large at 30S. The bias of 

the longitude was small, but a negative bias was seen only at the western end.  When made into a map, the 

area with zero residuals was greatly expanded in both submodels (Fig. 13).  In some places, large residuals 

may occur in the surrounding waters. It has been confirmed that the data in the area where these large 

residuals are seen has almost no effect on the abundance index (examined by the CPUEWG in October 

2021). 

Box plots of predicted values for variables (year, month, latitude, longitude, latitude x longitude) are 

shown (Fig. 14, Fig. 15, Fig. 16, Fig. 17 and Fig. 18). No inconsistency was found in comparison with the 

current knowledge of the distribution of SBT and changes in the abundance. The high predicted values in 

the southeastern waters of Australia (35S, 140E) are interesting (Fig. 18). Currently, there is no fishing 

operation in this area, but it was confirmed in the data that the fishing was operated in this area in the 1970s 

and 1980s. 

 

3-4. Calculation of abundance index 

The predicted value of the dummy data set was weighted by the area factor and normalized by the 

average value to obtain the abundance index. To see the effect of area weighting, we compared it with a 
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simple unweighted average (Fig. 19). As a result, it was found that they are similar to each other and the 

influence of weighting is small. Since this method includes the interaction of years in the model, it is no 

longer necessary to obtain the conventional Constant / Variable square hypothesis and its intermediate 

index (see Hoyle (2022) for details). 

Figure 20 shows the obtained abundance index. The values are shown in Table 4. It increased in many 

years from 2006 to 2019. In 2020 and 2021, it fell to 2015-2017 levels. 

 

3-5. Sensitivity analysis 

Model selection 

For BSM, a model (modA2) containing all two-way interactions was selected as the base case. Its AIC 

was lower than the model with some terms removed from modA2 (Table 5). On the contrary, in the model 

(e.g. modA2.p11) to which one three-way interaction term was added, the AIC was low, but there was a 

problem that it did not converge. The effect on the abundance index was small in both models (Fig. 21 

and Fig. 22). Therefore, it is considered appropriate to use modA2 as the base case.  

For PCSM, a model (modB3) containing all the two-way and three-way interaction terms was selected 

as the base case. Its AIC was lower than that of modB3 without certain terms (Table 6). The difference 

between the models in the abundance index is small (Fig. 23 and Fig. 24). However, a relatively large 

difference was seen in modB3.no9 excluding ti(year, lon). Also, the difference in the final year (2021) 

seemed to be larger than in other years. 

 

Retrospective analysis 

Figure 25 shows the results of retrospective analysis of the base case model. Figure 26 shows the results 

for each submodel. Looking at the figure, it was overestimated in four years (2011, 2016, 2019, 2020) 

compared to the results in the dataset up to 2021. On the contrary, it was underestimated in two years (2012 

and 2013). It was not change in four years (2014, 2015 yen, 2017, 2018). The impact before 2010 was 

small. There was no tendency to be over / under biased, suggesting that it is robust against data updates.  

There was a concern that it was an overestimation in 2020, so we examined it further. First, for the data 

up to 2020, we compared the results of the data made in 2021 and that in 2022. That is, verification of the 

additional effect of data for 2020. As a result, no difference was seen between the two, and it was found 

that the difference caused was due to the addition of the 2021 data (Fig. 27). Next, we tried to identify the 

time and space of 2021 that had the effect of lowering the 2020 index value. As a result of arbitral trial and 

error, it was found that the 2020 index value increases when the CPUE in Area 8 in July and August 2021 

is artificially lowered as an attempt. This time and space may not be the only influence, but it seems to be 

the main factor. By referring to the data of later years, it can be seen that the abundance index of the 

previous year is affected. 

 

Selection of k 

For BSM, we saw the effect of adding +1 to k of the month, +5 to k of the year, and +5 to k of the 

longitude. The latitude has already reached the maximum value (k = 4). For BSM, we saw the effect of 

increasing the year k by +5 and the longitude k by +5. The month and latitude are already at their 

maximum. 

As a result, there was very little effect on BSM (Fig. 28 and Fig. 29). It is suggested that k was large 

enough. For PCSM, there was a noticeable change when k.year34 (ti (year, lon, month)) or k.year33 (ti 

(lat, lon, year)) was changed from 20 to 25 (Fig. 30, Fig. 31). There were no noticeable changes in these 
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data sets up to 2020. The fit may have changed as the number of years increased by 2021. It may be better 

to consider increasing the k-values associated with year in future. 

 

Effect of including vessel ID 

The vessel ID was included in the logbook data after 1979. The analysis was limited to the data in the 

years after that and records that the vessel ID was not missing. We tried both cases where the vessel ID 

was included as a fixed effect and where it was included as a random effect. Both cases took a long time 

to calculate. Whereas the base case took 30 minutes, the random term took more than 120 minutes, and 

the fixed effect took more than 155 minutes. 

The results are shown in Fig. 32. The trajectories of the three abundance index were similar to each other, 

which suggests the effect including the vessel ID was small. However,  the behavior of recent year differs 

depending on the model. Due to the long run time, it was not possible to conduct a more detailed 

examination by trial and error. 

 

Effect of excluding 30S 

In the dataset used, 30S existed only in the Pacific Ocean. 30S was excluded from the data set for the 

base case. The cluster analysis has not been redone. The abundance index is shown in Fig. 33. The 

abundance index is slightly lower in 2012-2014 and slightly higher in 2018-2021, but the difference is 

small. 

 

Effect of changing age range 

The results are shown for the base case of age-4 plus, limited to age-5 plus (Fig. 34), and for all ages 

(Fig. 35). At the age-5 plus, the values for 2019-2021 were slightly higher, but no major changes have 

occurred. For all ages, the values for 1993-1994 and 2007-2008 were high, and the values for 2010-2011 

and 2015-2017 were low, but the overall trajectory was similar. 

This sensitivity analysis is related to release and discard. When fish is released and discarded from 

longline vessels, it is often a small fish, age-3 or age-4. The proportion of released fish will depend not 

only on the vessel’s IQ utilization strategy but also on the cohort strength. If the proportion of released fish 

changes in a certain year in the future, the effect can be examined by calculating the abundance index for 

those ages other than 4 and comparing it with the abundance index for those age-4 plus. 

 

Resolution of data 

The base case was obtained from shot-by-shot data. On the other hand, Fig. 36 shows the comparison 

result with the aggregated data by month in 5 degrees x 5 degrees, and Fig. 37 shows the comparison 

result with the aggregated data by month in 1 degree x 1 degree. The abundance index in the 5-degree 

aggregated data behaved differently from that in the shot-by-shot data after 2014. This is probably due to 

differences in the amount of data and effort. In this analysis, CPUE is taken as a re sponse variable, and 

the number of hooks used is included as an offset term by taking a logarithm. For this reason, in the 5-

degree aggregate data, even if there are multiple operations, they are treated as one record, and the effect 

of the number of operations (number of hooks) is treated only in logarithmic. Shot-by-shot data influences 

the results according to the number of operations. That is, aggregated data underestimates the variance in 

CPUE fluctuations. The abundance index of 1-degree aggregated data was an intermediate property 

between shot-by-shot and 5-degree aggregated data. 
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The residuals were plotted against four variables (year, month, latitude, longitude) (Fig. 38). A 

significant improvement was seen in the homoscedasticity of the residuals by using shot-by-shot at latitude. 

From these facts, the resolution of the data has a strong influence on the result, and it is considered 

appropriate to use shot-by-shot data. 

 

Resolution in the model in latitude and longitude 

The latitude and longitude in the model uses a 5-degree resolution, but we tried the effect of using this 

as a 1-degree resolution. The runtime has then doubled. The abundance index was higher in the 1-degree 

model in 2018-2021 (Fig. 39). When retrospective analysis was performed, the 1-degree model was less 

robust due to the bias of one-sided underestimation since 2014 (Fig. 40). By submodel, the bias of 

underestimation was remarkable in BSM (Fig. 41). 

 

2 clusters 

The base case used clusters in four groups, but clusters in two groups were tried. SBT was abundant in 

the first cluster, and five species were mixed in the second cluster. The first cluster was located to the south 

(Fig. 42, Fig. 43, Fig. 44, Fig. 45). The abundance index showed similar trajector ies for the two clusters, 

although the fluctuations were larger (Fig. 46). The four clusters are considered more robust and suitable, 

as the dataset up to 2020 caused the problem of GAM convergence and there was no significant change in 

the abundance index. 

 

Core vessel 

The core vessel is that included in the top xx vessels in terms of SBT catch in number of a certain year 

and has been included for yy years. The conventional core vessel CPUE is selected with xx = 56 and yy 

= 3. The core vessel data set was obtained by setting xx and yy in various ways (Table 7). Data is limited 

to 1979 and later with vessel ID. The number of vessels selected has decreased from 3% to 17%. The 

abundance index is shown in Fig. 47. The behavior that deviated greatly was shown in the case of data in 

which the number of vessels was greatly compressed to <7%. The index value for 2021 was rising on the 

core vessel. 

Retrospective analysis was performed for the cases of core vessel data xx = 56 and yy = 3 (Fig. 48, Fig. 

49). It was roughly robust, but underestimated in 2018-2019 and overestimated in 2020, less robust than 

the all-vessel dataset. Since the data is limited after 1979 because the vessel ID is required, and the 

robustness is inferior, it is considered that the significance of using the core vessel is small. 

 

3-6. Comparison of abundance indices 

We compared the newly created abundance index (GAM_new) with the core vessel index by the 

conventional GLM and the one obtained by GAM used for the 2020 stock assessment (GAM11) (Fig. 50). 

The overall trends were similar to each other. Compared to the other two series, the new GAM series had 

lower values from 1970 to 1990. Also, the value in 1993-1994 was high, and it was high in 2019. 

It should be noted that the high value of 2018 in the core vessel by GLM, which was a problem in the 

2020 assessment, is no longer seen due to the subsequent addition of data (Fig. 51).  

 

4. Discussion 

We were able to create a robust abundance index using GAM. Robustness was also shown in various  

sensitivity analyses. In the future, when the number of years increases, it may be better to increase the 
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value of k related to the year. 

It is a concern that the 2020 index value declined when the 2021 data was added. It is uncomfortable 

to increase or decrease the abundance index in the years after setting TAC by MP (such cases have not 

been considered in MP testing), and stakeholders may question it. But standardization should be 

recognized as such. As with GLM 2018, as with GAM series 2020, later data additions will have an 

impact. Although the robustness was verified by retrospective analysis as much as possible, it was 

suggested that the behavior in actual data may exceed that. These uncertainties, for which the CTP seems 

to have already taken into account quite a bit, will be verified through OMMP meetings and ESC. 
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Fig. 1.  Nominal value of positive catch rate and CPUE by year. 
Upper panel is the positive rate which is the total number of positive catch operations / the total number of all 

records.  Middle panels is boxplot based on the positive catch rate by year, month, 5 degree latitude and 5 degree 

longitude. Lower panel is CPUE in positive catch records. 

 

 

 

Fig. 2.  Nominal value of positive catch rate and CPUE by month, longitude and latitude. 
 Upper panel is the positive rate which is the total number of positive catch operations / the total number of all 

records.  Middle panels is boxplot based on the positive catch rate by year, month, 5 degree latitude and 5 degree 

longitude. Lower panel is CPUE in positive catch records. 
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Fig. 3.  Nominal value of positive catch rate and CPUE in map. 
Left panel is the positive rate. Right panel is CPUE in positive catch records. Red is the higher value, followed 

by green, blue and white in the positive catch rate panel. 

 

 

 

 

 
Fig. 4.  Eigen values for the number of components in cluster analysis. 
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Fig. 5.  Dendrogram of the cluster analysis. 
 

 

 
Fig. 6.  Occurrence by species in each group in cluster analysis. 

ALB is albacore, BET is bigeye tuna, YFT is yellowfin tuna, SWO is swordfish and SBT is southern bluefin 

tuna. 
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Fig. 7.  Occurrence by variables of each group in the cluster analysis. 
 

 

 
Fig. 8.  Occurrence on map by group in the cluster analysis. 
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Fig. 9.  Diagnostic plots for the binomial sub-model. 
 

 
Fig. 10.  Diagnostic plots for the positive catch sub-model. 
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Fig. 11.  Residuals by variable in the binomial sub-model. 
 

 

 
Fig. 12.  Residuals by variable in the positive catch sub-model. 
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Fig. 13.  Residual on maps for both sub-models. 
 

 

 
Fig. 14. Predicted value by year. 

Upper panel is the positive rate obtained from the binomial sub-model. Middle panels is CPUE obtained from the 

positive catch sub-model. Lower panel is product of the two. 
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Fig. 15. Predicted value by month. 

See Fig. 14. 

 

 

 
Fig. 16. Predicted value by longitude. 

See Fig. 14. 
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Fig. 17. Predicted value by latitude. 

See Fig. 14. 

 

 
Fig. 18. Predicted value on map. 

See Fig. 14. 
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Fig. 19. Comparison of area weighted abundance indices. 

Red (M5) is area weighted abundance index which taking into account that the longitude length change over 

latitude and the number of 1x1 degree squares ever fished in a 5x5 degrees square. Black is the abundance index 

which weighting was not considered. 

 

 

 
Fig. 20. Abundance index for the base case. 
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Fig. 21. Sensitivity analysis of model selection in the binomial sub-model for all runs. 
 

 
Fig. 22. Sensitivity analysis of model selection in the binomial sub-model for each run. 
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Fig. 23. Sensitivity analysis of model selection in the positive catch sub-model for all runs. 
 

 
Fig. 24. Sensitivity analysis of model selection in the positive catch sub-model for each run. 
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Fig. 25. Retrospective analysis for the base case model. 
 

 
Fig. 26. Retrospective analysis for the base case model by sub-model. 

Upper panel is by binomial submodel and lower panels is by positive catch submodel. 
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Fig. 27. Two indices from datasets up to 2020 by the datasets made in 2021 (black) and 2022 (red). 
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Fig. 28. Sensitivity analysis of k-value in the binomial sub-model for all runs. 
 

 
Fig. 29. Sensitivity analysis of k-value in the binomial sub-model for each of run. 
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Fig. 30. Sensitivity analysis of k-value in the positive catch sub-model for all runs. 
 

 
Fig. 31. Sensitivity analysis of k-value in the positive catch sub-model for each of run. 
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Fig. 32. Sensitivity analysis for the effect of vessel ID. 
 

 
Fig. 33. Sensitivity analysis for the effect of eliminating 30S from the data. 

Red is the base case, and green is the sensitivity run (eliminate 30S). 
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Fig. 34. Sensitivity analysis for the effect of age-5 plus instead of age-4 plus. 

Red is the base case, and green is the sensitivity run (age-5 plus). 

 

 

 
Fig. 35. Sensitivity analysis for the effect of of all ages instead of age-4 plus. 

Red is the base case, and green is the sensitivity run (all ages). 
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Fig. 36. Sensitivity analysis for the effect of data resolution in 5 degree. 

Red is the base case, and green is the sensitivity run (aggregated by month and 5 degree latitude and 5 degree 

longitude). 

 

 

 
Fig. 37. Sensitivity analysis for the effect of data resolution in 1 degree. 

Red is the base case, and green is the sensitivity run (aggregated by month and 1 degree latitude and 1 degree 

longitude). 
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Fig. 38. Sensitivity analysis for the effect of data aggregation by residuals. 

Left is 5 degree, middle is 1 degree and right is shot-by-shot data. 

 

 
Fig. 39. Sensitivity analysis for the effect of resolution in model. 

Red is the base case, where 5 degree for latitude and longitude, and  green is the sensitivity run (1 degree in the 

model). 
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Fig. 40. Retrospective analysis in the sensitivity analysis of 1 degree model. 
 

 

 
Fig. 41. Retrospective analysis in the sensitivity analysis of 1 degree model by sub-model. 

Upper panel is by binomial submodel and lower panels is by positive catch submodel. 
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Fig. 42. Dendrogram in the cluster analysis of sensitivity analysis for the effect of 2 clusters. 
 

 

 
Fig. 43.  Occurrence by species in the group in the 2 cluster analysis as a sensitivity analysis. 
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Fig. 44. Occurrence by variables in the group in the 2 cluster analysis as a sensitivity analysis. 
 

 

 
Fig. 45. Occurrence on map in the group in the 2 cluster analysis as a sensitivity analysis. 
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Fig. 46. Sensitivity analysis for the effect of 2 clusters instead of 4 clusters in the abundance index. 

Red is the base case, and green is the sensitivity run (2 clusters). 

 

 

 
Fig. 47. Sensitivity analysis of core vessels selection. 

Black and red lines with dots are the index from all vessels since 1969 and 1979, respectively. Black line is 

adjusted to the mean between 1979 and 2021. Indices from different core vessels data are shown in different 

colors. 
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Fig. 48. Retrospective analysis in the sensitivity analysis of the core vessel. 
 

 

 
Fig. 49. Retrospective analysis in the sensitivity analysis of the core vessel by sub-model. 

Upper panel is by binomial submodel and lower panels is by positive catch submodel. 
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Fig. 50. Comparison of three abundance indices.   

GLM_CoreVessel is the index by core vessel data with GLM base model in W0.8. GAM11 is the GAM model 

W0.8 used for the stock assessment in 2020. 

 

 

 
Fig. 51. Core vessel CPUE in W0.8 at ESC25 held in 2020. 
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Table 1. The k values selected for each of sub-model. 

 
 

 
  

Submodel BSM PCSM

k.month11 5 6

k.lon11 20 20

k.lat11 4 4

k.year24 10 20

k.year25 10 20

k.year26 10 20

k.month22 5 6

k.month23 5 6

k.month26 5 6

k.lon21 10 20

k.lon23 10 20

k.lon25 10 20

k.lat21 4 4

k.lat22 4 4

k.lat24 4 4

k.year31 20

k.year33 20

k.year34 20

k.month31 6

k.month32 6

k.month34 6

k.lon32 20

k.lon33 20

k.lon34 20

k.lat31 4

k.lat32 4

k.lat33 4
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Table 2. Statistics of choosing k values in the two sub-models of GAM. 

 
 

 

 

 
Table 3. Diagnostic statistics of GAM. 

 
 

 

 

 

 

 

BSM

Term k' edf k-index p-value

ti(month) 4 3.80 0.9984 0.55

ti(lon.cnt) 19 18.67 0.9965 0.54

ti(lat) 3 2.30 0.9943 0.40

ti(lon.cnt,lat) 27 18.34 0.9409 0.02

ti(month,lat) 12 9.16 1.0036 0.63

ti(lon.cnt,month) 36 31.83 0.9961 0.55

ti(year,lat) 27 22.38 1.0055 0.68

ti(year,lon.cnt) 81 73.07 0.9307 0.00

ti(year,month) 36 34.35 0.9746 0.22

s(log(hook)) 9 8.25 0.9860 0.23

PCSM

Term k' edf k-index p-value

ti(month) 5 4.67 1.0091 0.74

ti(lon.cnt) 19 17.65 0.9975 0.41

ti(lat) 3 2.96 0.9927 0.33

ti(lon.cnt,lat) 43 35.38 0.9973 0.41

ti(month,lat) 14 11.76 1.0021 0.56

ti(lon.cnt,month) 94 72.70 1.0075 0.70

ti(year,lat) 57 47.19 1.0036 0.60

ti(year,lon.cnt) 334 246.15 0.9742 0.03

ti(year,month) 95 80.61 1.0112 0.79

ti(lat,month,year) 151 113.13 0.9802 0.12

ti(lat,lon.cnt,month) 83 60.51 1.0092 0.63

ti(lat,lon.cnt,year) 295 238.55 0.9490 0.00

ti(year,lon.cnt,month) 782 580.12 0.9495 0.00

s(log(hook)) 9 7.57 1.0217 0.92

Sub-model BSM PCSM

n.data 794,481 702,481

dev.expl 73.23% 49.13%

AIC 153,078 1,491,407

residual.df 794,203 700,906

REMLscore 1,705,734 375,849
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Table 4. Abundance index as the base case. 
 

 
 

 

  

Year Index Year Index

1969 2.42910 2001 0.55715

1970 1.99828 2002 0.63665

1971 1.88008 2003 0.59650

1972 1.86216 2004 0.45361

1973 1.30350 2005 0.49771

1974 1.58577 2006 0.38058

1975 1.13166 2007 0.42048

1976 1.43957 2008 0.54826

1977 1.34506 2009 0.77517

1978 0.98698 2010 1.14512

1979 1.02370 2011 1.07434

1980 1.07063 2012 1.06752

1981 0.99663 2013 1.24914

1982 0.85022 2014 1.29931

1983 0.90602 2015 1.62459

1984 0.76263 2016 1.39826

1985 0.57080 2017 1.55107

1986 0.45156 2018 1.82492

1987 0.46857 2019 2.11360

1988 0.45037 2020 1.52267

1989 0.41795 2021 1.48767

1990 0.45992

1991 0.48896

1992 0.60896

1993 0.89510

1994 0.91043

1995 0.71296

1996 0.56431

1997 0.60376

1998 0.52519

1999 0.52944

2000 0.54541
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Table 5.  Results of sensitivity analysis for model selection in the binomial sub-model. 
 

 
 

 

 
Table 6. Results of sensitivity analysis for model selection in the positive catch sub-model. 

 

 
 

 

name
term

dev.expl AIC residual.df REMLscore dAIC

modA2 Main and 2 way interactions 73.23% 153,078 794,203 1,705,734 2,767

modA2.no5 -ti(lon, lat) 72.76% 155,682 794,220 4,007,886 5,372

modA2.no6 -ti(month, lat) 72.97% 154,509 794,211 4,184,870 4,199

modA2.no7 -ti(lon, month) 72.89% 154,911 794,234 2,030,894 4,600

modA2.no8 -ti(year, lat) 72.56% 156,822 794,223 7,193,970 6,512

modA2.no9 -ti(year, lon) 71.81% 160,987 794,276 2,173,631 10,676

modA2.no10 -ti(year, month) 72.27% 158,426 794,237 1,278,770 8,116

modA2.no15 -cl 70.80% 166,882 794,203 2,260,677 16,571

modA2.no16 -s(log(hook)) 72.82% 155,388 794,211 1,812,437 5,077

modA1 Main effects 66.77% 189,473 794,391 1,245,736 39,163

modA2.p11 +ti(lat, month, year) 73.64% 150,772 794,177 12,211,104 462

modA2.p12 +ti(lat, lon, month) 73.51% 151,518 794,174 565,423,241 1,208

modA2.p13 +ti(lat, lon, year) 73.48% 151,662 794,174 4,177,097 1,352

modA2.p14 +ti(year, lon, month) 73.73% 150,311 794,151 1,298,659 0

name term dev.expl AIC residual.df REMLscore dAIC

modB3 Full model 49.13% 1,491,407 700,906 375,849 0

modB3.no5 -ti(lon, lat) 49.09% 1,491,992 700,895 376,060 584

modB3.no6 -ti(month, lat) 49.10% 1,491,798 700,902 375,974 391

modB3.no7 -ti(lon, month) 49.07% 1,492,363 700,862 376,290 956

modB3.no8 -ti(year, lat) 49.09% 1,491,982 700,906 375,999 575

modB3.no9 -ti(year, lon) 48.91% 1,494,576 700,866 376,796 3,169

modB3.no10 -ti(year, month) 49.09% 1,492,003 700,899 376,029 596

modB3.no11 -ti(lat, month, year) 49.08% 1,491,984 700,965 375,933 577

modB3.no12 -ti(lat, lon, month) 49.08% 1,492,141 700,919 376,033 734

modB3.no13 -ti(lat, lon, year) 48.79% 1,495,728 701,071 376,676 4,320

modB3.no14 -ti(year, lon, month) 48.15% 1,503,822 701,437 378,176 12,415

modB3.no15 -cl 48.81% 1,495,847 700,902 376,974 4,440

modB3.no16 -s(log(hook)) 49.09% 1,492,023 700,911 376,004 616

modB1 Main effects 40.85% 1,594,318 702,390 398,925 102,911

modB2 Main and 2 way interactions 47.09% 1,517,112 701,842 380,842 25,705
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Table 7. Core vessels chosen by various definition. 
 

 
 

Data records Number of vessels

Run xx yy Original core vessel data % Original core vessel data %

1 9999 1 598,042 598,042 100% 1,672 1,672 100%

2 56 3 598,042 231,455 39% 1,672 283 17%

3 56 5 598,042 164,768 28% 1,672 165 10%

4 56 7 598,042 120,900 20% 1,672 107 6%

5 50 3 598,042 214,842 36% 1,672 260 16%

6 40 3 598,042 182,569 31% 1,672 215 13%

7 30 3 598,042 143,390 24% 1,672 158 9%

8 20 3 598,042 91,185 15% 1,672 93 6%

9 20 5 598,042 57,220 10% 1,672 49 3%

SBT catch Run time in minutes

Run xx yy Original core vessel data % BSM PCSM Total %

1 9999 1 16,428,540 16,428,540 100% 6.78 14.79 21.57 100%

2 56 3 16,428,540 9,717,227 59% 3.05 6.42 9.47 44%

3 56 5 16,428,540 7,396,109 45% 2.23 4.96 7.19 33%

4 56 7 16,428,540 5,814,778 35% 1.86 3.03 4.89 23%

5 50 3 16,428,540 9,316,260 57% 2.42 5.17 7.59 35%

6 40 3 16,428,540 8,356,128 51% 2.18 4.25 6.44 30%

7 30 3 16,428,540 7,046,070 43% 1.73 3.22 4.95 23%

8 20 3 16,428,540 5,174,534 31% 1.17 1.77 2.94 14%

9 20 5 16,428,540 3,542,045 22% 0.75 1.34 2.09 10%


