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Introduction 
In previous versions of the CCSBT operating model (OM) (i.e., up to and including 
version sbtmod21), the 1990s RMP tag release and recapture data had been modelled 
by pooling the data over cohorts, and not keeping track of recaptures by the year of 
release. The SBT tagging experiments were designed so that cohorts were tagged in 
multiple consecutive years, and as such the recapture data contain information on both 
fishing mortality and natural mortality.  By pooling the data across cohorts, the 
information on natural mortality is greatly reduced.   
 
The most recent version of the OM (sbtmod22) includes a revised model for the tag 
data based on a Brownie model (Brownie et al. 1985).  Brownie models were 
designed for analysing multiyear tag data, and can provide direct estimates of both 
natural and fishing mortality rates. The ability of the Brownie approach to separate 
natural and fishing mortality rates is a direct result of the multiple release events.  
 
This document describes the revised model and likelihood for the 1990s tagging data.   
 

Methods 

Tagging model 

The dynamics for fish that are tagged and released are assumed to be the same as 
those for the general population. Thus, the tagging model assumes two seasons per 
year, one from Jan 1 to Jun 30 and the other from Jul 1 to Dec 31, with pulse fisheries 
operating at the start of each season.  Tag releases have generally occurred near the 
beginning of the calendar year, so they are treated as discrete annual events occurring 
at the start of the first fishing season (i.e., on Jan 1).  Because newly tagged fish will 
not be completely mixed during the season following their release, the model allows 
for the harvest rate to differ between tagged fish in the season directly following their 
release and untagged fish in that same season.   
 
We know that a significant proportion of tags recaptured in the fisheries are not 
returned. Thus, age and year-specific reporting rate estimates are included in the 
model.  A number of alternative estimates for the reporting rates have been proposed 
in past, but the estimates currently being used in the OM are from Table 5a, Option 8, 
of Eveson and Polacheck (2005), adjusted for the various overcatch scenarios.    
 
Tag shedding is another issue that needs to be taken into account.  All fish were 
double tagged so that shedding rates could be estimated (based on the number of 
recaptured fish with one tag versus two tags still attached).  We assume that the 
probability of a tag being retained after time τ  (in years) at liberty can be described 
by 
 

( )Q e ττ ξ −Ω=          

 
where ξ  is the fraction of tags immediately retained (i.e., proportion 1 ξ−  are 

immediately shed) and Ω is the continuous shedding rate.  
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 In an independent analyses preformed by Dr. W.S. Hearn (CSIRO Marine and 
Atmospheric Research), shedding rates were found to be tagger-dependent, so 
separate values of ξ and Ω were estimated for 6 groups of taggers found to have 
statistically similar shedding rates (Eveson and Polacheck 2009).    
 
Taking into account all of the above, the probability of a fish from cohort c tagged at 
age a by a tagger in group g being recaptured at age i and having at least one of its 
two tags returned is: 
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where  

( ) ( ) ( ), , 1, , 2, ,1 1 expc g i c i c i i gS h h M′ = − − − − Ω  

( ) ( ) ( ), , 1, , 2, ,1 1 exp 2c g i c i c i i gS h h M′′ = − − − − Ω  

( ) ( )( ), . 1, , 1, , 2, ,1 exp 0.5c g i c i c i i g c if h h M h′ = + − − + Ω  

( ) ( )( ), , 1, , 1, , 2, ,1 exp 0.5 2c g i c i c i i g c if h h M h′′ = + − − + Ω  

( )( ) ( )* *
, , 1, , 2, ,1 1 expc g i c i c i i gS h h M′ = − − − − Ω  

( )( ) ( )* *
, , 1, , 2, ,1 1 exp 2c g i c i c i i gS h h M′′ = − − − − Ω  

( ) ( )( )* * *
, , 1, , 1, , 2, ,1 exp 0.5c g i c i c i i g c if h h M h′ = + − − + Ω  

( ) ( )( )* * *
, , 1, , 1, , 2, ,1 exp 0.5 2c g i c i c i i g c if h h M h′′ = + − − + Ω  

 
Parameters are defined as follows: 

iM  is the natural mortality rate for age i fish 

1, ,c ih  is the proportion of age i fish from cohort c harvested in season 1 

2, ,c ih  is the proportion of age i fish from cohort c harvested in season 2 
*
1. .c ih  is the proportion of age i fish from cohort c that were tagged at  

age i and recaptured in the season directly following release  

,c iυ  is the reporting rate for age i fish from cohort c 

gξ  is the immediate retention rate for tags released by tagger group g 

gΩ  is the continuous shedding rate for tags released by tagger group g 

 
In terms of the parameterization used for the population model of the OM: 
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where , ,f c i iH +   is the fishing proportion of fishery f in year c+ i  for fish of age i (i.e., for 

fish of age i from cohort c). 
 

Predicted Tag Returns 

Let Nc,a,g denote the number of fish from cohort c tagged at age a by taggers in group 
g.  We will refer to this set of tag releases as set (c, a, g).  Let Rc,a,g,i be the observed 
number of fish from release set (c, a, g) that were recaptured at age i and had at least 
one of their tags returned (for simplicity, we will refer to this as the number of tag 
returns).  Then, the predicted number of tag returns is given by 
 

, , , , , , , ,
ˆ

c a g i c a g c a g iR N p=  

 

Tag likelihood 

If all assumptions of a Brownie tagging model are met (e.g., complete mixing; 
independence between tagged fish), then the numbers of tags returned at ages a to I, 
plus the number not returned by age I, corresponding to the Nc,a,g  releases from 
release set (c, a, g) have a multinomial distribution; i.e., 
 

{ } { }( ), , , , , , , , , , , , , , , , , , , , , ,, , , ~ Multinom , , , ,1c a g a c a g I c a g c a g c a g c a g a c a g I c a gR R N R N p p p• •− −K K  

 
where a dot in the subscript denotes summation over the index it replaces (e.g., 

, , , , , ,c a g

I

c a g ii a
R R• =

=∑ ).  

 
However, in practice, the tag return data will almost certainly be over-dispersed 
relative to a multinomial distribution (i.e., more variable).  To account for this, we 
model the tag returns for release set (c, a, g) using a Dirichlet-multinomial 
distribution, parameterized such that the amount of variance in the data is φ times that 
of multinomial data (for details refer to Polacheck et al. 2006).  Then, the likelihood 
function for the observed numbers of returns from all release sets is the product of 
Dirichlet-multinomials. 
 
Specifically, 
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where:  

( ) ( ), , , , 1c a g c a gNω ϕ ϕ= − −  
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Note that ,c gΚ  is a constant that can be omitted when maximizing the likelihood.    

 
The negative log likelihood (leaving off the constant) can then be expressed as 
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 Finally, the negative log likelihood for the tagging model is  
 

ln lntag RL L− = −  

 
In optimizing the likelihood, we input the reporting rate estimates and shedding 
parameter estimates into the model as known.  Also, we have found in simulations 
that the over-dispersion factor φ cannot be estimated reliably within the model.  Thus, 
we estimate this parameter based on the residuals from the model assuming 
multinomial returns, as described in the ‘Standardized residuals’ section below, and 
input it as fixed to the model. 
 

Standardized residuals 

Under the assumption of multinomial tag return data, the observed number of tag 
returns at age i corresponding to release set (c, a, g) is approximately normally 
distributed with mean and variance as follows: 
 

( )( ), , , , , , , , , , , , , , , , ~ Normal , 1c a g i c a g c a g i c a g c a g i c a g iR N p N p p−&  

 
Thus, approximate standardized normal residuals can be calculated as 
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If the multinomial assumption is correct, the variance of these standardized residuals 
should be approximately 1.  If the variance is in fact x, this provides a reasonable 
estimate of the over-dispersion factor (i.e., ˆ xϕ = ).   
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Thus, standardized residuals for the Dirichlet-multinomial model can be calculated as  
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An estimate of ϕ  was calculated using the tag residuals obtained from each cell of the 
grid under the assumption of multinomial tag returns, and was found to range from 
2.2 to 2.9 with a mean of 2.35.  (Note that this analysis was performed using the 3 
January 2009 version of sbtmod22, and could be updated using the most recent 
version.)   
 

Mixing assumption 

Incomplete mixing of tagged animals within the full population and heterogeneity in 
the capture probabilities is a common and challenging problem with tagging 
experiments. We classify incomplete mixing into two basic types: systematic and 
unsystematic.   
 
Unsystematic incomplete mixing refers to situations where there is still a large degree 
of mixing among tagged and untagged fish and the pattern of mixing has a large 
random component such that, on average, the probability of capture is the same for 
tagged and untagged fish.  This type of non-mixing results in overdispersion in the tag 
return data, and we dealt with it by using a Dirichlet-multinomial distribution for the 
tag returns instead of a multinomial distribution. 
.      
Systematic incomplete mixing refers to the situation where there is a systematic and 
repeatable pattern of non-mixing between tagged and untagged fish – for example, if 
all tagging was done late in the season in one location and fish in that location and 
time period only remain in one part of the stock’s overall range. Such systematic non-
mixing can induce biases into the population and mortality estimates if not accounted 
for within the model. One type of systematic non-mixing can occur if tagging occurs 
around the same time as peak catches, in which case it is important to allow for an 
initial period of non-mixing. The revised tag model does so by allowing for the 
harvest rate to differ between tagged fish in the season directly following their release 
and untagged fish in that same season.  Another type of systematic non-mixing may 
occur for SBT due to the fact that tagging occurs almost exclusively off the south 
coast of Western Australia and in the Great Australian Bight.  As such, it is possible 
that only a fraction of the overall juvenile population is available to tagging. If the 
component of the population not available to tagging remains in a different 
geographical region than the tagged fish, then this could result in biased estimates of 
the mortality rates (Polacheck et al. 2002 use simulations to explore the nature and 
degree of biases that can result from such non-mixing).  It may be possible to allow 
for such non-mixing in the OM in a crude but simple way by assuming that fishing 
mortality rates on the tagged population differ by a constant factor from fishing 
mortality rates on the general population. This is currently being explored by 
members of the CCSBT MP Technical Group.   
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Summary 
In this paper we described the revised tagging model and likelihood being used in the 
most recent version of the CCSBT OM (sbtmod22, 21 July 2009).  The SBT tagging 
experiments were designed so that cohorts were tagged in multiple consecutive years 
(i.e., at consecutive ages). The revised tag model is based on a Brownie model that 
takes advantage of the information on natural mortality provided by this experimental 
design.  In the previous tag model, the tag data were pooled across cohorts so that the 
information on natural mortality was greatly reduced.  In addition, the revised model 
incorporates tagger-specific estimates of shedding rates that were estimated from an 
independent analysis of the double-tagging data. Tag shedding was not taken into 
account in the previous tag model. 
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