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Abstract 
The estimate of relative juvenile abundance from the 2010 scientific aerial survey is the 
highest estimate since 1996; however, it remains lower than the average level in the 
period 1993-1996.  
 
The current year (2010) was the first year that planes with only one observer flew as 
part of the survey. Calibration experiments conducted in 2008 and 2009 showed that a 
plane with only one observer makes fewer sightings than a plane with two observers. 
Thus, in order to include the data collected in the 2010 survey from flights with only 
one observer, the analysis needs to take into account the fact that the number of 
sightings is expected to be fewer with only one observer than with two observers. A 
method for doing so was proposed in last year’s CCSBT report (Eveson et al. 2009) and 
is described in greater detail in this report.   
 
In order to make our results directly comparable to results provided in past, the data 
were first analysed using only data from flights with two observers. These results were 
provided to the CCSBT as part of the 2010 data exchange. The analysis was then 
redone including data from flights with one observer using the methods described for 
dealing with such data. The results from the analysis using only two-observer data and 
from the analysis using both one and two-observer data are very similar. If the methods 
for including one-observer data are accepted by the CCSBT, results based on all data 
will be provided to the CCSBT in future. 
 
The environmental conditions in 2010 were highly favourable, with lower average wind 
speed and higher average sea surface temperature (SST) than experienced in any of the 
past surveys. New data, especially data from extreme conditions, can significantly 
affect the estimated model coefficients and, consequently, the relative abundance 
estimates; thus, we explored the environmental covariates being included in the models 
and their influence on the abundance indices. Results are presented which highlight the 
complexity of model selection and the importance of regularly exploring the models as 
new data become available. 

 

Introduction 
The index of juvenile southern bluefin tuna (SBT) abundance based on a scientific 
aerial survey in the Great Australian Bight (GAB) is one of the few fishery-independent 
indices available for monitoring and assessment of the SBT stock. The aerial survey 
was conducted in the GAB between 1991 and 2000, but was suspended in 2001 due to 
logistic problems of finding trained, experienced observers (spotters). The suspension 
also allowed for further data analysis and an evaluation of the effectiveness of the 
survey. A decision to continue or end the scientific aerial survey could then be made on 
the merits of the data, in particular the ability to detect changes in abundance. 

Analysis of the data was completed in 2003 and it showed that the scientific aerial 
survey does provide a suitable indicator of SBT abundance in the GAB (Bravington 
2003). In the light of serious concerns about the reliability of historic and current catch 
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and CPUE data and weak year classes in the late 1990s and early 2000s, this fishery-
independent index is even more important (Anon 2008).  

In 2005, the full scientific line-transect aerial survey was re-established in the GAB, 
and this survey has been conducted each year since. New analysis methods were 
developed and have subsequently been refined. Based on these methods, an index of 
abundance across all survey years has been constructed. 

In addition, in 2007 a large-scale calibration experiment was initiated with the primary 
purpose of comparing SBT sighting rates by one observer versus two observers in a 
plane. This was done in light of the fact that future surveys might have only one 
observer in a plane (as was the case for one of the two planes flying in the 2010 survey). 
The data provided useful information about differences in sightings between observers 
(e.g., sightings made by one observer are often missed by another observer). However, 
it proved difficult to definitively estimate the effect of the number of observers on the 
index.  

In 2008 and 2009 a new calibration experiment was designed and run in parallel with 
the full scientific aerial survey. This calibration experiment was designed to compare: 

• the number of SBT sightings; 

• and total estimated biomass of SBT observed; 

by the single observer plane versus the survey plane (with two observers) over the same 
area and time strata. 

This report summarises the field procedures and data collected during the 2010 season. 
This was the first year that a plane with only one observer flew as part of the survey, in 
addition to a plane with two observers. The current methods for analysing the data are 
described, and results are presented from applying these methods to data from all 
survey years and flights with two observers (i.e., omitting the data collected in 2010 
from flights with one observer in order to make the results directly comparable to those 
from previous years). A method for including the data from one-observer flights is 
proposed and results from applying this method are presented. Finally, explorations 
regarding the environmental covariates in the models are presented, motivated by the 
fact that the environmental conditions during the 2010 survey were better than in any 
past survey year.   

Field procedures 
The 2010 scientific aerial survey was conducted in the GAB between 1 January and 31 
March 2010. As for previous surveys (e.g. Eveson et al. 2009), the plane type used was 
a Rockwell Aero Commander 500S. Two planes were chartered in 2010, one for the full 
three months (plane 1) and a second for January and February only (plane 2). Three 
observers were employed; plane 1 had two observers (an observer-pilot and a dedicated 
observer), while plane 2 had a single dedicated observer (and a non-observing pilot). 
The two dedicated observers were swapped between planes in January and February, 
but the pilots (one also an observer) remained in their respective planes. The same 
observers employed for the 2007 to 2009 surveys were used throughout the 2010 
survey.  
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The survey followed the protocols established for the 2000 survey (Cowling 2000) and 
used in all subsequent surveys, with respect to the area searched, plane height and 
speed, minimum environmental conditions, time of day the survey lines were flown, 
and data recording protocols.  Fifteen north-south transect lines (Figure 1) were 
surveyed. A complete replicate of the GAB consists of a subset of 12 (of the 15) lines 
divided into 4 blocks. The remaining 3 lines in a replicate (either: 1, 3 and 14, or 2, 13 
and 15) were not searched, as SBT abundance is historically low in these areas and 
surveying a subset increases the number of complete replicate of the GAB in the survey.  

When flying along a line, the two planes used slightly different methods to search for 
SBT.  For plane 1 (i.e. with two observers), each observer searched the sea surface from 
straight ahead through to 90° to their side of the plane (abeam of the plane) for surface 
patches (schools) of SBT. An observer would occasionally search both sides of the 
plane, if the other observer was temporally unable to observe. For plane 2, the single 
observer searched for patches of SBT from his side of the plane through 180° to the 
other side of the plane. 

When two planes were surveying, they always surveyed neighbouring blocks. The 
blocks were chosen with the aim of allowing both planes to complete each block at least 
once per replicate. When conditions allowed for only one plane to survey (e.g. only one 
block was suitable), then preference was given to plane 1 with two ovservers.  

The 2010 field operation was very successful, largely due to the prevailing whether 
conditions in January and March and the availability of two planes for two months of 
the survey. Nearly 7 replicates of the GAB were completed, compared to between 3 and 
5 for the 5 years prior. The total flying time (transit and transect time) for the 2010 
survey was 213.6 hours. 

 

Figure 1. Location of the 15 north-south transect lines for the scientific aerial survey in 
the GAB.  
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Data preparation 
The data collected from the 2010 survey were loaded into the aerial survey database and 
checked for any obvious errors or inconsistencies and corrections made as necessary. In 
order for the analyses to be comparable between all survey years, only data collected in 
a similar manner from a common area were included in the data summaries and 
analyses presented in this report. In particular, only search effort and sightings made 
along north/south transect lines in the unextended (pre-1999) survey area and sightings 
made within 6 nm of a transect line were included (see Basson et al. 2005 for details). 
In cases where a sighting consisted of more than one school, then the sighting was 
included if at least one of the schools was within 6 nm of the line.  We excluded 
secondary sightings and any search distance and sightings made during the aborted 
section of a transect line (see Eveson et al. 2006 for details). 

Search effort and SBT sightings 
A summary of the total search effort and SBT sightings made in each survey year is 
given in Table 1. This table, and all summary information and results presented in this 
report, include only the data outlined in the previous section as being appropriate for 
analysis. For 2010, the summary statistics are presented using data from all flights, as 
well as broken down by flights with two observers and flights with one observer. 
 
Table 1. Summary of aerial survey data by survey year. Only data considered suitable for 
analysis (as outlined in text) are included.  All biomass statistics are in tonnes.1  

Survey  
year 

Total 
distance 

searched 
(nm) 

Number 
SBT 

sightings
Total 

biomass 

Average 
patches 

per 
sighting

Max 
patches 

per 
sighting

Average 
biomass 

per  
patch  

Median 
biomass 

per 
 patch 

Max 
biomass 

per 
patch 

1993 7603 130 12235 3.9 76 24.4 18.8 203
1994 15180 174 15055 3.3 23 26.5 21.6 246
1995 14573 179 22046 3.6 38 34.7 27.9 225
1996 12284 116 16638 4.1 46 34.9 27.8 147
1997 8813 117 9965 3.0 18 28.1 22.7 202
1998 8550 109 10392 2.3 21 40.9 20.3 964
1999 7555 56 3033 2.4 21 23.0 16.6 121
2000 6775 77 4838 2.6 17 24.1 20.0 100
2005 5968 80 6096 2.4 17 31.8 25.2 194
2006 5150 44 4037 2.0 8 46.9 31.6 268
2007 4872 42 3510 2.6 11 32.8 24.6 121
2008 7462 122 8054 3.5 24 19.0 13.4 314
2009 8101 154 8651 2.6 22 22.0 14.5 170
2010 10559 208 21921 3.9 41 26.8 18.0 634

2010, 2-obs 6736 176 19073 4.3 41 25.5 17.0 634
2010, 1-obs 3823 32 2848 2.2 7 41.3 32.8 234
                                                           
1 The biomass statistics differ slightly from those reported in Table 1 of the 2009 CCSBT report (Eveson 
et al. 2009) because the patch size estimates used in calculating these statistics have been corrected for 
differences between observers (see Appendix A).  Observer differences are re-estimated each year using 
all available data and thus the corrected patch size estimates can change slightly.   
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The total distance searched in 2010, if all flights (with one or two observers) are considered, 
was the highest since 1996. If only two-observer flights are considered, the distance searched 
was close to the average since 1996. The sightings rate (number of sightings per 100 nm) for 
two-observer flights was higher than in previous survey years, as was the amount of biomass 
per nm (Figure 2). This was due in part to very good environmental conditions for spotting 
fish (see next section). The sightings rate for flights with only one-observer was much lower; 
this was expected from the calibration experiments performed in 2008 and 2009 (see last 
year’s report, Eveson et al. 2009). The overall mean and median biomass per patch were 
slightly smaller in 2010 (based on all data) than the average over all years, but larger than the 
previous two years (Figure 3; Table 1).    
 
Similar to last year, sightings in 2010 were concentrated in the eastern half of the survey 
area, with the greatest concentration along the shelf-break (Figure 4). There appears to have 
been a general eastward shift in the distribution of SBT sightings over the years.  

Figure 2. Plots of a) total distance searched (i.e. effort) by year; b) biomass per mile by year; c) 
number of sightings per 100 miles by year. For 2010, only the data from flights with two observers are 
included. Note that these plots are based on raw data, which has not been corrected for 
environmental factors or observer effects. 
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Environmental variables 
Table 2 and Figure 5 summarize the environmental conditions that were present during valid 
search effort in each survey year. All the environmental variables presented were recorded by 
the survey plane, with the exception of sea surface temperature (SST), which was extracted 
from the 3-day composite SST dataset produced by CSIRO Marine and Atmospheric 
Research’s Remote Sensing Project (see Eveson et al. 2006 for more details).  
 
The wind speed during the 2010 survey was lowest on average than all other survey years, 
and SST was also higher and less variable compared to other survey years (Table 2; Figure 
5). Sighting rates tend to be higher with low wind speed and high SST, so overall the 
conditions were very favourable in 2010 for making sightings.    
 
Table 2. Average environmental conditions during search effort for each aerial survey year.   

Survey 
year 

Wind 
speed 

(knots) 

Swell 
height 

(0-3) 

Air 
temp 
(°C) 

SST 
(°C)

Sea 
shadow 

(0-8)
Haze 
(0-3)

1993 3.9 0.8 24.4 19.6 1.8 0.9
1994 4.1 1.5 20.6 19.7 2.7 0.5
1995 4.4 1.7 18.7 19.6 2.7 1.1
1996 4.5 1.6 22.9 19.6 2.1 1.2
1997 4.1 1.7 25.3 21.1 1.6 1.3
1998 3.7 1.7 22.3 20.4 0.9 1.7
1999 4.1 0.9 22.0 19.9 2.9 0.7
2000 4.3 0.6 27.5 20.7 2.6 0.7
2005 4.7 1.5 21.7 20.1 1.6 0.8
2006 5.6 1.5 20.0 20.1 3.5 1.0
2007 5.8 1.3 21.6 20.8 2.0 1.3
2008 3.8 1.4 24.2 20.4 1.4 0.9
2009 3.8 1.4 22.2 21.0 2.1 1.7
2010 3.5 1.1 23.6 21.2 1.8 1.2
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Figure 5.  Boxplots summarizing the environmental conditions present during valid search effort for 
each aerial survey year. The thick horizontal band through a box indicates the median, the length of a 
box represents the inter-quartile range, and the vertical lines extend to the minimum and maximum 
values. The dashed blue line running across each plot shows the overall average across all survey 
years.  
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Methods of analysis 

Analysis of data from flights with two observers  
The methods of analysis used when only data from flights with two observers were included 
remained the same as last year. A brief description of the methods is repeated here, but 
readers are referred to Appendix A for full details. 
 
We fit generalized linear models to two different components of observed biomass—biomass 
per sighting (BpS) and sightings per nautical mile of transect line (SpM). We included the 
same environmental and observer variables in the models as in the past several years. 
Specifically, the models can be expressed as  
 
BpS model: logE(Biomass) ~ Year*Month*Area + SST + WindSpeed 

SpM model:  logE(N_sightings) ~ offset(log(Distance)) + Year*Month*Area +   
       log(ObsEffect) + SST + WindSpeed  + Swell + Haze + MoonPhase 

 
Year, Month, Area and MoonPhase were fit as factors; all other explanatory variables were 
fit as linear covariates.  Note that the term Year*Month*Area encompasses all 1-way, 2-way 
and 3-way interactions between Year, Month and Area (i.e., it is equivalent to writing Year + 
Month + Area + Year:Month + Year:Area + Month:Area + Year:Month:Area).  
 
In both models, the 2-way and 3-way interaction terms between Year, Month and Area were 
fit as random effects, whereas the 1-way effects were fit as fixed effects. Many of the 2-way 
and 3-way strata have very few (sometimes no) observations, which causes instabilities in the 
model fits when treated as fixed effects. One main advantage of using random effects is that 
when little or no data exist for a given level of a term (say for a particular area and month 
combination of the Area:Month term), we still have information about it because we are 
assuming it comes from a normal distribution with a certain mean and variance (estimated 
within the model).   
 
Once the models were fitted, the results were used to predict what the number of sightings 
per mile and the average biomass per sighting in each of the 45 area/month strata in each 
survey year would have been under standardized environmental/observer conditions. Using 
these predicted values, we calculated an abundance estimate for each stratum as 
‘standardized SpM’ multiplied by ‘standardized average BpS’. We then took the weighted 
sum of the stratum-specific abundance estimates over all area/month strata within a year, 
where each estimate was weighted by the geographical size of the stratum in nm2, to get an 
overall abundance estimate for that year. Lastly, the annual estimates were divided by their 
mean to get a time series of relative abundance indices.  
 
We emphasise that it is important to have not only an estimate of the relative abundance 
index in each year, but also of the uncertainty in the estimates. We used the same process as 
last year to calculate CVs for the indices, the details of which are found in Appendix B. 
Briefly, we first obtained standard errors (SEs) for the predicted values of ‘standardized 
SpM’ and ‘standardized average BpS’ in each year/area/month stratum. These were used to 
calculate SEs for the stratum-specific abundance estimates, which were in turn used to 
calculate SEs for the annual abundance estimates. Lastly, we applied the delta method to 
determine SEs for the relative abundance indices. Note that CVs are given simply by dividing 
the SE of each index estimate by the estimate. We calculated confidence intervals for the 
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indices based on the assumption that the logarithm of the indices follows a normal 
distribution, with standard errors approximated by the CVs of the untransformed indices.  

Analysis of data from flights with one or two observers   
We know from the calibration experiments conducted in 2008 and 2009 that a plane with 
only one observer makes fewer sightings than a plane with two observers. Thus, in order to 
include the data collected in the 2010 survey from flights with only one observer, our 
analysis needs to take into account the fact that the number of sightings is expected to be 
fewer with only one observer than with two observers. A method for doing so was proposed 
in last year’s report (Eveson et al. 2009), and was applied this year to the data from the 2010 
survey.   
 
Based on our analysis of the calibration experiment data conducted last year (Eveson et al. 
2009), we expect that, on average, a plane with one observer will make about half (0.496) as 
many sightings as a plane with two observers. We refer to this factor as the “calibration 
factor”. Although we found evidence that the calibration factor differs between observers, the 
data are too limited given its highly variable nature to draw any definitive conclusions. For 
instance, further investigation showed that this result was driven mainly by one flight where a 
large number of sightings were made by the survey plane and not the calibration plane. 
Furthermore, if an observer other than those that participated in the 2008 and 2009 
calibration experiments were to fly as a solo observer in future surveys, then we would not 
have a calibration factor for him/her; thus, it is preferable not to use observer-specific 
calibration factors in the analysis unless it is considered essential.   
 
Recall that prior to fitting the SpM model, we run a pair-wise observer analysis to estimate 
the relative sighting abilities of all observer pairs that have been involved in past and present 
surveys (see “Sightings per mile (SpM) model” section in Appendix A). In order to estimate 
a relative sighting ability for a solo observer, we took the average of the relative sighting 
ability estimates from when he flew as part of a pair (in past and current surveys), and 
multiplied it by the estimated calibration factor. For example, one of the observers who flew 
as a solo observer in the 2010 survey has flown as part of two different observer pairs in past 
and present surveys, with relative sighting ability estimates of 0.90 and 0.92.  If we take the 
average of these two relative sighting ability estimates and multiply it by the calibration 
factor of 0.496, this gives a relative sighting ability estimate for this observer when flying 
solo of 0.45. Thus, we now have relative sighting ability estimates (also referred to as 
“observer effect” estimates) for all observer combinations, so we can proceed with fitting the 
SpM model in the usual way.   
 
The BpS model can be fitted the same way as in the previous section, but now including data 
from the flights with one observer. The only difference is that there is only one biomass 
estimate per school, so it is not necessary to take an average over the estimates made by two 
observers (refer to “Biomass per sighting (BpS) model” section in Appendix A).  
 
Once the BpS and SpM models have been fitted, the calculation of the relative abundance 
indices can proceed in the usual way. We calculated the CVs and confidence intervals using 
the same methods as in the previous section as well; however, we acknowledge that there is 
extra uncertainty in the observer effect estimates for solo observers that are not being 
accounted for in the SpM model. This is an issue for future work, but will only affect the CV 
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of the 2010 estimate in the current analysis (i.e., the CV for the 2010 estimate should be 
slightly larger than reported here).     

Results 
Figure 6 shows the estimated time series of relative abundance indices with 90% confidence 
intervals when data from flights with two observers only are included in 2010. These results 
were provided to the CCSBT for use in the management procedures operating model, since 
they are directly comparable to results provided in past (i.e., they were obtained using the 
same models and do not require new methods for calibrating data from one-observer planes). 
The point estimates and CVs corresponding to Figure 6 are reproduced in Table 3. Although 
the 2010 point estimate remains lower than the average level in the period 1993-1996, it is 
the highest estimate since 1996. The confidence interval on the 2010 point estimate is notably 
smaller when data from one-observer flights are included. This is expected since the amount 
of distance searched and number of sightings increases significantly (see Table 1); recall, 
however, from the Methods section that this confidence interval is an underestimate because 
it does not account for the extra uncertainty in the observer effect estimates for solo 
observers. 
 
Figure 7 compares the results obtained when data from flights with two observers only are 
included in 2010 (as in Figure 6) versus when data from all flights (one or two observers) are 
included. Even though 2010 is the only year with data from flights with one observer, the 
estimates can change for all years since the models are refit using all data, meaning the model 
coefficients, and hence the predicted values, change. However, as we would expect, estimates 
in past years remain very similar, and 2010 is the year with the largest change. The point 
estimate for 2010 is lower when data from flights with one observer are included, but the 
difference is not significant when confidence intervals are taken into account.   
 
Figure 6. Time series of relative abundance estimates with 90% confidence intervals. Results were 
obtained using data from flights with two observers only. 
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Table 3. Results from the aerial survey analysis, obtained using data from flights with two observers 
only.  

Year Index SE CV CI.05 CI.95
1993 2.29 0.37 0.16 1.75 2.99
1994 1.35 0.19 0.14 1.07 1.70
1995 1.94 0.27 0.14 1.55 2.44
1996 1.91 0.36 0.19 1.40 2.60
1997 0.72 0.16 0.22 0.50 1.05
1998 0.77 0.15 0.19 0.56 1.06
1999 0.20 0.07 0.37 0.11 0.36
2000 0.44 0.12 0.27 0.29 0.69
2005 0.88 0.17 0.19 0.64 1.20
2006 0.51 0.14 0.27 0.33 0.79
2007 0.48 0.13 0.26 0.31 0.74
2008 0.82 0.17 0.21 0.58 1.15
2009 0.52 0.12 0.23 0.36 0.76
2010 1.18 0.25 0.21 0.84 1.67

Index = relative abundance point estimates; SE= standard error; CV = coefficient of variation; CI.05 and CI.95 = 
lower and upper range of 90% confidence interval. 
 
 
Figure 7. Comparison of relative abundance estimates and 90% confidence intervals obtained using 
data from flights with two observers only versus data from flights with one or two observers. 
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Model explorations 
As already noted, the environmental conditions in 2010 were highly favourable, with lower 
average wind speed and higher average sea surface temperature (SST) than experienced in 
any of the past surveys. New data, especially data from such extreme conditions, can 
significantly affect the estimated model coefficients and, consequently, the relative 
abundance estimates; thus, we explored the environmental covariates being included in the 
models and their influence on the abundance indices. The last time model selection 
procedures were carried out was in 2006. 
 
Exploratory plots of all the available environmental covariates versus the response 
variables—log(BpS) and log(SpM)—are given in Figure 8 and Figure 9 respectively. SST 
and air temperature are reasonably correlated (Table 4), so we only consider using SST in the 
models. The correlation between other variables is quite low.  
 
Table 4. Correlation matrix for environmental variables. 

 WindSpeed Haze Swell SST LowCloud SeaShadow AirTemp 
WindSpeed 1.00 0.11 0.11 -0.08 0.14 0.07 -0.13 

Haze 0.11 1.00 0.12 0.10 0.11 0.02 -0.21 
Swell 0.11 0.12 1.00 -0.14 0.00 0.15 -0.27 
SST -0.08 0.10 -0.14 1.00 -0.13 -0.21 0.42 

LowCloud 0.14 0.11 0.00 -0.13 1.00 0.07 -0.17 
SeaShadow 0.07 0.02 0.15 -0.21 0.07 1.00 -0.29 

AirTemp -0.13 -0.21 -0.27 0.42 -0.17 -0.29 1.00 
 
 
The current BpS model has just 2 environmental covariates: wind speed and SST.  After 
looking at the exploratory plots of the raw data (Figure 8) and carrying out model selection 
procedures using a fixed effects version of the model (since it much quicker to fit than the 
mixed effects version1),  we added haze and moon phase to the BpS model. The results are as 
follows: 
 
Current covariates Est StdErr t-value P(>| t | )  
SST 0.335 0.057 5.854 0.000 *** 
INT_WindSpeed -0.024 0.028 -0.869 0.385  
Deviance explained = 40.7%     
      
New covariates Est StdErr t-value P(>| t | )  
SST 0.335 0.058 5.739 0.000 *** 
INT_WindSpeed -0.016 0.029 -0.545 0.586  
INT_Haze -0.081 0.063 -1.285 0.199  
factor(MoonPhase)2 -0.127 0.150 -0.846 0.398  
factor(MoonPhase)3 0.501 0.202 2.485 0.013 * 
factor(MoonPhase)4 -0.051 0.123 -0.414 0.679  
Deviance explained = 40.8%     

 

                                                           
1 Recall that the terms being treated as random effects are the Year, Month and Area 2-way and 3-way 
interaction terms.   
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So in the new covariates mixed effects model, only SST comes out strongly significant, with 
moon phase marginally significant. Based on an analysis of deviance, the new BpS model is 
not a significant improvement over the current model. These results suggest that only SST 
needs to be included in the BpS model – we fit this model and found the deviance explained 
to be 40.7%, which is almost identical to the value obtained from the current and new 
covariate models, and strongly supports that only SST is important.  
 

Figure 8. Boxplots of observed biomass per sighting, on a log scale, versus environmental conditions 
present at time of sightings.   
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The current SpM model has the following environmental covariates: SST, wind speed, haze, 
swell, and moon phase. Again based on exploratory plots of the raw data (Figure 9) and 
model selection procedures using a fixed effects version of the model, we added sea shadow 
to the SpM model. Although the sightings rate appears to decrease with increased low cloud 
(Figure 9), it turns out that low cloud is recorded as 0 (on a scale of 0 to 3) 97% of the time, 
so there is not enough contrast in the data to estimate a sensible relationship. Summary 
results comparing the current SpM model and the new (i.e., with sea shadow) model are as 
follows: 
 
Current covariates Est StdErr t-value P(>| t | )  
AvgWindSpeed -0.302 0.024 -12.499 0.000 *** 
AvgSST 0.300 0.045 6.624 0.000 *** 
AvgSwell -0.176 0.055 -3.18 0.002 ** 
AvgHaze -0.145 0.050 -2.891 0.004 ** 
factor(MoonPhase)2 -0.080 0.105 -0.766 0.444  
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factor(MoonPhase)3 -0.139 0.137 -1.012 0.312  
factor(MoonPhase)4 0.179 0.085 2.091 0.037 * 
log(ObsEffect) -1.180 1.132 -1.042 0.297  
Deviance explained = 65.4%     
      
New covariates Est StdErr t-value P(>| t | )  
AvgWindSpeed -0.305 0.024 -12.670 0.000 *** 
AvgSST 0.275 0.046 5.997 0.000 *** 
AvgSwell -0.145 0.056 -2.611 0.009 ** 
AvgHaze -0.139 0.050 -2.781 0.006 ** 
AvgSeaShadow -0.056 0.017 -3.238 0.001 ** 
factor(MoonPhase)2 -0.076 0.104 -0.730 0.466  
factor(MoonPhase)3 -0.135 0.136 -0.995 0.320  
factor(MoonPhase)4 0.176 0.085 2.063 0.039 * 
log(ObsEffect) -1.285 1.128 -1.139 0.255  
Deviance explained = 66.1%     

 
So in the new covariates mixed effect model, all variables are coming out highly significant 
except moon phase, which is just marginally significant. Based on an analysis of deviance, 
the new SpM model (i.e., including sea shadow) does provide a significantly better fit than 
the current model.  
 
Figure 9. Plots of observed sightings per mile (mean +/- 2 standard deviations), on a log scale, versus 
average environmental conditions present while searching. 
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Figure 10 compares the relative abundance time series that are obtained using the current 
versus new covariate models (i.e., BpS with wind speed dropped and SpM with sea shadow 
added). There is almost no difference between the results, so the decision of whether or not to 
make these changes to the models is more a theoretical one than a practical one.  
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Figure 10. Comparison of relative abundance estimates obtained using the current versus new 
covariate models (i.e., BpS with wind speed dropped and SpM with sea shadow added). Results were 
obtained using only data from flights with two observers.     
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The plot of log(SpM) versus wind speed in Figure 9 suggests that the relationship may be 
more complex than linear, with the sightings rate actually lower when there is no wind (0 
knots) than when the wind speed is ≥1 knot, and levelling off at wind speeds ≥6 knots. This 
non-linearity was noted in the past but was not considered a problem since almost all 
observations were within the linear portion of the curve – e.g., of the 1278 sightings made 
prior to 2009, only 7 were made at a wind speed of 0 and 21 at wind speeds above 6 knots. 
However, in 2009 and 2010, the weather conditions were above average (2010 in particular) 
and the number of sightings made at 0 knots was 16 and 56 respectively. This means that the 
relative abundance estimates for these years (2010 in particular) can be affected significantly 
by the relationship assumed for wind speed. More specifically, if we use a relationship that 
has a lower sightings rate at 0 knots compared to a linear relationship, then the 2010 estimate 
will be larger because it will not get “corrected” as much when we use the model to predict 
the sightings rate under standardized conditions (but see below, and Figure 11).  
 
Because the relationship between wind speed and sightings rate can have a significant affect 
on the results, it is worth further consideration. However, for now, there are a couple of 
reasons why we think it is best to continue using a linear relationship: 1) we have not found a 
theoretical reason to explain why sightings would decline when there is no wind 
(glare/reflection on the surface is one potential, but we did not find a relationship between 
glare and wind speed in the data; plus, observers claim such “millpond” conditions are ideal), 
and 2) if we redo the plot in Figure 9 using only data from 2010, then the relationship does in 
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fact look almost linear below 7 knots (Figure 11). Thus, the decline at 0 knots seen in Figure 
9 is being driven by years with much less data at this wind speed.  
 
Figure 11. Plot of observed sightings per mile (mean +/- 2 standard deviations), on a log scale, versus 
average wind speed during the 2010 survey only.  
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Another issue that came to light with our model explorations was that the observer effect is 
not being estimated sensibly in the SpM model. As described in the “Sightings per mile 
(SpM) model” section of Appendix A, prior to fitting the SpM model we estimate relative 
sighting abilities for all observer pairs, with estimates ranging from 0.72 up to 1.0 for the best 
pair. If there was good certainty about these estimates, we could just include them as a 
known offset in the SpM model. However, because there is large uncertainty in the relative 
efficiencies, we chose instead to include log-relative-efficiency as a covariate in the SpM 
model, with the effect size (i.e., “slope”) to be estimated. If the relative efficiencies estimates 
are correct, the slope estimate should be close to one. However, as seen in the SpM results 
presented above, the coefficient of log(ObsEffect) is actually coming out close to negative 
one. Even though it is also coming out non-significant, it is still a worry because this is 
highly counter-intuitive (suggesting that the sightings rate actually declines as our estimates 
of relative sighting ability increases). We investigated further and found that if the SpM 
model is fitted with only the environmental and observer covariates (leaving out the year, 
month and area terms), then the coefficient of log(ObsEffect) does in fact come out positive 
(and significant) as we would expect. This suggests complex interactions between the space-
time strata and the observer effects which we have not yet had time to investigate further.  
 
Moreover, we found that when we fit the SpM model including data from flights with only 
one observer, the problem corrected itself – i.e., the coefficient for log(ObsEffect) came out 
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very close to one and was significant (estimate = 0.96, p-value = 0.003). Presumably this is 
due to having more contrast in the data: the relative sighting ability estimates for the two 
observers who flew solo are 0.45 and 0.49, and since the sightings rate was lower on flights 
with one observer, the slope of the relationship is more obviously positive. When only data 
from two-observer flights are included, the relative sighting ability estimates are all quite 
high (between 0.72 and 1), and they do not always correlate well with the observed sightings 
rate (e.g., an observer pair with a relative sighting ability estimate of say 0.8 can, on average, 
have a higher sightings rate than an observer pair with a relative sighting ability estimate of 
0.9). 
 
Clearly we do not want to continue making predictions using an SpM model with an illogical 
coefficient estimate for the observer effect. Although this will not be the case if we use the 
results which include data from flights with one observer, it is disconcerting that the 
approach is not robust to changes in the data. One possible solution is to include the relative 
sighting ability estimates as offsets to the model and develop alternative ways to propagate 
the uncertainty in these estimates through to the model predictions; we are currently 
investigating ways to do so. In the meantime, we can see how much the relative abundance 
point estimates (without CVs) differ when the SpM model is fit to data from two-observer 
flights with log(ObsEffect) included as an offset opposed to as a covariate (since the 
estimates provided to CCSBT for the data exchange and for inclusion in MP work were 
based on the latter). The results are shown in Figure 12; fortunately, the estimates are not too 
different.   

Figure 12. Comparison of relative abundance estimates obtained when log(ObsEffect) is included as 
an offset in the SpM model versus when it is included as a linear covariate.  Results shown were 
obtained using only data from flights with two observers.    
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Summary 
This was the first year that planes with only one observer flew as part of the scientific survey. 
In order to make our results directly comparable to results provided in past, we first analysed 
the data using only data from flights with two observers. We also redid the analysis including 
data from flights with one observer; this required using new methods for calibrating the data 
from the one-observer flights. The results from the analysis using only two-observer data are 
very similar to the results using both one and two-observer data. In both cases, the relative 
abundance point estimate for 2010 is the highest estimate since 1996, but remains lower than 
the average level in the period 1993-1996.  We note that the CV for the 2010 estimate 
obtained using one and two-observer data is an underestimate because there is extra 
uncertainty in the observer effect estimates for solo observers that are not being accounted 
for in the SpM model – we plan to address this issue in the coming year.  
 
The environmental conditions in 2010 were highly favourable, with lower average wind 
speed and higher average sea surface temperature (SST) than experienced in any of the past 
surveys. New data, especially data from such extreme conditions, can significantly affect the 
estimated model coefficients and, consequently, the relative abundance estimates. Thus, we 
explored the environmental covariates being included in the models and their influence on 
the abundance indices. These explorations brought up some issues for further consideration, 
the most important being: 1) whether a linear relationship between wind speed and sightings 
rate is adequate; and 2) the current method of including observer effects in the SpM model is 
not robust and can lead to counter-intuitive results. In terms of 1), we suggest that the 
evidence against a linear relationship is not strong enough to change the model. In terms of 
2), we are currently investigating an alternative method for including observer effects in the 
SpM model that should correct the problem.     
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Appendix A – Methods of analysis 
Separate models were constructed to describe two different components of observed biomass: 
i) biomass per patch sighting (BpS), and ii) sightings per nautical mile of transect line (SpM). 
Each component was fitted using a generalized linear model (GLM), as described below. 
Since environmental conditions affect what proportion of tuna are available at the surface to 
be seen, as well as how visible those tuna are, and since different observers can vary both in 
their estimation of school size and in their ability to see tuna patches, the models include 
‘corrections’ for environmental and observer effects in order to produce standardized indices 
that can be meaningfully compared across years.  
 
For the purposes of analysis, we defined 45 area/month strata: 15 areas (5 longitude blocks 
and 3 latitude blocks, as shown in Figure A1) and 3 months (Jan, Feb, Mar).  The latitudinal 
divisions were chosen to correspond roughly to depth strata (inshore, mid-shore and shelf-
break). 
 
 
Figure A1.  Plot showing the 15 areas (5 longitudinal bands and 3 latitudinal bands) into which the 
aerial survey is divided for analysis purposes. The green vertical lines show the official transect lines 
for the surveys conducted in 1999 and onwards; the lines for previous survey years are similar but 
are slightly more variable in their longitudinal positions and also do not extend quite as far south 
(which is why the areas defined for analysis, which are common to all survey years, do not extend 
further south). 
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Biomass per sighting (BpS) model 
For the BpS model, we first estimated relative differences between observers in their 
estimates of patch size (using the same methods as described in Bravington 2003). As in 
Bravington (2003), we found good consistency between observers. In particular, patch size 
estimates made by different observers tended to be within about 5% of each other, except for 
one observer, say X, who tended to underestimate patch sizes relative to other observers by 
about 20%.  The patch size estimates were corrected using the estimated observer effects 
(e.g. patch size estimates made by observer X were scaled up by 20%). Because the observer 
effects were estimated with high precision, we treated the corrected patch size estimates as 
exact in our subsequent analyses.  The final biomass estimate for each patch was calculated 
as the average of the two corrected estimates (recall that the size of a patch is estimated by 
both observers in the plane).  The final patch size estimates were then aggregated within 
sightings to give an estimate of the total biomass of each sighting.  It is the total biomass per 
sighting data that are used in the BpS model.   
 
The BpS model was fitted using a GLMM (generalized linear mixed model) with a log link 
and a Gamma error structure.  We chose to fit a rather rich model with 3-way interaction 
terms between year, month and area. This is true not only for the BpS model but also for the 
SpM model described below.  In essence, the 3-way interaction model simply corrects the 
observation (the total biomass of a sighting in the case of the BpS model; the number of 
sightings in the case of the SpM model) for environmental effects, which are estimated from 
within-stratum comparisons (i.e. within each combination of year, month and area).  
 
The 2-way and 3-way interaction terms between Year, Month and Area were fit as random 
effects, whereas the 1-way effects were fit as fixed effects. Many of the 2-way and 3-way 
strata have very few (sometimes no) observations, which causes instabilities in the model fits 
when treated as fixed effects. One main advantage of using random effects is that when little 
or no data exist for a given level of a term (say for a particular area and month combination 
of the Area:Month term), we still have information about it because we are assuming it 
comes from a normal distribution with a certain mean and variance (estimated within the 
model).  
Having decided on the overall structure, we then decided what environmental variables to 
include in the model. Based on exploratory plots and model fits, we determined the two 
environmental covariates that had a significant effect on the biomass per sighting were wind 
speed and, especially, SST.2  Thus, the final model fitted was  
 

logE(Biomass) ~ Year*Month*Area + SST + WindSpeed 
 
where Year, Month and Area are factors, and SST and WindSpeed are linear covariates (note 
that E is standard statistical notation for expected value). 
 

Sightings per mile (SpM) model 
For the SpM model, we first updated the pairwise observer analysis described in Bravington 
(2003), based on within-flight comparisons of sighting rates between the various observers.  
This analysis gives estimates of the relative sighting abilities for the 18 different observer 
                                                           
2 Note that the selection of environmental covariates was undertaken as part of the 2006 analysis, and has not 
been repeated since then. However, now that 4 more years of environmental and survey data have been 
collected, we plan to re-visit the selection of model covariates in the coming year. 
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pairs that have flown at some point in the surveys.  The observer pairs ranged in their 
estimated sighting rates from 72% to 97% compared to the pair with the best rate. 
 
Although this analysis gives reasonable certainty about the relative ranking of different 
observer pairs, the data provide much less information about the relative efficiency; for 
example, even if it is clear from the data that A & B together would see more schools than C 
& D together under the same conditions, it is less clear whether A & B would see 100% more 
or only 10% more. If there was good certainty about the relative efficiencies, we could just 
include the estimates from the pairwise model as a known offset (i.e., as a predictor variable 
with known, rather than estimated, coefficients) when fitting the SpM model. However, 
because of the uncertainty in the relative efficiencies, we chose instead to include log-
relative-efficiency as a covariate in the SpM model rather than as an offset, with the effect 
size (i.e., “slope”) to be estimated. If the relative efficiencies from the pairwise analysis are 
correct, the slope estimate should be close to one. This approximation is not perfect, because 
there is still uncertainty about the relative rankings which we have ignored; in future, we 
hope to formally merge the pairwise model with the SpM model to correctly propagate all the 
uncertainty into the final CVs. 
 
The data used for the SpM model were accumulated by flight and area, so that the data set 
used in the analysis contains a row for every flight/area combination in which search effort 
was made (even if no sightings were made). Within each flight/area combination, the number 
of sightings and the distance flown were summed, whereas the environmental conditions 
were averaged. The SpM model was fitted using a GLMM with the number of sightings as 
the response variable, as opposed to the sightings rate.  The model could then be fitted 
assuming an overdispersed Poisson error structure3 with a log link and including the distance 
flown as an offset term to the model (i.e. as a linear predictor with a known coefficient of 
one).   
 
As we did for the BpS model, we included terms for year, month and area, as well as all 
possible interactions between them, in the SpM model, and we fitted the 2-way and 3-way 
interaction terms as random effects (see BpS model section). We determined what 
environmental variables to include in the model based on exploratory plots and model fits. A 
number of environmental covariates correlate highly with the number of sightings made (but 
not with each other) and came up as significant in the model fits (see footnote 2). The final 
model fitted was: 
 

logE(N_sightings) ~ offset(log(Distance)) + Year*Month*Area + log(ObsEffect)  
+ SST + WindSpeed  + Swell + Haze + MoonPhase 
 

where Year, Month and Area are factors, MoonPhase is a factor (taking on one of four levels 
from new moon to full moon), and all other terms are linear covariates.   
 

Combined analysis 
The BpS and SpM model results were used to predict what the number of sightings per mile 
and the average biomass per sighting in each of the 45 area/month strata in each survey year 
                                                           
3 Note that the standard Poisson distribution has a very strict variance structure in which the variance is equal to 
the mean, and it would almost certainly underestimate the amount of variance in the sightings data, hence the 
use of an overdispersed Poisson distribution to describe the error structure. 
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would have been under standardized environmental/observer conditions4. Using these 
predicted values, we calculated an abundance estimate for each stratum as ‘standardized 
SpM’ multiplied by ‘standardized average BpS’. We then took the weighted sum of the 
stratum-specific abundance estimates over all area/month strata within a year, where each 
estimate was weighted by the geographical size of the stratum in nm2, to get an overall 
abundance estimate for that year. Lastly, the annual estimates were divided by their mean to 
get a time series of relative abundance indices.    

                                                           
4 In our predictions, we used above average conditions, namely SST=21, wind speed =3, swell=1, haze=0, low 
cloud=0, moon phase=4 (full moon), and observer effect=1 (i.e. the ‘best’ observer pair). 
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Appendix B – CV calculations 

This appendix provides details of how CVs for the aerial survey abundance indices were 
calculated. 

 

Let ˆ
ijkB  be the predicted value of BpS in year i, month j and area k under standardized 

environmental/observer conditions (see footnote 4 above), and ( )ˆˆ ijkBσ  be its estimated 

standard error. Similarly, let ˆ
ijkS  be the predicted value of SpM in year i, month j and area k 

under the same environmental/observer conditions, and ( )ˆˆ ijkSσ  be its estimated standard 

error.  Then, 
ˆ ˆ ˆ

ijk ijk ijkA S B=  
is the stratum-specific abundance estimate for year i, month j and area k. 

 

Since ˆ
ijkB  and ˆ

ijkS  are independent, the variance of ˆ
ijkA  is given by 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
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2 2 2 2 2 2

ˆ ˆ ˆ

ˆ ˆ ˆˆ ˆ ˆ

ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ ˆ

ijk ijk ijk

ijk ijk ijk ijk ijk ijk

ijk ijk ijk ijk ijk ijk

V A V S B

V S E B V B E S V S V B

S B B S S Bσ σ σ σ

=

= + +

≈ + +

 

The annual abundance estimate for year i is given by the weighted sum of all stratum-specific 
abundance estimates within the year, namely  

ˆ ˆ
i k ijk

j k
A w A= ∑∑  

where kw  is the proportional size of area k relative to the entire survey area ( 1k
k

w =∑ ).   

 
If the ˆ

ijkA ’s are independent, then the variance of ˆ
iA  is given by   

( ) ( )2ˆ ˆ
i k ijk

j k
V A w V A= ∑∑  

Unfortunately, the ˆ
ijkA ’s are NOT independent because the estimates of BpS (and likewise, 

the estimates of SpM) are not independent between different strata. This is because all strata 
estimates depend on the estimated coefficients of the environmental/observer conditions, so 
any error in these estimated coefficients will affect all strata. Thus, we refit the BpS and SpM 
models with the coefficients of the environmental/observer covariates (denote the vector of 
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coefficients by θ 5) fixed at their estimated values (θ̂ ).  The predictions of BpS and SpM 
made using the ‘fixed environment’ models should now be independent between strata, so the 
stratum-specific abundance estimates calculated using these predictions – which we will 
denote by ( )ˆ ˆ

ijkA θ  – should also be independent between strata. Thus, we can calculate the 

variance of ˆ
iA  conditional on the estimated values of the environmental/observer coefficients 

as 

( ) ( )( )2ˆ ˆ ˆ ˆ|i k ijk
j k

V A w V Aθ θ= ∑∑  

where ( )( )ˆ ˆ
ijkV A θ  is calculated using the formula given above for ( )ˆ

ijkV A  but using the BpS 

and SpM predictions and standard errors obtained from the ‘fixed environment’ models.    

To calculate the unconditional variance of ˆ
iA , we make use of the following equation:  

( ) ( )( ) ( )( )
( ) ( )

ˆ ˆ ˆ| |

ˆ ˆ ˆ|

i i i

i i

V A E V A V E A

V A V A

θ θ

θ

θ θ

θ

= +

≈ +
  

where the first term is the conditional variance just discussed and the second term is the 
additional variance due to uncertainty in the environmental coefficients. The second term can 
be estimated as follows 

( )
ˆ ˆ

ˆ i i
i

A A
V Aθ θθ θ

′⎛ ⎞ ⎛ ⎞∂ ∂
≈ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

V  

where 
ˆ

iA
θ

⎛ ⎞∂
⎜ ⎟⎜ ⎟∂⎝ ⎠

 is the vector of partial derivatives of ˆ
iA  with respect to θ  (which we calculated 

using numerical differentiation), and θV  is the variance-covariance matrix of the 
environmental coefficients6. 

 

Finally, the relative abundance index for year i is calculated as 

1

ˆ
ˆ

1 ˆ
i

i n

i
i

AI
A

n =

=

∑
 

 
Using the delta method, we can approximate the variance of îI  by  

                                                           
5 θ  contains the environmental/observer coefficients from both the BpS and SpM models; i.e. 

BpS SpM( , )θ θ θ=  
6 Recall that θ  contains the environmental/observer coefficients from both the BpS and SpM models, so 

BpS

SpM

θ
θ

θ

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

V 0
V

0 V
.  The variance-covariance matrices for the individual models are returned from the 

model-fitting software.  
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( ) ( )
2ˆ ˆˆ

ˆ
i

i i
i

I
V I V A

A

⎛ ⎞∂
≈ ⎜ ⎟⎜ ⎟∂⎝ ⎠

 

 
Then, the standard error of îI  is given by  

( ) ( )ˆ ˆ
i iI V Iσ =  

and the coefficient of variation (CV) of îI  is given by 

( ) ( )ˆ
ˆCV ˆ

i
i

i

I
I

I

σ
= . 

 


