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Abstract 
We present an update to a previous contribution that considered a tree-based method for estimat-
ing an index of abundance for the Southern Bluefin Tuna fishery using a non-parametric 
approach.  Specifically, we consider tree-based models for CPUE data, enhanced by the tech-
nique known as bootstrap aggregation, or ‘bagging’.  We find it useful to estimate expected effort 
as a preliminary step. CPUE is then estimated conditional on effort, evaluated at the expected 
effort.  The methods model zero and non-zero responses separately, for several reasons, but inci-
dentally avoiding the need to adjust zero values artificially before taking logarithms.  With 
strongly empirical models there is a danger that spurious relationships between effort and CPUE 
will be detected.  This update goes some way to addressing that issue by a simulation study to 
show how the discovered relationships break down as the degree of spatial  integrity in the data 
is artificially degraded. 

 

Introduction 
The Southern Bluefin Tuna (SBT) is a very mobile fish but not much is known about its move-
ment.  The little that is known suggests that the SBT has a very aggregated distribution and the 
location of concentrations of fish (based on catch rates) change with time, both within and be-
tween years (see Polacheck and Preece 2001).  The spatial pattern of fishing effort also changes 
with time (see also Polacheck and Preece 2001), which may (or may not) reflect the changing 
spatial distribution of fish abundance. 

Interpretation of CPUE data is complicated by the fact that fishers will naturally attempt to target 
their effort in regions with high density.  Moreover, the spatial distribution of fish changes over 
time and the changes are likely to be at least partially a function of the overall abundance (e.g. 
density dependent habitat effects), which is the quantity being estimated.  Thus, the distribution 
of effort in those squares fished does not constitute a “representative” sample and the estimation 
of the average density (including areas not fished) needs to take into account a bias and changing 
biases in the distribution of effort.  Hearn and Polacheck (1998) present several indices of abun-
dance for SBT based on bounds for the ability of fishers to target successfully those areas where 
SBT occur.  At the one extreme it is assumed that fishers have no ability to target areas of higher 
density and that the areas with no effort have similar densities to those that have been fished.  At 
the other extreme, it is assumed that fishers have perfect ability to target areas with SBT and thus 
areas with no effort have zero abundance.  These scenarios were developed as a method for plac-
ing credible bounds on the relative density in the temporal/spatial strata in which there was no 
fishing effort.  The two scenarios were seen as embedding two ends of a continuum in the rela-
tionship between the distribution of fishing effort and the underlying abundance of SBT (that is, 
the ability to target effort in high density areas.) 

Other approaches have been adopted to estimate the CPUE in unfished squares.  Thomas and 
Toscas (1997) and Toscas et al. (1998) considered a geostatistical approach (see Cressie 1993, 
Chapter 3, and SAS 1999, PROC MIXED) to the estimation of abundance in unfished squares.  
The abundance in these squares was estimated from the CPUE of adjacent squares in the same 
year and month.  Toscas et al. (2001) extended the geostatistical approach to incorporate a tem-
poral component.  In this paper the abundance in unfished squares was estimated from the CPUE 
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of adjacent squares in both time and space.  Hearn and Polacheck (1998) use the general linear 
model to estimate the CPUE in unfished squares. 

These parametric analyses suggest that there are significant higher order interactions between 
year, area and seasons for CPUE.  Strongly factorial models with high order interactions are of-
ten a problem simply because of the large number of degrees of freedom they require, as often 
only a relatively small number of them are useful in the sense of adding to the predictive capac-
ity of the model.  The majority of degrees of freedom for such inflated models often transfer 
error from the data set into errors of prediction.  For parametric models to work well we usually 
need very effective explanatory (or predictor) variables to be available.  Moreover these explana-
tory variables have to be available at matching spatial and temporal scales to that of the 
observations themselves.  At present we do not have explanatory variables that meet these re-
quirements for other than a very short part of the history of the fishery. 

The approach presented in this paper is an attempt to bypass these and other difficulties with en-
hanced regression and classification tree modelling techniques that appear to be able to generate 
surrogates for local predictors using simply spatial and temporal terms.  This approach seems 
better able to capture abrupt changes in the response, and complex interactions between time and 
space covariates are in effect automatically generated as needed.  The enhancement is bootstrap 
aggregation or ‘bagging’ (see Breiman 1996 and 1998).  Watters and Deriso (2000) used regres-
sion trees to estimate indices of abundance from CPUE data for Bigeye tuna and Shono et al. 
(2001) used the same technique to estimate annual CPUE indices for SBT.   

The method in this paper also avoids the need to adjust zero quantities in order to take loga-
rithms, which we regard as a defect of most of the present approaches, (including some former 
ones of ours).  We prefer to model the zero component of a distribution as a separate mixture 
component of the whole distribution and then to use standard techniques on the positive compo-
nent, for which taking logarithms directly is feasible, if necessary.  Since regression trees are 
fitted by a least squares process, it is necessary to transform the response in order to ensure rea-
sonable homogeneity of error variance, and the log transformation seems appropriate for this in 
our cases. 

The next section outlines the data used in the analyses and the statistical methodology.  The sec-
tion after that details the results and the paper concludes with a discussion. 

Materials and methods 
Data and definition of the fishery 
Data were provided by the National Research Institute of Far Seas Fisheries (NRIFSF) within the 
context of the Commission for the Conservation of the Southern Bluefin Tuna (CCSBT) assess-
ments.  The term ‘square’ is used for a fixed 5° × 5° geographical region between 30° and 50° 
south and 340° to 185° east for which catch and effort data are available.  The term ‘cell’ will 
normally be used for a square in a given month of the year but sometimes it will mean a specific 
square of a given month of a given year, as will be clear from the context.  For this paper the 
fishery has been defined as the collection of cells that have received fishing effort in any of the 
years 1969 to 2000.  Thus the extent of the fishery varies from month to month and for any given 
month consists of all squares that have been fished at least once in that month throughout the 
data record available.  For each year data are available for the months April to September. 
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The weighting scheme used to calculate annual indices is the same as the scheme described in 
Hearn and Polacheck (1998).  Each cell is given a weight that does not vary from year to year, 
but may vary between second and third quarters.  Annual indices must take due account of the 
spatial distribution of effort and abundance.  This is achieved by annual estimation of catch per 
unit effort averaged over the entire fishery, with weights that vary spatially in such a way as to 
reflect the spatial allocation of effort. 

Modelling strategy 
Our joint distribution of effort and catch may be described as follows: 

1. The marginal distribution of effort, or hooks, (H), is a mixture of a discrete probability at 
zero and a continuous distribution with positive support.  The probability that a cell has zero 
hooks allocated is modelled as a function of spatial and temporal covariates.  The conditional 
mean log-number of hooks allocated, given that the allocation is positive, is also modelled as 
a function of the same covariates. 

2. The conditional distribution of catch given effort (C | H) for a cell, is clearly zero with prob-
ability 1 if H = 0, but otherwise is also a two-component mixture, again with the discrete 
probability mass at zero and the conditional mean log-catch (given both H > 0 and C > 0), 
both functions of the expected log-hooks as well as of spatial and temporal covariates. 

3. In both cases the variance of the positive component on the log scale is assumed to be con-
stant. 

A primary analysis on the log scale is needed because (a) most of the influences on the hooks 
and catch distributions are likely to be multiplicative and hence (b) the coefficient of variation is 
likely to be close to constant.  The analysis method uses least squares, which if it is to be effi-
cient must have a relatively constant variance in the response. 

For fished cells, that is, for cells with non-zero effort assigned, the obvious estimator of CPUE is 
the ratio of catch to hooks.  This is called the nominal CPUE for the cell.  The smoothed estimate 
of CPUE is the ratio of the estimated mean catch given the applied effort to that applied effort.  
For cells with no effort assigned it seems reasonable to estimate potential CPUE by first estimat-
ing the mean number of hooks for the cell (which for any cell in the fishery ought to be positive, 
though in some cases will be very small) and then estimating the mean catch conditional on ef-
fort being applied at its expected value.  This leaves open the case where the estimated mean 
number of hooks for a given cell is zero.  This can happen with simple tree-model estimators due 
solely to the roughness of the model.  Bagging, however, when applied sufficiently vigorously 
seems to provide non-zero mean estimates for hooks in every cell of the fishery, though indeed 
for some cells the estimate is very small.  The definition of the fishery we have adopted here is 
consistent with that of previous studies.  An alternative definition for the future may be that a cell 
belongs to the fishery only if its expected mean allocation of hooks is positive. 

Finally an estimate of the CPUE abundance index is obtained by weighted averaging of local 
CPUE estimates. 

Estimating the probability that for a given year a cell is fished is achieved by bagging classifica-
tion trees (see Breiman, 1996).  This involves forming M replicate data sets, each consisting of N 
randomly selected observations (with replacement) from the original data set – so called ‘boot-
strap samples’ – and constructing a classification tree on each of the M replicate data sets.  Large 
values of M take much more computational time, of course.  For the analyses in this paper M was 
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chosen to be 100.  Note also that the bagging procedure also has a similar function to cross-
validation and pruning for a single tree, so the control on the complexity of individual trees can 
afford to be fairly simple. 

The bagged estimate of the probability of a cell being fished in a given year can then be calcu-
lated as the average of the estimated probabilities from the M bootstrapped replicate data sets.  
The tree model works with a deviance measure that is zero if and only if the final node is homo-
geneous, that is, it is a classification as opposed to a regression tree model.  The explanatory 
variables used to estimate the probability that a cell is fished are year, month, latitude and longi-
tude, with the first three considered to be nominal factors and the last numeric. 

Estimating the expected number of hooks allocated to any cell in a year is a two-stage process.  
The first step is to estimate the conditional expectation of log(H) | H > 0, where H denotes ‘the 
allocated hooks to a cell’, by regression trees.  (Note that upper case italics are used to represent 
random variables.)  Bagging a regression tree is similar to bagging a classification tree, except 
that the bagging prediction is the average of the estimated conditional expectations from each of 
the M regression trees.  For cell i this can be expressed as: 

( ) [
1

1E log | 0 BSE log( ) 0 ,|
M

i i j i i
j

MH H H H
=

> ≅ >   ∑ ]   (1) 

where  denotes ‘the estimate from the jth bootstrap sample of […]’ (and ‘ ’ is to be read 
‘is estimated by’).  The second stage estimates the unconditional expected number of hooks de-
ployed in a cell, which uses the result: 

BSE j ≅

[ ] ( ) ( ){ } ( )
( ) ( ){ }

2

2

1
2

1
2

E P 0 exp E log | 0  P 0 0

P 0 exp E log | 0 ,

i i i i lh i

i i i lh

H H H H H

H H H

σ

σ

= > > + + =  

= > > +  

×

)0

 (2) 

where  uses the bagged estimate for the probability that cell i has effort and the quan-

tity  used in a simple bias correction for the back transformation of log hooks is estimated as: 
(P iH >

2
lhσ

( ) ( ){ 22

1

1 log log | 0 ,
hn

lh k k k
k

nh
h E H Hσ

=

≅ − }>  ∑     

where  is the number of observed cells with effort.  (Here and elsewhere a lower-case version 
of a term is used to represent the observed value of the random variable.)  The predictor variables 
used in the (bagged) tree models for the expectation E[log(H) | H > 0] include the terms used for 
the probability that a square was fished and the probability of effort itself.  

hn

Estimating the probability that there is a non-zero catch in a cell is another two-stage process.  
The first stage uses bagged classification trees to estimate the conditional probability that a cell 
has some non-zero catch of SBT given H > 0.  The explanatory variables used to train the model 
are year, month, latitude, longitude, probability of effort, observed hooks, and both unconditional 
and conditional expected hooks.  The explanatory variables year, month and latitude are once 
again treated as factors and longitude as a numeric variable.    
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Estimating the expected number caught in a cell is also a two-stage process.  Firstly, regression 
trees are used to estimate the conditional expectation , where .  The 
regression tree is then enhanced by bagging once again.   The explanatory variables made avail-
able to the tree model fitting procedure include all previously used predictors and the estimate of 
the conditional probability that there is non-zero catch in a cell.  The bagging estimate for cell i 
is therefore: 

( )E[log / | ]C H H h= 0h >

( ) ( )
1

1E log / | ( 0) 0 BSE log / | ( 0) 0
M

i i i i i j i i i i i
j

MC H H h C C H H h C
=

= > ∩ > ≅ = > ∩ >      ∑     

    (3) 

The second stage in the process is to estimate CPUE in a cell given hooks.  Provided 
 this can be done using: ( )P 0iH > > 0,

( ) ( ){ }1 2
2P | 0 exp E log / | ( 0) 0i i i i i i i i i lcCPUE C H h C H H h C σ≅ = > = > ∩ > +  

2
lcσ

           (4) where 

the quantity  used in the (naïve) bias correction for the back transformation of  to ( )log /C H
CPUE C H=  is estimated as: 

( ) ( ){ } 2
2

1

1 log / E log / | ( 0) 0
cn

lc j j j j i i i
j

nc
c h C H H h Cσ

=

 ≅ − = > ∩ > ∑  

and  is the number of cells with non-zero catch. cn

In (4) the conditioning is at the actual number of hooks allocated for the fished cell.  Another es-
timate of CPUE that applies for both fished and unfished cells is the analogous quantity 
evaluated at the expected number of hooks: 

E[ | E[ ]] 
E[ ]

i
i

i

C H HCPUE
H
=≅     (5) 

which is well-defined provided , or at least this property holds for the estimate of 
, which, as we have noted, is effectively guaranteed by the definition of the fishery.  Equa-

tion (5) will be used as the main component of the annual CPUE index based on all cells in the 
fishery. 

E[ ] 0iH >
E[ ]iH

Statistical software 
The R statistical environment (see http://cran.r-project.org) was used to run the analyses in this 
paper.  The ipred package for R was used to perform the bagging analyses, which in turn 
needed rpart, MASS, mlbench, survival, class and nnet packages for R also to be 
available. 

Results 
Figure 1 shows the bagged estimates for the yearly CPUE of all the SBT caught.  That is, the re-
sults are based on the total catch (in numbers of fish) and not a proportion of the catch 
representing a particular age group.  The yearly estimates are calculated for all cells that have 
appeared at least once in the 32 years of data.  The figure gives the estimated CPUE for the 
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fished areas in any particular year, the unfished areas in the same year and the combined fished 
and unfished areas.  The annual CPUE estimates “Fished cells: E” are calculated using (5) and 
the “Fished cells: O” are calculated using (4).  The estimates for the combined fished and un-
fished areas are based on (5).  As a point of reference, Figure 1 also plots two empirical (or 
‘nominal’) yearly CPUE series.  The ‘nominal: weighted’ series is the yearly weighted arithmetic 
mean of the observed cells, and the ‘nominal: catch / hooks’ is the total catch for that year di-
vided by the total hooks allocated to all cells. 

One striking feature of the figure is how close the bagging estimates of the yearly CPUE for the 
fished areas are to the ‘nominal: weighted’ CPUE, suggesting that bagging is able to capture 
most of the complex spatial and temporal interactions evident in the observed data.    A more in-
teresting but just as striking a feature of the figure is the low estimated annual CPUE for the 
unfished cells for most years.  Such a result implies that there is effective targeting and the pri-
mary reason no fishing took place in the unfished areas is that the catch would have been low. 

Reliability checks 
It is clearly critical to check that the results in Figure 1 are meaningful and reliable.  One aspect 
of this is to estimate the prediction error or misclassification rate for each of the four components 
in the estimation process outlined in the methods section.  For the first component – the estima-
tion of the probability that a square is fished – bagging gives a misclassification rate of 13.6%.  
For the second component – the estimation of the conditional expected log hooks in a square, 
given there is effort – bagging gives a prediction error of 1.36.  For the third component – the 
estimation of the conditional probability that there is a catch in the square, given the hooks in a 
square – bagging gives a misclassification rate of 7.3%.  For the final component, – he estima-
tion of the conditional expectation  in a square – bagging gives a 
prediction error of 0.84. 

( 0E[ / | ( 0) ]CC H H h ∩ >= > )

Training and test data sets 
A more comprehensive way to check the results in Figure 1 is to split the data randomly into two 
data sets: the training and test data sets that we have chosen to be equal sized.  The training data 
are used to fit the model, including bagging, and the test data, is used to validate the fitted model 
with comparable but independent data.  This process may be repeated several times. 

Running a full analysis on the training data and then fitting the model to the test SBT data gives 
a misclassification rate of 16.0% for the first component in the estimation process – the estima-
tion of the probability that a square is fished – for the test data set.  This result is not very 
different from the corresponding result in the previous paragraph in which the analyses were run 
with all the data included.  The prediction error, defined as the average squared difference be-
tween observed and expected log hooks, is 2.37 for the second component of the estimation 
process – the estimation of the conditional expected log hooks in a square, given that there is ef-
fort – for that square in the test data.  Such a value admittedly represents very high variability on 
the hooks scale, an effect we hope to improve if finer scale data and better non-spatial and non-
temporal habitat predictors become available.  This prediction error is slightly elevated relative 
to the corresponding result in which all the SBT data are included in the analysis.  The misclassi-
fication rate is 8.8% for the third component of the estimation process – the estimation of the 
conditional probability that there is a catch in a square, given the hooks in a square – for the test 
data.  This result is marginally higher than the corresponding result in which all the SBT data are 
included in the analysis.  The prediction error is 0.84 for the final component of the estimation 
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process – the estimation of for a square– for the test data.  This 
prediction is the same as the corresponding result in which all the SBT data are included in the 
analysis. 

( 0E[ / | ( 0) ]CC H H h ∩ >= > )

The estimated yearly CPUE for the test data set can be found in Figure 2.  The results show that 
for the test data set the estimated yearly CPUE for the fished areas is marginally lower than the 
empirical yearly CPUE of the test data, but captures all the important trends in the empirical 
yearly CPUE.  In addition, the estimated yearly CPUE for the unfished areas in the test data is 
higher than the estimated yearly CPUE for the unfished areas in the whole data set (see Figure 
1).  Figure 2 in essence suggests that bagging is able to capture and model the main features in 
the SBT data. 

To study further the usefulness of bagging an examination of the results for the individual cells 
in the test data set is useful.  Figure 3 shows the fourth root of the observed number of hooks 
against the fourth root of the estimated number of hooks for the test data set.  (Taking the fourth 
root is visually close to the log transformation but avoids the complication of zero values.)  
Figure 3 reveals that as the observed hooks in the test data set increase then in general the esti-
mated hooks for the test data also increase.  Figure 4 plots the same data plotted in Figure 3 but 
breaks it up by year.  An examination of the plots in this figure suggests that the relationship be-
tween observed hooks and estimated hooks for the test data holds for all 32 years. 

Figure 5 shows the fourth root of the observed CPUE plotted against the fourth root of the esti-
mated CPUE for the test data set, calculated using (5).  This figure illustrates that as the observed 
CPUE in the test data set increases then the estimated CPUE for the test data also increases.  
Only a very small number of moderate to large estimated CPUE values have observed CPUE 
values of zero.  Figure 6 shows the same data as plotted in Figure 5 but breaks it up by year.  
This figure shows that the relationship between observed and estimated CPUE for the test data 
holds reasonably well for all 32 years, although the relationship does not appear to be as strong 
in the early years. 

For comparison, Figure 7 shows the fourth root of the observed number of hooks against the 
fourth root of the estimated number of hooks for the training data set.  As expected, it is clear 
from this figure that for the training data the agreement between the observed number of hooks 
and the estimated number of hooks is closer than that for the test data (see Figure 3).  As for the 
test data, this figure illustrates that as the observed number of hooks in the training data set in-
creases then the estimated number of hooks for the training data set also increases.  Similar 
comments can be made regarding Figure 8, which plots the fourth root of the observed CPUE 
values against the fourth root of the estimated CPUE values for the training data set, calculated 
using (5). 

To check how well bagging estimates the probability that there is effort in a square, it is useful to 
compare for the test data the bagging probabilities against bagging classification of the squares.  
Previously it was mentioned that the bagging probability of a square being fished is the mean of 
M replicate data sets.  Another approach could be to classify the square according to that class 
which has majority in the M replicate data sets.  Table 1 compares the results of such “majority 
vote” bagging with the average probability approach for the effort part of the modeling.  The re-
sults in Table 1 show that when a square is classified as being unfished then most squares have 
bagging probability of being fished less than 0.38.  When a square is classified as being fished 
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then most squares have bagging probability of being fished greater than 0.56.  This implies that 
the bagging probability approach has worked well. 

Table 2 compares for the test data the results of “majority vote” conditional bagging classifica-
tion for whether there is catch in a square with the conditional bagging probability that there is 
catch in the square given the log hooks in the square.  The results in Table 2 show that when a 
square is conditionally classified as having no catch then most squares have conditional bagging 
probability of there being catch less than 0.49.  When a square is conditionally classified as hav-
ing catch then most squares have conditional bagging probability of there being catch greater 
than 0.66.  Once again, this implies that the bagging probability approach has worked well. 

Checks on the methodology using simulation studies 
Strongly empirical models such as the one we have adopted here could be seen as liable to detect 
spurious patterns in the data due to an implicit over-fitting.  Another question that naturally 
arises is the extent to which this kind of modelling manages to capture and make use of spatial 
information.  To investigate these issues in the present case we propose to run the same fitting 
process to data sets which are progressively more degraded by internal randomisation.  Four such 
simulated data sets were used.  All involved the permutation of existing data.  The permutation 
of the data was spatial in nature only in the sense that for any datum the month component re-
mains correct but the spatial components may change.  Nevertheless even if the month 
component is correct, varying the cell fished to a different area within a month in effect injects 
some temporal change. 

The four schemes used were: 

1. The observed monthly effort values for cells were randomly permuted over cells simulating a 
new spatial distribution of effort and the observed CPUE values were randomly matched to 
the permuted effort values.  

2. The observed monthly effort and CPUE pairs were randomly permuted over cells. 

3. The CPUE values were kept fixed but the non-zero effort patterns were randomly permuted 
among each other.  (In other words, those squares that had no observed effort in a month con-
tinued to have no effort, but the squares with positive observed effort kept the same CPUE 
but not necessarily the same effort.)   

4. The existing pattern of effort was maintained but the CPUE values were randomly permuted 
amongst those squares with positive effort.  (Similar to 3 with Effort and CPUE values inter-
changing roles.) 

While maintaining some contact with the actual data, these schemes simulate different scenarios 
in an effort to tease out any weaknesses in the modelling strategy.   The features of the real data 
that are randomly broken are the association of effort with CPUE (apart from zero effort, which 
is always associated with an unknown CPUE and vice versa), and the association of effort or 
CPUE with a specific spatial location.  Temporal associations are not broken. 

Note that the first two schemes alter the actual areas fished, that is cells that have no effort in the 
actual data can be given effort in these cases, whereas the last two schemes maintain the actual 
areas fished.  In this sense the first two schemes may be considered to inject a greater degree of 
spatial disengagement with the real data. 
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As for the analyses of the non-permuted observed data, the simulated data were analysed using 
all the data and randomly splitting up the data into train and test data sets.  Five simulations were 
run for each permutation scheme.  Results from one simulation for each scheme are presented in 
large format for the test data sets and using all the data.  The results for all five simulations for 
each scheme are presented in small format in Figure 17 to Figure 20, showing that the outcomes 
were typical. 

Although viewing the model outcomes via a weighted annual CPUE may not be the most sensi-
tive way of judging the internal workings of the procedure, it is the outcome of primary 
consequence and we limit our investigation to this consequential summary measure. 

Figure 9 to Figure 12 show the estimated yearly CPUE values for representative simulations for 
the four schemes, respectively, when all the data are used; Figure 13 to Figure 16 show the same 
output diagrams for representative simulations for the four schemes for the test data sets, using a 
model developed from a complementary training set in the usual way. 

An examination of Figure 9 and Figure 10 reveal that for the first two simulation schemes the 
enhanced tree-based method estimates more similar yearly CPUE values for the fished and un-
fished squares, than in the other two schemes.  While the overall trend in annual CPUE will 
largely be dominated by the individual cell CPUE’s on which it is based, this result – the failure 
to unlink fished and unfished cells – is to be expected particularly in the first simulation scheme 
in which both the distribution of effort was random in space and the distribution of CPUE within 
cells was independent of effort (given that the effort was positive).  These results suggest that 
spatial information is important and is being utilised by the model fitting process to separate 
CPUE in fished and unfished areas, although there has to be an element of speculation in this 
interpretation.  Figure 11 and Figure 12 reveal that for the third and fourth simulation schemes 
the enhanced tree-based method distinguishes between fished and unfished cells, especially for 
the first half of this series, but not quite as successfully as for the original data.  This suggests 
that even if the CPUE or effort figures are not correctly matched but the fished areas remain true, 
the effect on the annual estimate of CPUE is not all that much affected using this method.  This 
strengthens our view that the spatial aspect is one important component in the prediction of the 
difference between the expected CPUE for fished and unfished squares.  (Note that ‘fished’ and 
‘unfished’ cells here mean according to the permuted data; in the latter two schemes these agree 
with the original data but in the former two they will not.)  In addition, the fact the estimated dif-
ferences between fished and unfished squares is substantially greater for the original data sets 
than in either of the latter two simulation schemes indicates that the joint and linked distribution 
of CPUE and effort is important.  This suggests that an association of CPUE and effort (i.e. tar-
geting) may be an additional important component in the estimation models prediction of the 
differences between the expected CPUE in fished and unfished squares. 

We do not claim that the method is entirely free of over-fitting bias, however.  Some insight on 
this, with care, can be got by looking at Figure 21, which presents three ratios 

a) The ratio of CPUE estimates for fished cells using expected and observed hooks, respec-
tively (blue line) 

b) The ratio of CPUE estimates for fished cells using expected hooks to that for unfished 
cells (which can only used expected hooks – red line) 
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c) The ratio of CPUE estimates for fished cells using observed hooks to that for unfished 
cells (green line) 

The first four panels correspond, in order, to the four simulation scenarios and the fifth panel 
shows the same information for the original data and model.  Similar information is given in 
Figure 22 to Figure 25, which gives the same information for the simulation runs with the train-
ing and test data, in each case showing the same information for the original test data and model 
in the sixth position. 

The first two panels in Figure 21 show that there is still some tendency for fished and unfished 
cells to separate, with fished cells having slightly higher expected CPUE.  We can only explain 
this in terms of over-fitting bias, but comparing the situation with the final panel clearly shows 
that this bias is not enough to explain the effect detected in the real data.  Even so, there appears 
to be an appreciable effect of over-fitting.  The deviations in the ratio (fished / unfished) in the 
real data (final panel) are bigger than seen in the simulations where there should not be a differ-
ence.  The third and fourth panels, where spatial information is preserved along with the correct 
CPUE or effort figure, respectively, show a more complex pattern where some relevant informa-
tion – which has to be partially spatial – has clearly been retained.  In the third panel it is not 
surprising that tossing away effort as predictor does not do much to this summary measure, with 
respect to fifth panel (real data).  When the unfished CPUE estimate falls to a very low value, as 
happens for the fourth panel particularly, the ratio becomes somewhat unstable.  The large ratios  
might be an artefact of the ratio measure; however, there is some time consistency in that there 
are large values of the ratio for several successive years.  The information in the first four panels 
of Figure 21 are based on only one simulation run, so care needs to be taken when drawing infer-
ences.  No more simulations were run because of computing and time constraints.  Many more 
simulations need to be run to see how often patterns and their magnitudes are repeated when 
there should be none. 

Figure 22 to Figure 25, in our view, reinforce this interpretation of over-fitting bias, somewhat.  
In Figure 22 and Figure 23 the ratio of fished to unfished cell CPUE estimates lie much closer to 
unity and tend to oscillate around them, indicating that if an independent test data set is used the 
over-fitting effects diminish.  However in the last two figures, which correspond to cases where 
spatial and some other pertinent information is preserved there is a pattern still apparent, al-
though there is a large increase in variance.  Notice that in Figure 24 and Figure 25 there is no 
very consistent pattern in the five simulations (in contrast with the results for the full data), again 
strengthening the suggestion of over-fitting effects emerging. 

The separation between effort and CPUE is never quite complete.  In a sense all the effort figures 
are known, with a lot of them for any year/month combination being zero.  The CPUE figures 
are a mixture of positive, zero and unknown values, with all the unknown values always coupled 
with the zero efforts and vice-versa.  The aim is to estimate these unknowns.  Simulation 
schemes presented here do not entirely separate effort and CPUE.  Even so, simulation schemes 
first, third and fourth set things up so effort provides no predictive power on CPUE when effort 
is positive, so it may be reasonable to conjecture that, for the real model, the zero effort has no 
predictive power on CPUE.  For the second simulation scheme, however, positive effort does 
help predict CPUE, and thus presumably zero effort does too.  Position does not affect the distri-
bution of effort and CPUE in the second simulation scheme; hence prediction depends on the 
unconditional distribution of CPUE.  The trouble with this scheme is that the distribution of 
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CPUE when effort is zero is unobserved, meaning that when estimating for none fished areas this 
is done using a biased sample of CPUE values. 

Reliability check information for the simulation results presented in Figures 9 to 12 can be found 
in Table 3 and those for Figures 13 to 16 can be found in Table 4.  The corresponding results 
from the actual data (full data set and test data set respectively) is also shown for comparison.  
An examination of the results in Table 3 reveals that when effort and CPUE are randomly per-
muted, either separately (first scheme) or together (second scheme), the misclassification error 
for the first component of the modelling (the estimation of the probability that a square is fished) 
increases nearly three fold.  For these two schemes the prediction error for the second  (the esti-
mation of the conditional expected log hooks in a square, given there is effort) and fourth 
component (the estimation of E[  in a square) of the modelling and 
the misclassification error for the third component (the estimation of the conditional probability 
that there is a catch in the square, given the hooks in a square) of the modelling also are mark-
edly higher than is the case when the data are not permuted.  For the third simulation scenario, 
where only effort is randomly permuted within the fished cells, only the prediction error of the 
second component of the modelling is markedly higher than in the non-permuted case.  For the 
fourth simulation scenario, where only CPUE is randomly permuted within the fished cells, the 
misclassification error for the third component of the modelling and the prediction error for the 
fourth component of the modelling are markedly higher than in the non-permuted case.  Similar 
remarks can be made for the reliability check information in Table 4.  Note that in every case the 
third simulation scheme, where spatial and CPUE information is cogent but effort information is 
dissociated, these performance statistics are generally very comparable with the actual data case. 

( 0/ | ( 0) ]CC H H h ∩ >= > )

To ascertain what impact weighting has on the simulation outputs, Figure 26 to Figure 29 plot 
the non-weighted estimated yearly CPUE for the four simulation schemes when all the data are 
included.  Figure 30 corresponds to Figure 21, except it plots for the four simulation schemes the 
ratio values for the non-weighted estimated yearly CPUE.  An examination of Figure 21(d) and 
Figure 30(d) suggests that weighting actually reduces the extreme ratio values.  The investigation 
of a variance-related weighting regime may be of some interest.  Here, when effort is small, the 
CPUE will have greater variability. 

Discussion 
Shone et al. (2001) use the regression tree methods CHAID and CART to model the CPUE for 
the 1969 to 2000 SBT data.  The two main components of the present approach, namely the four-
stage conditional chain of models to capture both effort and catch in the fishery and the use of 
bagging to render stable the tree-model components and improve prediction accuracy make the 
present approach substantially different to that of Shone et al. (2001) and Watters and Deriso 
(2000). 

Both key quantities, H and C, are modelled as mixtures of a saltus at zero, continued by a log-
normal component for the positive values.  This acknowledges that, in both cases, there is a non-
negligible zero component but the positive component has approximately a constant coefficient 
of variation, requiring a log-transformation to be done prior to any least squares procedure that 
assumes constant variance.  Regression trees are indeed estimated by least squares so transforma-
tions of the dependent variables to achieve homoscedasticity should always be considered. 

Although, on their own, regression and classification trees are unstable as predictors, they are 
very effective for modelling discontinuous change and complex interactions between variables.  
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The individual trees are easily interpretable, even if this feature is lost through bagging.  The 
analyses presented in the results section illustrate that the bagging of regression and classifica-
tion trees can result in good estimates for expected number of hooks and the expected CPUE in a 
cell (see Figures 3, 5, 7 and 8).  The good estimation of number of hooks, numbers caught and 
the expected CPUE in as cell holds for all 32 years of the data (see Figures 4 and 6).  The estima-
tion of the probability of a cell being fished and the conditional probability that cell has catch 
also is good (see Tables 1 and 2).  The estimated yearly CPUE for the fished cells for the test 
data follows the empirical weighted yearly CPUE for the test data although it is marginally low 
for some years (see Figure 2).  The estimated yearly CPUE for the fished cells for all the data is 
very close to the empirical weighted yearly CPUE for all the data (see Figure 1).  The combina-
tion of bagging and regression and classification trees has led to results that accurately reflect 
large-scale features of the real data and have accounted for at least some of the discontinuous 
change and complex interactions between variables so evident in the SBT data. 

 

Through simulations, we investigated the performance of the model under four scenarios which 
progressively removed the links between location, effort, and CPUE. The aim was to check 
whether the method would tend to find spurious patterns: in particular, when CPUE and effort 
were independently and randomly distributed in space, we would expect there to be no consistent 
difference between estimated CPUE in fished and unfished squares. The results of the simula-
tions do suggest that the method may “discover” a certain amount of pattern where none exists, 
e.g. in terms of the average difference between estimated CPUE in fished and unfished squares. 
Nevertheless, the extent of pattern generated in the simulations through “over-fitting” was much 
less than that found in the real data, suggesting that the estimated differences between fished and 
unfished squares is not just an artefact of model-fitting. This conclusion is reinforced by the re-
sults from splitting the data into test and training sets. However, it is important to note that, for 
each of the four scenarios, time allowed only a single simulation replicate to be done. Until fur-
ther replicates can be done, any general conclusions about the method’s performance (extent of 
over-fitting) or precision need to be made with caution. 

 

Our results provide one plausible interpretation of the observed historical catch and effort data 
for SBT. However, we have not fully explored the ability of our models to cope with alternative 
hypotheses for why areas are sometimes not fished. This would require simulation-testing using 
mechanistic models of fish and fishery behaviour. Nevertheless, given the ability of the model to 
explain the data, it may be worth considering the CPUE indices from this method as one alterna-
tive measure of relative abundance in the context of SBT stock assessments and conditioning of 
operating models. 
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Figure 1: Nominal and tree-based estimates of CPUE, with separate contributions from fished and unfished 
cells. 
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Figure 2: The empirical and estimated bagging yearly CPUE for the fished and unfished cells in the test data 
set. 
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Figure 3: Observed vs estimated number of hooks, both fourth-root transformed 
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Figure 4: Yearly plots of the fourth root of observed number of hooks against the fourth root of estimated 
number of hooks for the test data. 
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Figure 5: The fourth root of observed CPUE against the fourth root of estimated CPUE for the test data. 
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Figure 6:  Yearly plots of the fourth root of observed CPUE against the fourth root of estimated CPUE for 
the test data. 
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Figure 7: Plot of the fourth root of observed number of hooks against the fourth root of estimated number of 
hooks for the training data. 
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Figure 8: Plot of the fourth root of observed catch against the fourth root of estimated catch for the training 
data. 
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Table 1:  This table presents for the test data percentiles for the bagging probability of there being effort in 
squares with bagging classifications as not having and having effort. 

Percentile 
Bagging probability for 

squares classified as hav-
ing no effort 

Bagging probability for 
squares classified as hav-

ing effort 

0 0.0048 0.4448 

10 0.0134 0.5604 

20 0.0286 0.6238 

30 0.0514 0.6894 

40 0.0808 0.7421 

50 0.1193 0.8035 

60 0.1696 0.8606 

70 0.2245 0.9076 

80 0.2960 0.9429 

90 0.3791 0.9730 

100 0.5537 0.9955 
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Table 2:  This table presents for the test data percentiles for the conditional bagging probability of there be-
ing catch in squares with conditional bagging classifications as not having and having catch. 

Percentile 

Conditional Bagging 
probability for squares 
classified as having no 

catch 

Conditional Bagging 
probability for squares 

classified as having catch 

0 0.0161 0.4853 

10 0.1267 0.6617 

20 0.1936 0.7712 

30 0.2423 0.8612 

40 0.2823 0.9182 

50 0.3249 0.9762 

60 0.3610 0.9942 

70 0.4079 0.9950 

80 0.4520 0.9981 

90 0.4886 0.9994 

100 0.5656 0.9994 
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Figure 9: The empirical and estimated bagging yearly CPUE for the fished and unfished cells when effort is 
randomly permuted in space and CPUE is then randomly permuted in space to those cells with effort. 
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Figure 10: The empirical and estimated bagging yearly CPUE for the fished and unfished cells when effort 
and CPUE are randomly permuted in space. 
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Figure 11: The empirical and estimated bagging yearly CPUE for the fished and unfished cells when the spa-
tial pattern for CPUE is unchanged, but effort is randomly permuted in space for those cells where there is 
effort. 
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Figure 12: The empirical and estimated bagging yearly CPUE for the fished and unfished cells when the spa-
tial pattern of effort is unchanged, but CPUE is randomly permuted in space for those cells where there is 
positive effort. 
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Figure 13: The empirical and estimated bagging yearly CPUE for the fished and unfished cells in the test data 
set when effort is randomly permuted in space and CPUE is then randomly permuted in space to those cells 
with effort. 
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Figure 14: The empirical and estimated bagging yearly CPUE for the fished and unfished cells in the test data 
set when effort and CPUE are randomly permuted in space. 
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Figure 15: The empirical and estimated bagging yearly CPUE for the fished and unfished cells in the test data 
set when the spatial pattern for CPUE is unchanged, but effort is randomly permuted in space for those cells 
where there is effort. 
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Figure 16: The empirical and estimated bagging yearly CPUE for the fished and unfished cells in the test data 
set when the spatial pattern of effort is unchanged, but CPUE is randomly permuted in space for those cells 
where there is effort. 
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Table 3:  Reliability check results for the original observed data and the four simulation schemes shown in 
Figure 9 to Figure 12. 

   Simulation scheme 

Modelling 
component 

Reliability 
check Observed data  First Second Third Fourth 

First 
Misclassification 

error 13.6% 39.6% 39.4% 13.6% 13.4% 

Second Prediction error 1.36 1.98 1.97 1.96 1.34 

Third 
Misclassification 

error 7.3% 13.5% 14.1% 7.8% 13.7% 

Fourth Prediction error 0.84 1.29 1.27 0.86 1.29 

 

 
Table 4:  Reliability check results for the test data with the real data model, and the four simulation schemes 
for the test data sets depicted in Figure 13 to Figure 16. 

   Simulation scheme 

Modelling 
component 

Reliability 
check Test data First Second Third Fourth 

First 
Misclassification 

error 16.0% 38.6% 38.8% 15.3% 15.6% 

Second Prediction error 2.37 3.82 3.75 3.88 2.36 

Third 
Misclassification 

error 8.8% 14.1% 15.9% 8.6% 13.7% 

Fourth Prediction error 0.84 1.69 1.74 0.86 1.61 
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Figure 17: The empirical and estimated bagging yearly CPUE for the fished and unfished cells of five simu-
lated test data sets when effort is randomly permuted in space and CPUE is then randomly permuted in space 
to those cells with effort. 
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Figure 18: The empirical and estimated bagging yearly CPUE for the fished and unfished cells for five simu-
lated test data sets when effort and CPUE are randomly permuted in space.   
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Figure 19: The empirical and estimated bagging yearly CPUE for the fished and unfished cells of five simu-
lated test data sets when the spatial pattern for CPUE is unchanged, but effort is randomly permuted in space 
for those cells where there is effort. 

35 



An update on estimating a CPUE Series for SBT 

 

 

1970 1975 1980 1985 1990 1995 2000

0
5

10
15

Year

C
PU

E 
x 

10
00

Estimated
Fished cells: E
Unfished cells
Fished cells: O
Nominal: weighted
Nominal: catch / hooks

1970 1975 1980 1985 1990 1995 2000

0
5

10
15

Year

C
PU

E 
x 

10
00

Estimated
Fished cells: E
Unfished cells
Fished cells: O
Nominal: weighted
Nominal: catch / hooks

1970 1975 1980 1985 1990 1995 2000

0
5

10
15

Year

C
PU

E 
x 

10
00

Estimated
Fished cells: E
Unfished cells
Fished cells: O
Nominal: weighted
Nominal: catch / hooks

1970 1975 1980 1985 1990 1995 2000

0
5

10
15

Year

C
PU

E 
x 

10
00

Estimated
Fished cells: E
Unfished cells
Fished cells: O
Nominal: weighted
Nominal: catch / hooks

1970 1975 1980 1985 1990 1995 2000

0
5

10
15

Year

C
PU

E 
x 

10
00

Estimated
Fished cells: E
Unfished cells
Fished cells: O
Nominal: weighted
Nominal: catch / hooks

 
Figure 20: The empirical and estimated bagging yearly CPUE for the fished and unfished cells of five simu-
lated test data sets when the spatial pattern of effort is unchanged, but CPUE is randomly permuted in space 
for those cells where there is effort. 
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Figure 21:  The ratio of CPUE for fished and unfished cells for (a) when effort is randomly permuted in space and CPUE is then randomly permuted in 
space to those cells with effort; (b) when effort and CPUE are randomly permuted in space; (c) when the spatial pattern of CPUE is unchanged, but 
effort is randomly permuted in space for those cells where there is effort; (d) when the spatial pattern of effort is unchanged, but CPUE is randomly 
permuted in space for those cells where there is positive effort; and (e) original observed data. 
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Figure 22:  The ratio of CPUE for fished and unfished cells of five simulated test data sets when effort is randomly permuted in space and CPUE is then 
randomly permuted in space to those cells with effort.  The last panel shows the same information for the original model and test data. 
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Figure 23:  The ratio of CPUE for fished and unfished cells of five simulated test data sets when effort and CPUE are randomly permuted in space.  The 
last panel shows the same information for the original model and test data. 
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Figure 24:  The ratio of CPUE for fished and unfished cells of five simulated test data sets when the spatial pattern of CPUE is unchanged, but effort is 
randomly permuted in space for those cells where there is effort.    The last panel shows the same information for the original model and test data. 
 

 40



An update on estimating a CPUE Series for SBT 

1970 1975 1980 1985 1990 1995 2000

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Year

R
at

io

Fished:E/Unf ished

Fished:O/Unf ished

Fished:E/Fished:O

1970 1975 1980 1985 1990 1995 2000

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Year

R
at

io

Fished:E/Unf ished

Fished:O/Unf ished

Fished:E/Fished:O

1970 1975 1980 1985 1990 1995 2000

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Year

R
at

io

Fished:E/Unf ished

Fished:O/Unf ished

Fished:E/Fished:O

1970 1975 1980 1985 1990 1995 2000

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Year

R
at

io

Fished:E/Unf ished

Fished:O/Unf ished

Fished:E/Fished:O

1970 1975 1980 1985 1990 1995 2000

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Year

R
at

io

Fished:E/Unf ished

Fished:O/Unf ished

Fished:E/Fished:O

1970 1975 1980 1985 1990 1995 2000

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Year

R
at

io

Fished:E/Unf ished

Fished:O/Unf ished

Fished:E/Fished:O

 
Figure 25:  The ratio of CPUE for fished and unfished cells of five simulated test data sets when the spatial pattern of effort is unchanged, but CPUE is 
randomly permuted in space for those cells where there is effort.    The last panel shows the same information for the original model and test data. 
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Figure 26: The non-weighted empirical and estimated bagging yearly CPUE for the fished and un-
fished cells when effort is randomly permuted in space and CPUE is then randomly permuted in 
space to those cells with effort. 
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Figure 27: The non-weighted empirical and estimated bagging yearly CPUE for the fished and un-
fished cells when effort and CPUE are randomly permuted in space. 
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Figure 28: The non-weighted empirical and estimated bagging yearly CPUE for the fished and un-
fished cells when the spatial pattern for CPUE is unchanged, but effort is randomly permuted in 
space for those cells where there is effort. 
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Figure 29: The non-weighted empirical and estimated bagging yearly CPUE for the fished and un-
fished cells when the spatial pattern of effort is unchanged, but CPUE is randomly permuted in space 
for those cells where there is positive effort. 
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(d)  
Figure 30:  The ratio of non-weighted yearly CPUE for fished and unfished cells for (a) when effort is randomly permuted in space and CPUE is then 
randomly permuted in space to those cells with effort; (b) when effort and CPUE are randomly permuted in space; (c) when the spatial pattern of 
CPUE is unchanged, but effort is randomly permuted in space for those cells where there is effort; and (d) when the spatial pattern of effort is un-
changed, but CPUE is randomly permuted in space for those cells where there is positive effort. 
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