# ミナミマグロの MP インプット用の延縄加入量指数の開発 

# Development of recruitment index of SBT longline for MP input 

伊藤智幸

Tomoyuki ITOH

国立研究開発法人水産研究•教育機構 国際水産資源研究所

National Research Institute of Far Seas Fisheries，
Japan Fisheries Research and Education Agency


#### Abstract

要約 本文書では，CCSBT のMP 開発のためのインプットデータとして延縄 CPUE に基づく ミナミマグロの加入量指数を提案する。OMMP 会合で合意された，一般化線形モデルを当 てはめた後に年齢分解する方法だけでなく，年齢分解した後に一般化線形モデルを実施し た。また放流尾数の効果を検討した。


## Summary

This document proposes recruitment indices of southern bluefin tuna based on longline CPUE as an input data to be used in developing management procedures in CCSBT． The indices were calculated not only by the suggested method from OMMP Meeting applying a generalized linear model first and then age decomposition，but also by applying age decomposition first and then did generalized linear model．It also considers effect of release／discarded fish．

## Introduction

In the developing of the management procedure for southern bluefin tuna (SBT) in CCSBT, recruitment indices from longline fishery are expected. The method of calculation was agreed in the OMMP meeting in 2017 (Anon. 2017). It states that "the meeting discussed possible forms of an index of age-4 CPUE, as a potential recruitment indicator, for inclusion in candidate MPs. The suggested formulation of such an index was the proportion of 4-year-old fish (by number) in the Core Vessel catches (relative to the $4+$ catch) multiplied by the $4+$ core vessels base CPUE." This document describes calculation of several recruitment indices not only by the suggested method. It also considers effect of release/discarded fish.

## Materials and Methods

Longline abundance index (the core vessel index for age 4+) was updated by including the 2017 data. Detail is documented in different paper for the $9^{\text {th }}$ OMMP meeting (CCSBT-OMMP/1806/08). The index was made by using the dataset consists of the core vessels, in CCSBT statistical area between 4 and 9, and in between April and September. Catch of fish was limited for age 4 and more (age 4+). The dataset was aggregated by year, month, 5 degree longitude, and 5 degree latitude. A generalized linear model (GLM) was applied using the Base model. The GLM result was weighted with the area weighting factor for W0.8 or W0.5.

$$
\begin{array}{r}
\log (\text { CPUE }+0.2)=\text { Intercept }+ \text { Year }+ \text { Month }+ \text { Area }+ \text { Lat } 5+\text { BET_CPUE }+ \\
\\
\text { YFT_CPUE }+\left(\text { Month }{ }^{*} \text { Area }\right)+(\text { Year*Lat5 })+(\text { Year*Area })+\text { Error },
\end{array}
$$

(1)

Age composition of catch was estimated. Based on the data from the CCSBT database distributed in January 2018, catch at age by Japanese longline vessels in Japan (database code is JP_ADJ), Australia (AU_AUJV), and New Zealand (NZC_LL) were extracted and combined. Data of catch-at-age in the most recent year of Japan were added. The core vessel index was decomposed by age with equation (2).

$$
\begin{equation*}
I_{w, \text { age }_{i}}=I_{w} \times n_{\text {age }_{i}} / \sum_{i=4}^{20} n_{\text {age }_{i}} \tag{2}
\end{equation*}
$$

where, $\mathrm{I}_{\mathrm{w}, \text { agei }}$ is the recruitment index of age $i, \mathrm{I}_{\mathrm{w}}$ is the abundance index of W0.8 or W0.5, $\mathrm{n}_{\text {age } i}$ is the number of fish caught of age $i$. Average of two indices derived from W0.8
and W0.5 will be used. This method is defined "earlier GLM index", here.
Another method is explored. It decomposed the data by age first (age-3, 4, and 5), and then applied GLM using the Base model. The index was area weighted for W0.8 and W0.5, then averaged (call it "later GLM index").

It has been considered that some SBT hooked were released in Japanese longline fishery since 2006 when the individual quota system introduced. During 2006-2008, there was no framework to receive the reporting of released/discard. In 2009, a framework to receive reporting of released/discard was prepared in RTMP. Fishermen report the number of fish by life status (live or dead) by three body weight categories ( $<20 \mathrm{~kg}, 20-39 \mathrm{~kg}$, and $>=40 \mathrm{~kg}$ ). The body weight was measured by eye. The body weight is assumed to be gilled, gutted and tail removed which is familiar to fishermen.
The proportion of age4+ in released/discard (released, here after) fish was small so that effect on CPUE age-4+ is trivial (CCSBT-OMMP/1406/08). In CPUE of single age, however, the proportion of released fish can be larger than age-4+. Age compositions of released fish were estimated in the following two cases.

Case A: It assumes that age composition of released fish in a weight category is same as that of retained fish.

Case B: It assumes that age of released fish in a weight category is same as the youngest age of the category, i.e., all fish $<20 \mathrm{~kg}$ is age 3 (though not the youngest), all fish $20-39 \mathrm{~kg}$ is age 4 , and all fish $>=40 \mathrm{~kg}$ is age 5 in this assumption.

It is likely that fish was released because it was smaller. Therefore, the case A presumably overestimate the age. The case B seems to underestimate the age. The true value would be lying in the range between the two cases.
Released fish by age was converted to nominal CPUE by year, month, and area, then multiplied to hooks of the core vessel data, and obtained the number of released fish by age. For data in 2006-2008 when detail number of released fish was not available, average of 2009-2017 was used.
In total, 45 CPUE series were produced.
Earlier GLM: 2 ages (age4, age5), 3 released (only retained fish, caseA, case B), 3 weightings (W0.8, W0.5, average) $=18$ series.
Later GLM: 3 ages (age 3, age4, age5), 3 released (only retained fish, caseA, case B), 3 weightings $(\mathrm{W} 0.8, \mathrm{~W} 0.5$, average $)=27$ series.

## Results

## Recruitment index of age 4 and age 5

Age composition used for simpler method (earlier GLM) is shown in Fig. 1. It produced the recruitment indices of age 4 and age 5 (Table1. Fig 2, black lines in the left panels).

The recruitment indices of age-3, 4 , and 5 in the later GLM are shown in Table 2 and Fig. 2 (red lines in the left panel) and Fig. 4 (black lines in lower panels). Note that the series were adjusted to the mean of the earlier GLM during 1986-2008 in each panel of Fig. 2 and Fig. 4. General trends were similar to each other, except 2016 in age5 series where it dropped moderately in the earlier GLM series but dropped sharply in the later GLM series.

## Effect of released/discarded

The annual number of released fish are shown in Table 3. Age compositions of retained fish by three body weight categories used for released fish ( $<20 \mathrm{~kg}, 20-39 \mathrm{~kg}$, $>40 \mathrm{~kg}$ ) are shown in Fig. 3 and Table 2. Fish in the $<20 \mathrm{~kg}$ class was mainly consisted of age-2 and age -3 with a small portion of age 4 . Fish in the class of $20-39 \mathrm{~kg}$ was mainly consisted of age -4 and age -5 . Fish in the $>40 \mathrm{~kg}$ class was mainly consisted of age between 6 and 8 . Annual catch-at-age and CPUE in case-B are shown in Table 5.

Effect of including released fish on CPUE is shown in Fig. 4 and Table 6. There was a large effect in age 3 recruitment index. (Slight decreasing during 1986-2005 was due to adjacent to the mean of 1986-2008 value.) In the later GLM CPUE to the CPUE only for retained fish, the case-A had a raising effect of $98 \%$ in age- 3 fish, $19 \%$ in age-4 fish, and $14 \%$ in age -5 fish. The case-B in the later GLM had larger effect that raised $138 \%$ in age3 fish, and $36 \%$ in age -4 fish. However, it was only $6 \%$ in age -5 fish because the increase of denominator by including released fish decreased the composition ratio of age- 5 fish.

In the case of the earlier GLM, the raising effect was slightly lowered. The raising effects were $7 \%$ in age -4 and $5 \%$ in age -5 in the case-A, and $16 \%$ in age -4 and $-1 \%$ in age5 in the case-B.

## Discussion

By the present analysis, despite its simplicity, the method of earlier GLM, which applied GLM for fish >= age-4 aggregated initially and then age decomposition, provided similar index to the method of later GLM, which age decomposition initially and then applied GLM. This is probably because young fish such as age-4 and age-5 are
dominating the trend because of the large number of individuals even in the data aggregate as age-4+. However, it should be noted that the trend was different in 2015 at age-4.

Therefore, as agreed, when using the index from the earlier GLM method, it is recommended to use the index obtained by the later GLM for sensitivity analysis.
Instead of age-4, there is also a choice to use CPUE of age- 5 fish which is hardly affected by releasing. At present, there was no difference in trends between earlier and later GLM indices.

CPUE of age- 3 was not suitable for decomposing by age composition because it did not include age-3 fish in the earlier GLM method. Also, it was strongly influenced by releasing, and careful consideration is required for use as a recruitment index, and its use cannot be recommended.

Consideration of released fish would not be necessary for CPUE of age- 5 fish. Among age-4 fish CPUEs, case A is an intermediate value for age-4 fish, so either CPUE not including released fish or CPUE including released fish in the case B is recommended as the base case for one and the sensitivity/robustness test for the other.

## References

Anonymous (2017) Report of the eighth operating model and management procedure technical meeting. pp32.
Itoh, T., K. Suzuki, and O. Sakai (2014) Mortality estimation for southern bluefin tuna released and discarded from Japanese longline fishery. CCSBT-OMMP/1406/08.

Itoh, T. and N. Takahashi (2018) Update of the core vessel data and CPUE for southern bluefin tuna in 2018. CCSBT-OMMP/1806/08.

Table 1 Recruitment index by age for the earlier GLM case
The weight is the mean of W0.8 and W0.5.

| Age | 4 | 5 | 4 | 5 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Release | No | No | A | A | B | B |
| 1969 | 0.9688 | 1.5637 | 0.9557 | 1.5517 | 0.9387 | 1.5656 |
| 1970 | 2.0399 | 1.5833 | 2.0123 | 1.5711 | 1.9766 | 1.5852 |
| 1971 | 2.2916 | 2.0878 | 2.2606 | 2.0717 | 2.2204 | 2.0902 |
| 1972 | 2.3262 | 2.5472 | 2.2946 | 2.5276 | 2.2538 | 2.5502 |
| 1973 | 2.4613 | 2.2605 | 2.4279 | 2.2431 | 2.3848 | 2.2632 |
| 1974 | 2.7482 | 2.3263 | 2.7109 | 2.3084 | 2.6627 | 2.3291 |
| 1975 | 1.0223 | 1.2975 | 1.0085 | 1.2875 | 0.9905 | 1.2990 |
| 1976 | 0.9850 | 1.3311 | 0.9717 | 1.3209 | 0.9544 | 1.3327 |
| 1977 | 1.6337 | 1.1145 | 1.6116 | 1.1059 | 1.5829 | 1.1158 |
| 1978 | 1.8455 | 1.4626 | 1.8204 | 1.4513 | 1.7879 | 1.4643 |
| 1979 | 0.9567 | 1.8594 | 0.9438 | 1.8452 | 0.9270 | 1.8617 |
| 1980 | 1.2793 | 1.0809 | 1.2620 | 1.0726 | 1.2394 | 1.0822 |
| 1981 | 0.9822 | 1.4521 | 0.9689 | 1.4409 | 0.9516 | 1.4539 |
| 1982 | 0.6375 | 0.9289 | 0.6288 | 0.9218 | 0.6176 | 0.9300 |
| 1983 | 0.7580 | 1.1592 | 0.7477 | 1.1503 | 0.7344 | 1.1606 |
| 1984 | 0.7179 | 0.8026 | 0.7082 | 0.7964 | 0.6956 | 0.8035 |
| 1985 | 0.6746 | 0.5891 | 0.6655 | 0.5845 | 0.6536 | 0.5898 |
| 1986 | 0.3332 | 0.3479 | 0.3287 | 0.3452 | 0.3228 | 0.3483 |
| 1987 | 0.4880 | 0.3408 | 0.4814 | 0.3381 | 0.4728 | 0.3412 |
| 1988 | 0.6284 | 0.2567 | 0.6199 | 0.2548 | 0.6088 | 0.2570 |
| 1989 | 0.5302 | 0.4458 | 0.5230 | 0.4424 | 0.5137 | 0.4463 |
| 1990 | 0.7058 | 0.4212 | 0.6962 | 0.4179 | 0.6838 | 0.4217 |
| 1991 | 0.8958 | 0.3904 | 0.8837 | 0.3874 | 0.8679 | 0.3909 |
| 1992 | 1.3757 | 0.6772 | 1.3570 | 0.6720 | 1.3328 | 0.6780 |
| 1993 | 1.2422 | 1.1270 | 1.2253 | 1.1183 | 1.2033 | 1.1284 |
| 1994 | 1.0543 | 0.7674 | 1.0399 | 0.7614 | 1.0211 | 0.7683 |
| 1995 | 0.9100 | 0.9396 | 0.8976 | 0.9323 | 0.8815 | 0.9407 |
| 1996 | 0.6169 | 0.8297 | 0.6084 | 0.8233 | 0.5975 | 0.8307 |
| 1997 | 0.5913 | 0.6691 | 0.5833 | 0.6639 | 0.5728 | 0.6699 |
| 1998 | 0.7394 | 0.4940 | 0.7293 | 0.4902 | 0.7163 | 0.4946 |
| 1999 | 0.7243 | 0.5277 | 0.7144 | 0.5236 | 0.7016 | 0.5283 |
| 2000 | 0.7585 | 0.5101 | 0.7481 | 0.5061 | 0.7347 | 0.5107 |
| 2001 | 0.7678 | 0.7286 | 0.7574 | 0.7230 | 0.7438 | 0.7295 |
| 2002 | 0.9125 | 0.9102 | 0.8999 | 0.9031 | 0.8837 | 0.9113 |
| 2003 | 0.4557 | 0.8571 | 0.4495 | 0.8504 | 0.4414 | 0.8581 |
| 2004 | 0.3996 | 0.6696 | 0.3941 | 0.6644 | 0.3870 | 0.6704 |
| 2005 | 0.5100 | 0.3884 | 0.5030 | 0.3854 | 0.4940 | 0.3888 |
| 2006 | 0.2977 | 0.2082 | 0.3451 | 0.2434 | 0.4072 | 0.2031 |
| 2007 | 0.3898 | 0.1792 | 0.4091 | 0.1990 | 0.4407 | 0.1758 |
| 2008 | 0.4377 | 0.2995 | 0.4881 | 0.3376 | 0.5537 | 0.2966 |

Table 1 (continued)

| Age | 4 | 5 | 4 | 5 | 4 | 5 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Release | No | No | A | A | B | B |
| 2009 | 1.4018 | 0.8420 | 1.4241 | 0.8640 | 1.4719 | 0.8111 |
| 2010 | 1.2954 | 1.7257 | 1.3179 | 1.7272 | 1.3702 | 1.6904 |
| 2011 | 1.0589 | 1.2781 | 1.0684 | 1.2778 | 1.0747 | 1.2873 |
| 2012 | 0.9691 | 1.0289 | 1.0386 | 1.0631 | 1.1146 | 1.0178 |
| 2013 | 0.7518 | 0.9542 | 0.8015 | 0.9750 | 0.8492 | 0.9482 |
| 2014 | 0.8416 | 1.1324 | 0.9133 | 1.1693 | 1.0034 | 1.1320 |
| 2015 | 0.9091 | 1.4663 | 0.9782 | 1.4963 | 1.0655 | 1.4783 |
| 2016 | 0.5573 | 1.1954 | 0.6285 | 1.2267 | 0.7113 | 1.2118 |
| 2017 | 1.1215 | 0.9447 | 1.1482 | 0.9665 | 1.1842 | 0.9572 |

Table 2 Recruitment index by age for the later GLM case
The weight is the mean of W0.8 and W0.5.

| Age | 3 | 4 | 5 | 3 | 4 | 5 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Releas | No | No | No | A | A | A | B | B | B |
| 1985 | 0.9874 | 1.0863 | 0.8930 | 0.9155 | 1.0949 | 0.9019 | 0.8879 | 1.1009 | 0.8982 |
| 1986 | 0.4283 | 0.3938 | 0.3933 | 0.3590 | 0.3856 | 0.3896 | 0.3336 | 0.3783 | 0.3962 |
| 1987 | 0.4795 | 0.5289 | 0.4053 | 0.4105 | 0.5209 | 0.4019 | 0.3831 | 0.5117 | 0.4063 |
| 1988 | 0.4918 | 0.6093 | 0.3019 | 0.4143 | 0.5980 | 0.2974 | 0.3847 | 0.5859 | 0.3050 |
| 1989 | 0.5901 | 0.5591 | 0.4742 | 0.4980 | 0.5478 | 0.4695 | 0.4625 | 0.5368 | 0.4766 |
| 1990 | 1.0808 | 0.6759 | 0.4723 | 0.9206 | 0.6670 | 0.4687 | 0.8536 | 0.6554 | 0.4790 |
| 1991 | 0.8200 | 0.8238 | 0.4559 | 0.7075 | 0.8127 | 0.4519 | 0.6594 | 0.7988 | 0.4589 |
| 1992 | 0.9130 | 1.2276 | 0.6500 | 0.7933 | 1.2144 | 0.6439 | 0.7401 | 1.1930 | 0.6437 |
| 1993 | 1.2287 | 1.1257 | 1.0346 | 1.0950 | 1.1186 | 1.0296 | 1.0272 | 1.1021 | 1.0286 |
| 1994 | 1.2506 | 1.0170 | 0.6769 | 1.0544 | 0.9996 | 0.6703 | 0.9759 | 0.9808 | 0.6825 |
| 1995 | 0.8173 | 1.0360 | 0.8906 | 0.6954 | 1.0236 | 0.8858 | 0.6459 | 1.0064 | 0.8961 |
| 1996 | 0.2758 | 0.7692 | 0.8158 | 0.2286 | 0.7551 | 0.8089 | 0.2128 | 0.7401 | 0.8202 |
| 1997 | 0.4294 | 0.5563 | 0.6277 | 0.3646 | 0.5466 | 0.6223 | 0.3393 | 0.5361 | 0.6283 |
| 1998 | 0.7021 | 0.7125 | 0.5450 | 0.5954 | 0.7016 | 0.5407 | 0.5525 | 0.6887 | 0.5499 |
| 1999 | 0.8044 | 0.7330 | 0.5486 | 0.6834 | 0.7237 | 0.5453 | 0.6345 | 0.7116 | 0.5536 |
| 2000 | 0.5605 | 0.6871 | 0.4878 | 0.4739 | 0.6758 | 0.4831 | 0.4396 | 0.6624 | 0.4907 |
| 2001 | 0.6055 | 0.7983 | 0.7134 | 0.5168 | 0.7882 | 0.7086 | 0.4807 | 0.7744 | 0.7135 |
| 2002 | 0.5298 | 0.8277 | 0.9006 | 0.4573 | 0.8187 | 0.8944 | 0.4256 | 0.8035 | 0.8936 |
| 2003 | 0.2138 | 0.5727 | 0.8331 | 0.1755 | 0.5637 | 0.8261 | 0.1628 | 0.5522 | 0.8287 |
| 2004 | 0.4098 | 0.4595 | 0.6884 | 0.3636 | 0.4562 | 0.6862 | 0.3418 | 0.4498 | 0.6883 |
| 2005 | 0.3968 | 0.5260 | 0.3832 | 0.3613 | 0.5221 | 0.3792 | 0.3420 | 0.5134 | 0.3734 |
| 2006 | 0.5467 | 0.2984 | 0.2178 | 0.8236 | 0.4059 | 0.2950 | 0.9510 | 0.5237 | 0.2419 |
| 2007 | 0.4272 | 0.4663 | 0.2501 | 0.6823 | 0.5742 | 0.3222 | 0.7980 | 0.6863 | 0.2712 |
| 2008 | 0.5379 | 0.5820 | 0.3699 | 0.8001 | 0.6918 | 0.4454 | 0.9195 | 0.8058 | 0.3862 |
| 2009 | 0.5898 | 1.1493 | 0.8009 | 1.0236 | 1.3517 | 0.9283 | 1.1661 | 1.5313 | 0.7951 |
| 2010 | 0.3837 | 0.9773 | 1.4576 | 0.5932 | 1.1246 | 1.5660 | 0.6536 | 1.2827 | 1.4745 |
| 2011 | 0.6680 | 0.9252 | 1.1715 | 0.8297 | 0.9650 | 1.1926 | 0.8957 | 0.9795 | 1.1805 |
| 2012 | 0.7329 | 0.9741 | 0.9765 | 1.3105 | 1.1380 | 1.0743 | 1.5252 | 1.2455 | 0.9978 |
| 2013 | 0.3924 | 0.8362 | 0.7557 | 0.7545 | 0.9109 | 0.7989 | 0.9138 | 0.9600 | 0.7804 |
| 2014 | 0.3794 | 0.9162 | 1.0851 | 0.8893 | 1.1010 | 1.1845 | 1.0912 | 1.2580 | 1.1334 |
| 2015 | 0.2076 | 1.0940 | 1.3986 | 0.5695 | 1.3109 | 1.5754 | 0.6885 | 1.5263 | 1.5400 |
| 2016 | 0.1688 | 0.5250 | 0.7183 | 0.5620 | 0.6673 | 0.8152 | 0.7428 | 0.7921 | 0.8134 |
| 2017 | 0.1921 | 0.7438 | 0.8545 | 0.4856 | 0.8536 | 0.9519 | 0.6075 | 0.9698 | 0.9392 |

Table 3 Number of released/discarded fish by body weight class

| Year | under 20 kg | over 20 kg | over 40 kg | Total |
| ---: | ---: | ---: | ---: | ---: |
| 2009 | 7,847 | 1,895 | 12 | 9,754 |
| 2010 | 1,866 | 1,368 | 111 | 3,345 |
| 2011 | 2,641 | 651 | 154 | 3,446 |
| 2012 | 7,570 | 1,801 | 198 | 9,569 |
| 2013 | 8,243 | 1,642 | 217 | 10,102 |
| 2014 | 6,905 | 2,933 | 545 | 10,383 |
| 2015 | 7,472 | 2,802 | 812 | 11,086 |
| 2016 | 7,510 | 3,519 | 734 | 11,763 |
| 2017 | 5,605 | 2,291 | 403 | 8,299 |

Table 4 Estimated number and CPUE at age of released/discarded fish in the case A (age of retained fish)

| Year | Age3 | Age4 | Age5 | Age4 plus | CPUE_ <br> age3 | CPUE_ <br> age4 | CPUE_ <br> age5 | CPUE_ <br> age4+ |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2009 | 4,756 | 986 | 654 | 1,867 | 0.32 | 0.06 | 0.04 | 0.12 |
| 2010 | 1,262 | 599 | 475 | 1,336 | 0.13 | 0.06 | 0.04 | 0.13 |
| 2011 | 1,603 | 337 | 230 | 790 | 0.15 | 0.03 | 0.02 | 0.07 |
| 2012 | 4,584 | 940 | 628 | 1,964 | 0.44 | 0.09 | 0.06 | 0.18 |
| 2013 | 4,947 | 897 | 575 | 1,867 | 0.47 | 0.08 | 0.05 | 0.18 |
| 2014 | 4,366 | 1,37 | 1,029 | 3,259 | 0.37 | 0.11 | 0.08 | 0.28 |
| 2015 | 4,671 | 1,33 | 994 | 3,431 | 0.35 | 0.10 | 0.07 | 0.26 |
| 2016 | 4,795 | 1,62 | 1,237 | 3,967 | 0.32 | 0.11 | 0.08 | 0.27 |
| 2017 | 3,531 | 1,07 | 803 | 2,529 | 0.27 | 0.08 | 0.06 | 0.19 |

Table 5 Estimated number and CPUE at age of released/discarded fish in the case $B$ (the minimum age)

| Year | Age3 | Age4 | Age5 | CPUE_ <br> age3 | CPUE_ $^{\text {age4 }}$ | CPUE_ <br> age5 |
| :---: | :---: | :---: | :---: | ---: | ---: | ---: |
| 2009 | 7,847 | 1,895 | 12 | 0.535 | 0.129 | 0.001 |
| 2010 | 1,866 | 1,368 | 111 | 0.193 | 0.141 | 0.011 |
| 2011 | 2,641 | 651 | 154 | 0.252 | 0.062 | 0.015 |
| 2012 | 7,570 | 1,801 | 198 | 0.730 | 0.174 | 0.019 |
| 2013 | 8,243 | 1,642 | 217 | 0.793 | 0.158 | 0.021 |
| 2014 | 6,905 | 2,933 | 545 | 0.599 | 0.254 | 0.047 |
| 2015 | 7,472 | 2,802 | 812 | 0.565 | 0.212 | 0.061 |
| 2016 | 7,510 | 3,519 | 734 | 0.511 | 0.239 | 0.050 |
| 2017 | 5,605 | 2,291 | 403 | 0.428 | 0.175 | 0.031 |

Table 6 Change of CPUE by including released/discarded
Relative value to CPUE of retained only. The weight is the mean of W0.8 and W0.5.

| GLM | Earlier | Earlier | Earlier | Earlier | Later | Later | Later | Later | Later | Later |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | 4 | 5 | 4 | 5 | 3 | 4 | 5 | 3 | 4 | 5 |
| Release | A | A | B | B | A | A | A | B | B | B |
| Mean | 1.068 | 1.049 | 1.155 | 0.993 | 1.981 | 1.186 | 1.143 | 2.375 | 1.360 | 1.057 |
| 2006 | 1.159 | 1.169 | 1.368 | 0.975 | 1.506 | 1.360 | 1.354 | 1.740 | 1.755 | 1.111 |
| 2007 | 1.049 | 1.110 | 1.131 | 0.981 | 1.597 | 1.231 | 1.288 | 1.868 | 1.472 | 1.084 |
| 2008 | 1.115 | 1.127 | 1.265 | 0.990 | 1.487 | 1.189 | 1.204 | 1.709 | 1.385 | 1.044 |
| 2009 | 1.016 | 1.026 | 1.050 | 0.963 | 1.735 | 1.176 | 1.159 | 1.977 | 1.332 | 0.993 |
| 2010 | 1.017 | 1.001 | 1.058 | 0.980 | 1.546 | 1.151 | 1.074 | 1.703 | 1.312 | 1.012 |
| 2011 | 1.009 | 1.000 | 1.015 | 1.007 | 1.242 | 1.043 | 1.018 | 1.341 | 1.059 | 1.008 |
| 2012 | 1.072 | 1.033 | 1.150 | 0.989 | 1.788 | 1.168 | 1.100 | 2.081 | 1.279 | 1.022 |
| 2013 | 1.066 | 1.022 | 1.130 | 0.994 | 1.923 | 1.089 | 1.057 | 2.329 | 1.148 | 1.033 |
| 2014 | 1.085 | 1.033 | 1.192 | 1.000 | 2.344 | 1.202 | 1.092 | 2.876 | 1.373 | 1.045 |
| 2015 | 1.076 | 1.020 | 1.172 | 1.008 | 2.744 | 1.198 | 1.126 | 3.317 | 1.395 | 1.101 |
| 2016 | 1.128 | 1.026 | 1.276 | 1.014 | 3.330 | 1.271 | 1.135 | 4.401 | 1.509 | 1.132 |
| 2017 | 1.024 | 1.023 | 1.056 | 1.013 | 2.528 | 1.148 | 1.114 | 3.163 | 1.304 | 1.099 |



- age20 ■ age10
- age19 ■ age9
- age18 age8
- age17 age7
- age16 ■ age6
age15 age5
- age14 ■ age4
- age13 ■ age3
- age12 ■ age2

■ age11 ■ age1

Fig. 1 Age composition of SBT retained
Data were from Japanese longline and joint venture with Australia and New Zealand.


Fig. 2 Comparison between earlier GLM series and later GLM series


Fig. 3 Age composition of three body weight categories by retained fish.

Age 4 (earlier CLM)


Age 4 (later GLM)


Age 5 (earlier GLM)


Age 3 (later CLM)

o retain only
A A
B
B
Age 5 (later GLM)


Fig. 4 Effect of released/discarded fish on CPUE series.
A and B are based on the age composition of retained fish and the minimum age of weght categories, respectively.

