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ABSTRACT 

This paper discusses various possible sampling and statistical analysis schemes for 
estimating proportions-at-age of SBT in catches, based on the collection of otoliths 
and length frequency samples.  We introduce two hybrid estimators that efficiently 
use the length sample as well as the age subsamples to estimate proportions-at-age. 
The new methods are shown to give more precise estimates than age-length keys for 
SBT. The gain in precision is large for the GAB fishery, intermediate for the Japanese 
long-line fishery, and minimal for the Indonesian fishery where fish length carries 
almost no information about likely age. We consider what gains in efficiency might 
be achievable using non-proportional subsampling of length groups. Although 
subsampling design and size of length frequency sample have some impact on 
precision, the main determinant is number of otoliths sampled. Tables are included 
showing what CVs could be obtained at different sample sizes of otoliths and length 
frequencies. 
 

1 INTRODUCTION 

This paper discusses various possible sampling and statistical analysis schemes for 
estimating proportions-at-age of SBT in catches, based on the collection of otoliths 
and length frequency samples.   
 
The usual way of estimating proportions-at-age in a given year, using age-at-length 
samples and a length distribution sample in that same year, is via an age-length key 
(ALK). The length distribution is only used to weight the sample distributions of age-
at-length; no use is made of the information content of the length distribution itself. 
This is potentially inefficient because—at least for a small fish—fish length alone 
does provide some information on fish age, given that we already know something 
about growth. For large fish, the information provided about age is very imprecise, so 
it is impossible to manage without at least some otolith sampling. However, otolith 
sampling is expensive, especially compared to the collection of length frequency data. 
In designing a sampling scheme, it is therefore important to assess how much extra 
precision can be obtained by efficient use of length samples as well as age samples. 
 
The paper is structured as follows. In section 2, we develop a common framework for 
estimating age proportions, showing how the ALK and iterated age-length key 
(IALK) fit in. We then develop a hybrid maximum-likelihood estimator, which 
combines (i) the prior information on age provided by fish length distributions alone, 
and (ii) the data on age-at-length distributions from otolith sub-samples. As an 
example, we show how the hybrid methods can be applied to published data on 
Greenland turbot. Section 3 shows what CVs on proportions-at-age could be achieved 
under different sampling schemes, in three major SBT fisheries with very different 
age distributions: purse seiners in the GAB, Japanese long-liners, and Indonesian 
long-liners. We show how CV would vary for different sample sizes of (i) length 
distribution, and (ii) age-at-length distributions. We compare the precision of three 
different estimators: (a) the hybrid estimator with known growth parameters, (b) the 
hybrid estimator where growth parameters need to be estimated from the same data, 
and (c) a conventional ALK. We also show some simple examples of how precision 

1 



Estimation of age profiles of Southern Bluefin Tuna 

would be affected by different length-subsampling protocols within a fishery (i.e. 
taking otoliths from relatively more small fish, or from relatively more big fish). 
Finally, section 4 contains the conclusions and discussion. 
 
It is important to note that we are not trying to fully specify a sampling and analysis 
scheme in this paper. Rather, the aim is to establish broadly what precision could be 
expected from various levels of sampling coverage in the main SBT fisheries. 
Appropriate target levels for precision depend on the assessment and management 
process, and are not explicitly specified as yet. We have not, therefore, tried to devise 
an "optimal" sampling design tuned to achieve some pre-specified precision at 
minimum cost. However, based on the achievable CVs in section 3, it should not be 
difficult to evaluate the general implications of different designs for assessment and 
management; for example, Pope (CCSBT-CPUE/0203/10) shows how "management 
precision" can be estimated for a simple "management rule" (a status quo TAC in his 
example). 
 
We have deliberately, but only temporarily, overlooked several details: in particular, 
within-season growth, errors in age or length measurements, and estimation of over-
dispersion in the length distribution (e.g. when fish from the same set tend to be of 
similar size). Although it would be necessary to give these at least some consideration 
when faced with real data, they are essentially technical details which could be 
addressed in future methodological work. We do not expect the overlooked details to 
substantially affect the precision that could be achieved (except perhaps in the case of 
measurement error). Further discussion may be found in section 4. 

2 A LIKELIHOOD FRAMEWORK FOR LENGTH AND AGE-AT-
LENGTH DATA 

Let a be the measured age of a fish, and s be the size (i.e. the length; the terms "size" 
and "length" are interchangeable here). Suppose we have n pairs of measurements 
(ai,si) from the same fishery, condensed into frequencies nas  giving the number of fish 
aged a and of size s. We assume that these data have been obtained through random 
subsampling within size classes, so that the set { }min max:asn a a a≤ ≤  is distributed 

multinomially with fixed total s asa
n = n∑  and probabilities of age-at-length pa|s (so 

that  for all s). The form of p| 1a sa
p =∑ a|s is discussed below. The log-likelihood ASΛ  

from the age subsamples is therefore 
 

( |log )AS ass a
n pΛ =∑ ∑ a s                 

                 (1) 
 
We also have available N measurements of size sj, condensed into frequencies Ns 
giving the number of fish of size s. We assume that each of these N fish is an 
independent random sample from the true length-frequency distribution. The set 
{ }min max:sN s s s≤ ≤

SΛ

 is therefore distributed multinomially with total N and 
probabilities of length ps (the form of which is discussed below).  The log-likelihood 

from the length samples is therefore 
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logS ss
NΛ =∑ sp

AS

                  
                 (2) 
 
The joint log-likelihood is . It is shown in the Appendix that this is valid 
regardless of whether the n age subsamples are, or are not, taken from the same actual 
fish used in the N length samples (provided that all the fish do come from the same 
underlying population). 

SΛ + Λ

 
The goal of analysis is to estimate the proportions at age pa. These do not appear 
directly in the log-likelihoods, but do affect the distribution of the data through their 
influence on pa|s and ps, as explained below. 
 
Section 2.1 discusses four approaches, but first there we make some general points 
about the above framework. 
 
Note 1: Our definition of pa is the expected proportion at age in a random sample 
caught from the population by the fishery. This means that pa is a product of two 
terms: the true proportion-at-age in the population, multiplied by the selectivity-at-age 
in the particular fishery being sampled. Similar definitions apply to ps, pa|s and ps|a (the 
distribution of length-at-age); they are to be interpreted as applying to a "selectivity-
weighted population". This is entirely appropriate for estimating age composition in 
the catch, where selectivity per se is irrelevant. We therefore do not explicitly 
incorporate selectivity parameters in our framework. However, it is important not to 
forget about selectivity when incorporating prior information pertaining to the whole 
population (e.g. on size-at-age) into analyses pertaining to one fishery. Selectivity is 
also crucial when making inferences about the true population age composition, but 
that depends on details of the stock assessment which are beyond the scope of this 
paper. 
 
Note 2: In practice, length frequency samples are unlikely to be independent; two fish 
caught in the same set are likely to be more similar in size than two fish caught in 
different sets or in a different part of the fishery area. The above formulation is 
nevertheless reasonable if N is regarded as the "effective independent sample size", 
i.e. the size of a sample of truly independent length measurements that would provide 
the same information about the length frequency in the population (i.e. in the 
selectivity-weighted population). Depending on the nature of the fishery and the 
sampling design, N may be smaller than the number of fish measured. This can be true 
even if the entire catch is measured for length, and even when we are mainly 
concerned with estimating actual numbers-at-age in the catch rather than proportions-
at-age in the population. Practical ways of estimating effective sample size are 
discussed in section 4. 
 
Note 3: We have assumed instantaneous sampling at one moment in time, neglecting 
any growth within the season. In reality, the quantities nas, Ns, pa|s and ps (but not pa) 
all ought to have an extra subscript t to denote time-of-year. See section 4 for further 
discussion. 
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2.1 Estimating proportions-at-age 

The estimators discussed in this section can all be viewed as maximum likelihood 
estimators of pa, placing different restrictions on pa|s and/or using only part of the data. 
The derivations make use of three standard probability formulae: 

s

aas
sa

s sasa

a asas

p
pp

p

ppp

ppp

|
|

|

|

=

=

=

∑
∑

                   

             (3) 

2.1.1 Age-length key 

In the ALK, the proportions of age-at-length pa|s are estimated nonparametrically. It is 
easy to show that the nonparametric MLE is just . Proportions-at-length 
p

sassa nnp /ˆ | =
NNs /s are also estimated nonparametrically, via . Then the MLE of ppsˆ = a is given 

by the above formulae as 
 

∑=
s sasa ppp |ˆˆˆ                    

             (4) 
 
Although the ALK is a full-likelihood method using both  and SΛ ASΛ , the  part 
contains no extra information about age composition, so in effect ALK relies only on 
the age-subsample log-likelihood  . The underlying reason is that the length-at-
age proportions p

SΛ

ASΛ
s|a are completely free parameters in the model; if ps is changed, then 

ps|a can be adjusted accordingly so as to keep  pa|s the same. Consequently the fit to the 
length frequency can be adjusted (via ps) without affecting the fit to the age 
subsample at all, and so carries no information about age. SΛ
 
Variance estimates for the ALK can be obtained very easily because the estimator has 
a closed form. In most fishery applications, estimates of for the ALK treat 

as known exactly, without error. However, if the effective sample size N is very 
small, then uncertainty about the true length composition adds an extra source of 
variation. The modification to the variance estimates is straightforward; see the 
Appendix for further details. 

[ 'ˆ,ˆ aa ppcov ]
sp̂

 
Note that the above formulae imply a corresponding nonparametric estimate of ps|a , 
namely 
 

a

ssa
as p

pp
p

ˆ
ˆˆ

ˆ |
| =                     

             (5) 
 
This is not directly needed in the ALK, but is usually a key ingredient of the iterated 
age-length key, described next. 
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2.1.2 Iterated age-length key 

This method was introduced by Kimura and Chikuni (1987) as a way of using pre-
existing estimates of length-at-age distribution, together with length samples but no 
age samples from the current year, to make inferences about age distribution in the 
current year. It does not use age subsamples from the current year, and therefore only 
uses the  part of the log-likelihood. In the IALK,  is maximized over the 
unknown parameters p

SΛ SΛ

a, using the formula  ∑=
a as ppp as|  and treating ps|a is known 

exactly. In the original specification of the IALK, ps|a is replaced by an estimate 
derived from applications of the ALK to previous data, but it would also be possible 
to use a parametric estimate (see 2.1.3). Because ps|a describes the distribution of 
length-at-age, there is some reason to expect that it will be fairly consistent over time 
(i.e. over cohorts). However, inaccuracies in ps|a will lead to inaccuracies in the IALK. 
In fact, the IALK is known to be very sensitive to variations in growth between 
cohorts.  
 
The name "iterated age-length key" (IALK) arises from Kimura & Chikuni's 
particular choice of algorithm; other algorithms could be used to give the same MLE.  
The name is in one sense misleading, because IALK actually extracts its age 
information from the  part of the log-likelihood, whereas ALK extracts its age 
information from the 

SΛ

ASΛ part; thus the two methods are more different than the 
names suggest. 
 
The IALK is not of much direct relevance to SBT, because there will presumably 
always be some direct age data available in any given year. However, it is instructive 
in showing "what the ALK is missing": i.e., that it is possible to make some 
inferences about age distribution based purely on length samples and prior knowledge 
about growth. 

2.1.3 Parametric estimator: known growth 

We can re-write the combined log-likelihood as 

( )

( ) ( ) ( ){ }∑ ∑∑

∑ ∑ ∑∑

+−=























+=Λ

s a asaasa asass

s a
a aas

aas
asa asas

ppnppnN

pp
pp

nppN

||

' ''|

|
|

loglog

loglog
         

             (6) 
 
If we have good prior information on length-at-age, we can take ps|a as known and 
maximize (6) with respect to pa. For SBT, we follow Polacheck et al. (2003) in taking 
a Normal distribution for length-at-age, with known mean and variance at age a of aµ  
and . For most ages commonly caught in a particular fishery, it will acceptable to 
use estimates of 

a
2σ

aµ  and  that apply to the whole population at that age, rather 
than to the specific fishery. However, for fish near the ends of the length range caught 
by a fishery, selectivity may affect the sampling distribution of length-at-age 
compared to the population distribution, e.g. in the Indonesian fishery where the only 
8-year-olds to be seen tend to be relatively larger than 8-year-olds elsewhere. This 

a
2σ
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would change the mean and variance in the exploitable 8-year-olds away from the 
values for 8-year-olds in the whole population. If selectivity-at-length is known, this 
can be allowed for. Note that, even if mean and variance of length-at-age for some age 
classes is affected by selectivity, the adequacy of a Normal approximation per se to 
length-at-age distribution should not be much affected, assuming the window of 
selectivity in length is reasonably large compared to the variation in lengthat-age 
within a cohort. 
 
The parametric method uses both parts of the log-likelihood to make inferences about 
age distribution, and is therefore in some sense a hybrid between ALK and IALK. The 
ability to extract information from the length frequency alone, comes at the price of 
having to make a parametric restriction on the form of ps|a. However, the extra 
information used makes the parametric method more efficient (i.e. higher precision 
for the same sample size), provided its parametric assumptions are met. 
 
Details of the estimation algorithm are given in Appendix 1, which also gives 
expressions for parameter (co)variances. 
 

2.1.4 Parametric estimator: unknown growth 

This follows 2.1.3 exactly, except that (  are treated as additional unknown 
parameters that have to be estimated. This is a rather drastic way of dealing with 
concerns about possible variations in size-at-age between cohorts, since it ignores all 
prior information from that cohort in previous years, and from previous cohorts at that 
age. It is possible to envisage more elaborate hybrids between 2.1.3 and 2.1.4, in 
which the parameters size-at-age are treated as random effects for which historical 
growth studies provide a prior distribution. This might, in principle, combine the 
efficiency of 2.1.3 (when its assumption of consistency across cohorts is valid) with 
the presumed robustness of 2.1.4. In this paper, though, we have used only the 
extreme cases, of length-at-age completely known or completely unknown (except for 
being Normally distributed). 

)aa
2,σµ

 
Details of estimation are again given in the Appendix, where the influence of the extra 
mean and variance parameters on the precision of ap)  is also discussed. 
 

2.2 Example: application to Greenland turbot data 

We first consider the Greenland Turbot data analysed in Kimura & Chikuni (1987). 
Length-and-age measurements from randomly-selected fish can be used to construct 
length-at-age distributions directly. The IALK is used to apply these length-at-age 
distributions to length samples from other years, to estimate age compositions in those 
years. IALK per se will not be necessary for SBT if some new age samples are 
available in every year, since it does not use the new age samples. However, it is of 
interest to see how the parametric methods compare with the IALK method even in 
the absence of age data. 
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An example of the possible capriciousness of the IALK method can be seen for age 14 
where only one fish was found, of length 94cm. Thus all 94cm fish in subsequent 
length samples would be assigned to age 14. Intuitively, it seems likely that this could 
seriously increase the standard errors associated with the pa. Thus, it could be better to 
estimate ps|a in a way that produces more realistic densities. One solution would be to 
widen the length classes. Another would be to estimate ps|a from an appropriate 
parametric family. 
 
For illustration, we considered the 1983 catch. To estimate pa, we assumed that the 
ps|a were known Normal with means given by the length-at-age table. For modest 
sample sizes, the representation of the variances should involve relatively few 
parameters. The variances were taken to be 7.45 (ages 4-10) and 26.37 (ages 11-20), 
which represented the individual variance for the ages quite closely.  
 
The estimation procedure described in the Appendix converged successfully from 
starting values of pa=constant. Estimated proportions are given in Table 1. The 
proportions for ages 12-15 converged to zero, their share having been allocated 
roughly to ages 11 and 16. Kimura & Chikuni (1987) bulked the ages 11+, and 
possibly this was their reason. This feature suggests that there is an inherent problem 
with estimating small proportions from length data based on limited data for 
constructing length-at-age distributions. That is, we cannot easily detect small 
components in a mixture distribution unless the separation between modes of length-
at-age is large. 
 

3 APPLICATION TO SAMPLING DESIGN FOR SBT 

The formulae in the Appendix can be used to calculate precision and relative 
efficiency without needing simulation. Results depend only on the true proportions at 
age, the growth parameters, the number of samples (n and N), and the subsampling 
protocol. We used the following setup: 
 

1. The three fisheries we considered were: purse seiners in the GAB (young fish), 
Japanese long-liners (mostly fish of intermediate age), and Indonesian long-
liners (older, mature fish). We truncated the age ranges to: 1-5 for the GAB, 2-
16 with a plus-group at 17 for the Japanese long-liners, and 8-24 with a plus-
group at 25 for the Indonesian fishery. These ranges contained at least 95% of 
the catch for the year considered in the example. 

 
2. For the true values of pa, we used one set of estimated numbers-at-age for the 

whole population in 1997, multiplied by selectivity-at-age by fishery. The 
values were taken from the conditioning results in the current Management 
Procedure development (Table 1).  The run chosen had steepness set to 0.55 
and natural mortality vector 2. Note that the conditioning model assumes an 
age-based rather than a length-based selectivity. 

 
3. We used estimated means and variance of length-at-age from Polacheck et al 

(ibid.). In order to avoid the complication of within-year growth, we used 
means and variances for January only, rather than trying to integrate growth 
across a whole fishing season (see section 4). 
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4. We used three different values of n (100, 200, and 500) and four different 

values of N (200, 500, 1000, 2000), excluding the case n=500 and N=200.  
 
5. For the first set of results, the subsampling design was uniform sampling 

intensity across all lengths, with the number subsampled at length being 
proportional to numbers-at-length in the catch.  

 
6. To ensure a sufficient number of samples within each length group for the 

ALK, we assumed that lengths would be aggregated into 5 cm groups before 
applying the ALK.  

 
 
Table 2 shows the results for the parametric methods with known and unknown 
growth, and for the ALK. The "neq1" columns show what sample size would be 
required to give the same CV based on a random sample of ages with no length data. 
ARE1 and ARE2 show asymptotic relative efficiency of the ALK relative to the 
parametric known- and unknown-growth methods, i.e. the inverse ratio of the n-
equivalents.  
 
A general caveat on Table 2 is that very high CVs should not be taken too literally; 
they should rather be interpreted as "no useful information on this pa". The table 
shows average CV across all datasets, which reflects the average number of fish aged 
a in a sample. For an average na of 1, the CV will be about 100% (ignoring 
information from the length frequency).  The average value of na is given by 

[ ]an n=E ap , and if [ ]anE <1, the average CV will exceed 100%. However, na can 
only take integer values in real data, so real datasets will often have na=0 for some 
ages. When na=0, the estimated CV for pa is effectively infinite (unless a prior on pa is 
assumed), although an upper confidence limit could still be found. When na=1, the 
estimated CV will suddenly drop to 100%. The general point is that the estimated CV 
will be highly variable for real datasets. This is a common phenomenon in statistics; 
the estimated uncertainty about a quantity is generally more uncertain than the 
quantity itself. 
 

3.1 Results by method 

In general, the parametric methods give substantially higher precision than the ALK; 
they are considerably more efficient because they use length frequency information. 
Also, the ALK requires that length samples be grouped more coarsely. For the sample 
sizes we considered here, the smallest feasible grouping (into 5cm classes) is similar 
to the average standard deviation of length-at-age, and so the overlap between ages 
within length classes is increased. 
 
The difference in efficiency between ALK and parametric methods is greatest for 
younger fish, where length is a more precise predictor of age. In summarizing results 
by fishery below, we concentrate on results from the parametric methods, because 
these best show the limits to attainable efficiency. 
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The n-equivalent for ALK can be less than n. That is, the estimate can sometimes be 
less efficient than a purely random sample of size n with no length measurements. 
From a purely random sample, we would estimate pa from na/n, the observed 
proportion in age class a. Because the ALK does not assume random sampling, we 
cannot use this estimate, but must scale the proportions in each length class by Ns/N. 
This introduces an extra component of error, larger if N is smaller, which can more 
than compensate the gain due to breaking the total sample into the length classes. 
 
There is surprisingly little difference between the known-growth and unknown-
growth estimators. The greatest differences occur when n is small (so that there is 
little data available for estimating length-at-age within each age class) but N is large 
(so that any errors in |s ap) are magnified by the large information content of the length-
frequency data).. A heuristic explanation for the general lack of difference might be as 
follows: for older fish, the length data (and thus the Normal parameters) are of little 
value, while for younger fish, there is little overlap in the distributions between 
adjacent ages, so estimation of the Normal parameters is not influential.  
 

3.2 Results by fishery 

 GAB 
For such young fish, the length data alone are very informative; equivalent fully-aged 
sampled sizes (neq1 and neq2) suggest that each age sample is worth between 2 and 4 
length samples in terms of information content about age. The sample size required in 
the GAB is small; CVs under 20% can be obtained even with n=100 and N=200, at 
least for the ages 2-4 which are by far the most important.  

 Indonesian long-liners 
The length frequency data provide almost no information about age. The ALK 
performs almost as well as the parametric methods, at least for ages 12 up, except in 
the case n=100 and N=200. The parametric methods work substantially better than 
ALK for ages 8-11, presumably because of the increased efficiency obtained by 
imposing a parametric form on ps|a. When n=100, CVs of are very high (at least 
33% for all age classes), and there is a substantial risk that several age classes may 
simply fail to show up in the n-sample at all. 

ap)

  Japanese long-liners 
The bulk of the catch is aged 3-9, and the commonest age was 6 in 1997. The length 
frequency data are certainly useful, at least for smaller fish, because equivalent-n is 
substantially higher than n. Table 3 shows comparative CVs for 3, 6 and 9-year-olds, 
using the parametric-unknown-growth estimator. The law of diminishing returns 
seems to set in for N above about 500. There are clear gains to be made for n=500 
compared to n=100, especially for fish aged 6 and up. 

 Comparison between fisheries 
It is not surprising that precision is much better for the GAB than elsewhere. In the 
GAB, 95% of the catch is split between 3 age classes, so the number of fish sampled 
per age class will be rather high. For the other fisheries, there are more possible age 
classes, so the number of fish per age class will be lower. As with any sampling 
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problem that is fundamentally multinomial, fewer samples per class means lower 
relative precision per class. Also, the greater separation between length-at-age 
distributions in the GAB means that the length frequency data is relatively more 
informative than elsewhere. 
 

3.2.2  Effect of varying the subsampling pattern 

Table 2 also shows that uniform intensity subsampling (i.e. in proportion to numbers-
at-length) usually leads to relatively higher precision for younger fish compared to 
older fish. This may not be desirable (though see section 4). To show what 
improvements might be possible, we also investigated a non-uniform subsampling 
within limited stratification by length for the Japanese long-line fishery only. We 
chose this fishery because it has the most to gain from subsampling; for the GAB 
fishery, length alone is very informative, while for the Indonesian fishery, there is 
little difference in age composition across the length frequencies, and stratification 
may not be logistically feasible. 
 
We investigated the following subsampling scheme: length was split into 3  classes 
(<120cm; 120-130cm; >130cm), and subsamples were taken within each group in 
proportion to weighted numbers within the length classes (rather than unweighted as 
before). The weights were in the ratio 1:5:10, so that fish >130 cm were over-
represented relative to fish <120cm by a factor of 10. Results are shown in Table 4. 
 
In general, this subsampling pattern led to a relative improvement in CV of about 25% 
for fish aged 9 (i.e. the stratified CV was about 3/4 of the unstratified CV). There was 
little change for fish aged 6. Under the known-growth model, the CV for age-3 fish 
increased only very slightly even though fewer were sampled, provided N was at least 
1000.  This is because the length frequency data alone is very informative about 3 
year olds, and the length frequency data is unaffected by subsampling. In the 
unknown-growth model, however, the reduced sampling of smaller fish means that 
length-at-age parameters were estimated worse, and precision dropped dramatically. 
For example, with n=200 and N=1000, the CV for 3-year-olds under the unknown-
growth model changed from 11% without stratification to 20% with stratification. 
 

4 CONCLUSIONS AND DISCUSSION 

 
1. The parametric methods can often be used effectively with considerably 

smaller age samples than can ALK. Using the length distribution greatly 
increases the information for the younger ages. It has less advantage for the 
older fish, for which length-at-age distributions overlap more.  

 
2. The potential gain in robustness of ALK compared to parametric methods, 

basically stems from ALK not having to assume a Normal (or some other) 
distribution for length-at-age. However, in their study of SBT growth, 
Polacheck et al. (ibid.) show that length-at-age is reasonably well described by 
a Normal distribution, at least for younger ages where the length data is of 
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most importance. Consequently, there seems no benefit from staying with 
ALK for SBT. 

 
3. The parametric-unknown-growth estimator is almost as efficient as the known-

growth estimator when age-subsampling is uniform intensity (i.e. numbers 
subsampled at length are proportional to numbers caught at length), and is 
presumably more robust since it does not assume identical growth patterns 
across cohorts. If age-subsampling in the Japanese long-line fishery was 
heavily skewed towards larger fish, though, the unknown-growth estimator 
would become substantially less efficient. 

 
4. Judicious subsampling design (i.e. subsampling relatively more big fish) can 

somewhat improve precision in estimating the proportions of ages of older 
fish, but only by a modest amount (say 25%). If length-at-age distributions can 
be assumed known for younger fish, so that the known-growth estimator can 
be used, then such subsampling will not lead to a corresponding drop in 
precision for younger fish, for which there is extra information from the length 
data alone. However, if there are concerns about variations in length-at-age 
between cohorts, then the unknown-growth estimator should be used instead. 
In that case, subsampling relatively more big fish will reduce precision on 
younger age classes. 

 
5. The main determinant of precision is the number of otoliths collected, plus the 

effective size of the length sample in the GAB fishery and (to a lesser extent) 
in the Japanese long-line fishery. Subsampling design has less impact. The 
minimum viable sample size depends on fishery, as well as on target precision. 
As a guideline, the results suggest CVs of no more than 25% for the 
commonest ages (those constituting at least 5% of the catch) might in principle 
be achieved with n=100 and N=200 in the GAB (ages 2-4), but would need 
n=200 and N=500 in the Japanese long-line fishery (ages 3-9); but see section 
4.1.4 for a caveat. Note that N is effective length sample size, so the actual 
number of fish measured would need to be greater (see section 4.1.3). The 
Indonesian fishery has more age classes and the length data is not informative 
about age, so the sample size needs to be larger. Based on 1997 proportions, 
the 25% CV ceiling for ages 13+ is achieved for n=500, but the CV remains 
above 30% for ages 8-12. If the proportion of young fish increased, their CV 
would drop. 

 

4.1 Discussion points 

4.1.1 Within-season growth 

Fishing seasons for SBT are quite long and individual fish can show substantial 
growth within a single season, especially when young. The results in this paper ignore 
this, and therefore pertain to an idealized situation of "point sampling". As explained 
below, we do not think this deliberate oversight has any major implications for our 
results on precision, but it is nevertheless important to consider how within-season 
growth might be dealt with statistically.  
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One way to handle within-year growth, is simply to aggregate all data within a fishing 
season without regard to time of collection. If prior information on ps|a is available, 
then this may already be aggregated, or may be a function of time within the season. 
If the latter, it is possible to "smear out" growth by integrating across the season, e.g. 
to approximate the time-aggregated mean and variance. 
 
However, this kind of aggregation is not a good idea. Smearing growth across a 
season increases the overlap between the length distributions of successive cohorts, 
and therefore makes it harder to separate cohorts using length data. A much better 
approach is to extend the estimators in section 2 so that they can be applied at 
different times during the season, keeping pa constant across times even though ps|a 
and ps might vary. Then the intervals of aggregation can be much shorter (one month, 
say), and there is no serious loss in efficiency, at least in principle. For the parametric 
estimator with known ps|a, the modifications should not be difficult and there should 
be no major effect on precision since there are no extra parameters. For the parametric 
estimator with unknown growth, the modifications are easy in principle, but extra 
parameters are needed to describe length-at-age at different times during the season. It 
might be desirable to impose some extra constraints over the season, such as constant 

 and linearly-increasing , to prevent "shrinking fish syndrome".  2σ µ
 
The ALK would require more extensive overhaul to handle within-season growth, 
both in terms of the estimator itself and how to avoid implying bizarre changes in ps|a,t 
from one time t to the next. This would be difficult and provides another reason to use 
a parametric method, which are simpler to modify.  
 

4.1.2 How should precision vary with age? 

This is not obvious. The results in Table 2 show that precision is much lower for older 
fish, especially in the Indonesian fishery, unless there is a deliberate effort to 
subsample relatively more big fish (Table 3). At first sight, this lower precision looks 
worrying. However, equal precision on all age classes may not actually be desirable. 
As a cohort progresses through the fishery, information on its relative abundance will 
accrue year-by-year; thus the eventual uncertainty about the cohort's abundance at age 
20 may be low even if the CV of a single estimate of pa=20 is high. It may be more 
important to aim for higher precision for younger cohorts, so that precise information 
about recent recruitment can be obtained relatively fast; this might help with short-
term forecasts and quota setting. On the other hand, it may be more important to get 
higher precision on older fish, e.g. because these form the bulk of the spawning stock 
and thus influence medium- to long-term yields. The ideal balance between 
subsamples of big and small fish could be studied in future in an assessment context. 
However, it is not necessary to get the balance perfect before starting data collection. 
Design of subsampling has only a limited effect on precision, and the main 
determinant of precision is the overall level of coverage. 

4.1.3 Effective sample size for the length frequency data 

Non-independence of length measurements can be thought of on two quite different 
space/time scales. First, if SBT schools are somewhat length-segregated, then there 
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may be set-to-set variability because some sets will encounter schools of small fish, 
while other sets will mostly encounter schools of bigger fish. This is obviously true 
for purse-seiners but may apply to long-liners, too. Also, differences in fishing 
practice between boats might lead to systematic variations in length frequency 
samples at the boat level (i.e. selectivity differences). Logistics demand that  multiple 
samples be taken from the same set and the same boat, so small-scale differences of 
this nature increase the uncertainty of estimated proportions-at-length relative to what 
could be achieved from truly independent length samples. 
 
Second, there may be systematic variations in length composition across the spatial 
extent of a fishery. This can lead not just to increased variance, but also to bias if 
some sub-areas are relatively over- or under-sampled. This potential problem can be 
diagnosed, and largely corrected post hoc if necessary, provided that length data are 
available disaggregated by sub-area, along with records of total catch by sub-area. As 
discussed above, it is also necessary to avoid aggregating the data over an entire 
fishing season. 
 
The effective sample size can be estimated statistically by using a bootstrap at a 
sufficiently coarse unit of sampling to get around the small-scale variability problem: 
e.g. by set if fishing practices between boats are very similar, or otherwise by boat. If 
large-scale variations have been identified, a stratified bootstrap would be better (i.e. 
separate bootstraps within sub-areas). The bootstrap replicates provide an estimate vs 
of  for each length class s. For a truly independent sample of size N, this 

variance would be , so N can be estimated by equating this expression 
to vs. This gives one estimate of N per length class. These could be combined into a 
weighted average or a median to give an overall estimate of N. Extreme accuracy is 
not crucial here. It is also not necessary to have set-by-set data to do this calculation; 
it would be sufficient to report the bootstrap variances and proportions-at-age. 

ˆ sp  V
ˆ ˆ(1 ) /s sp p N−

 
Until these or similar appropriate statistics from disaggregated data are available, it 
would not be possible to make use of the length data in our parametric methods, so the 
precision of age composition estimates would be reduced compared to the Tables (or 
more otoliths would be needed).  Pending the availability of data to allow effective 
sample size to be estimated, it makes sense to collect as much length data as possible, 
because it is cheap. 
 

4.1.4 Errors in age and length measurements 

Polacheck et al. (ibid.) discuss problems associated with age determination from SBT 
otoliths. The timing of ring formation is not fixed, generally occurring at some point 
between May and September but not at a consistent date across fish. Also, the 
interpretation of otoliths during this period is difficult because it is hard to distinguish 
new rings. And although readings of matched otolith pairs from the same individual 
are generally consistent, there are exceptions, even among experienced readers and 
even for otoliths collected outside the difficult May-September season. 
 
It is possible to envisage various possible ways that these issues might be addressed, 
both statistical and technical. For example, if otoliths in May are reliable, and otoliths 
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in September are reliable, and the proportion-at-true-age remains constant through the 
fishing season, then a missing-data model might be constructed with recorded age 
assumed to follow the (unobservable) true age but possibly subject to errors that have 
a date-dependent distribution. Further investigation of such issues would require 
reasonably large samples of otoliths collected at different times during a season, and 
would therefore have to wait until after an otolith collection scheme has begun. 
 
There is also the possibility of length measurement errors, mainly individual biasses 
due to differences in measurement technique. Such errors are presumably of less 
concern than ageing errors, but it is difficult to assess the likely impact on 
precision/bias without more data to compare observer and non-observer 
measurements; again, this can only be done after an observation scheme has begun. 
 

4.1.5 Further methodological work 

1. The most important development for practical application is to adapt the 
parametric estimators to handle within-season growth. This would be difficult 
for an ALK, but should be fairly easy for the parametric estimators, as noted 
above. 

 
2. If errors in ageing are thought likely to be a significant issue, then further 

statistical work will be required. This would require extensive otolith samples 
from the full course of a season. 

 
3. Bravington (CCSBT-CPUE/0203/5) suggested that it might be worth 

developing an estimator that tracks cohort-specific growth effects over time. 
Such an estimator ought to combine the best features of the parametric-known-
growth (efficient but not robust to growth changes) and the parametric-
unknown-growth estimators (robust but not efficient). However, such a 
complex estimator would only be worth developing if the task of re-estimating 
length-at-age distributions every year proved to be "expensive" in terms of lost 
precision in . Table 2 suggests that this is not the case; the unknown-
growth estimates were almost as efficient as the known-growth estimates. The 
added complexity is therefore probably not worthwhile pursuing for SBT. An 
exception would be if it is decided to heavily oversample larger fish, since in 
that case there is a large difference between precision of the known-growth 
and unknown-growth estimates. Some further study of variations in size-at-age 
between cohorts would also be valuable, since if variation is shown to be very 
limited, the known-growth model could be safely used anyway. 

ap̂

 
4. It is also probably not worth expending effort on developing less-parametric 

estimators that do not assume a Normal distribution of length-at-age 
(Bravington ibid.). Polacheck et al. (ibid.) conclude that a Normal distribution 
gives a reasonable fit. If any of the fisheries showed very steep gradients in 
selectivity-at-length (as opposed to selectivity-at-age) then this might be worth 
revisiting, since the distribution of length-at-age in the catch might then be 
quite far from Normal. At present, there is no evidence that this is the case. 
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5. Consideration will ultimately have to be given as to how to incorporate 
explicit age data into the assessment (e.g. whether to fit the age/length data 
separately using the models we have described and then carry the likelihood 
function into the assessment, or to estimate proportions-at-age simultaneously 
with all other parameters inside some gigantic composite estimator). Although 
some decision about this will eventually be required, there is no urgent 
requirement to resolve this before data collection begins, since there are no 
particular implications for precision or design. 

 

4.2 Summary 

To get estimates of proportion-at-age with CVs of 25% or less for all ages that 
constitute at least 5% of the catch, at least the following numbers of randomly-
subsampled otoliths would be needed: 100 (GAB), 200 (Japanese long-lines), or 500 
(Indonesian long-lines). This assumes that large and representative length frequency 
samples are also available, and that there are no significant errors in ageing or length 
measurement. Ageing errors in particular would increase the required sample size. It 
is also necessary that sampling be spread through the season within the season 
(recorded by month, say) and to avoid using data that has been aggregated across the 
whole season; otherwise, the overlap between length-at-age distributions is artificially 
increased, and estimation of age composition becomes less precise. 
 
Achieving such good precision for such small numbers of otoliths would require use 
of the new parametric methods introduced in section 2.1.4, because a standard age-
length key is substantially less efficient (although in the Indonesian fishery there is 
not much difference). However, reliable use of the new methods does depend on 
knowing the "effective sample size" of the length frequency data, which will be 
smaller than the real sample size because of non-independence between length 
samples. The data needed for estimating effective sample size could be collected 
cheaply during age- or length-sampling. 
 
All else being equal, CVs within a fishery are generally higher for older fish, and 
gains in efficiency of say 25% for some age classes might be achievable through non-
uniform subsampling of length groups, i.e. oversampling bigger fish. However, the 
details of subsampling design have much less impact on precision than the number of 
otoliths collected. Further details of design or analysis would be best resolved after a 
scheme has been started, when more data become available. 
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6 APPENDIX: THEORETICAL DETAILS 

We are given two data sets from catches of fish. The first of size n has pairs (si,ai) of 
length (or size) measurements (s) and ages (a). The results are condensed into 
frequencies nas giving the number of fish out of a total of ns in length class s having 
age class a. Thus n = ∑s ns. The second consists of  N measurements of length. The 
total condensed to frequencies Ns, with N = ∑s Ns. Typically, N is much larger than n. 
Unless stated otherwise, we shall assume that the age sample is drawn as a subsample 
from the N  fish that were measured for length, so there would be N – n fish measured 
for length only. The aim is to estimate the proportion pa of the catch in age class a. 
We use the notation f(s) for the probability that a fish has length s, f(s|a) for the 
probability that a fish has length s given age a and f(a|s) for the probability that a fish 
of length s has age a. 
 
[Note: there are some minor notational differences between this Appendix and the 
main text. In particular, the main text uses p's rather than f's, for example writing ps|a 
instead of f(s|a).] 
 
A distinction must be drawn according to how we regard the sample n to have been 
drawn: 
 

(i) Age-at-length; the ns are treated as fixed and age is random. Since 
recruitment can change substantially with cohort, the age-at-length 
distribution must relate to the population under consideration. 

(ii) Length-at-age; the totals na are treated as fixed and length is random. This 
is generally unachievable in most fisheries since age cannot be determined 
on sight. However, length-at-age distributions can be estimated from a 
random sample, or may be taken as estimated in some way from previous 
data. 

(iii)  n is a completely random sample from the population under consideration. 
It may be treated as random with respect to either age or length, e.g. to 
construct length-at-age distributions. 

 
We describe briefly the methods commonly used to estimated the age profiles. 
 

Age-Length Key 

Here we must assume that the n fish are from the same population as the N. In the 
spirit of the age-length key (ALK) we estimate 
 

pa = ∑s  f(s) f(a|s),         (A1) 
 
where f(s) is estimated by Ns/N, and f(a|s) from the n sample. In the ALK method, the 
estimate of the latter is simply nas/ns. This is a distribution-free method. 
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Iterated Age-Length Key 

The Iterated Age-Length Key (IALK) uses the same formula (A1) but the estimate of 
f(a|s) is via Bayes formula: 
 
f(a|s) = pa f(s|a) / ∑a {pa f(s|a)}       (A2) 
 
Under the assumption that f(s|a) does not change from year to year, the n sample may 
be collected in year A, and used together with an N sample also from year A to 
estimated f(s|a). This may then be applied to an N sample from a different year, B, to 
estimate pa in year B. The appearance of pa means that (A2) is solved by iterative 
substitution.  
 

Random sampling 

Note that random sampling (e.g. of every 17th fish caught) sounds easy but may not 
always be so in practice, especially for schooling species. If the n sample really is 
obtained by random sampling, though, an estimate of the age proportions is provided 
by the proportion of the ages found in the n sample. However, the N length 
measurements could also be used in the ALK method, as recommended by Kimura & 
Chikuni (1987). The two estimates should be very similar; any difference would 
imply that the distribution of length in the N sample is not the same as in the n 
sample, and this would cast doubt on the validity of the random sampling. 
 

6.1 Parametric Methods and Mixture Distributions 

6.1.1 Estimation 

The marginal density function is the mixture, with mixing parameters {pa} 
 
f(s) = ∑a pa f(s|a).         (A3) 
 
If the f(s|a) are regarded as known to adequate precision, then the length data alone 
can in principle provide estimates of {pa} by maximizing the log-likelihood 
 
Λ =  ∑s N(s) log{f(s)}.        (A4) 
 
However, if the densities {f(s|a)} have a large amount of overlap, there would be little 
information available for the estimation. This point is discussed below. For more 
information on estimating mixture distributions, see McLachlan & Basford (1988). 
 
If the age-at-length sample is a subsample of the length sample, then the log-
likelihood is 
 
Λ = ∑s [(Ns – ns) log{f(s)} + ∑a naslog{paf(s|a)}].    (A5) 
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It is shown in Appendix 1 that the log-likelihood has the same form (up to a constant) 
if the n is a subsample from the N  length measurements. We are not primarily 
concerned with the n being length-at-age, but if the sample is selected on the basis of 
age, it contains no information about {pa}, and this is reflected in the fact that the pa is 
to be dropped in the last term in (A5). 
 
More generally f(s|a) might have a parametric form with parameters to be estimated. 
For theoretical simplicity, we will consider only that for the Normal distribution 
N(µa,σa

2). In that case, the Normal parameters will need to be estimated as well as the 
proportions. Some reduction in the number of parameters might be reasonable if we 
can make simplifying assumptions such as the {σa} all being equal. We may wish to 
impose the constraints on the {µa} to ensure that they are isotonic (i.e. non-decreasing 
with age). This is a complication for the theory below, and we assume for the present 
that the data do invoke these constraints. 
 
Maximization of Λ is subject to the constraint ∑a pa = 1. This may be achieved by 
using a Lagrange multiplier, or by removing one parameter by substitution. The 
unbiased likelihood score for pa is 
 
Ua = ∑s {(Ns – ns) f(s|a)/f(s) + nas/pa – Ns }.     (A6) 
 
Here, the totals sampled for age in the length class s, ns, has been taken as fixed. If it 
is random, it should be replaced by its expectation E(ns). The score may be 
algebraically rearranged to give the equation for solution by iterative substitution 
 
pa = ∑s Nas

* /N ,         (A7) 
 
where we call the term in the numerator, 
 
Nas

* = (Ns – ns)f(a|s) + nas,        (A8) 
 
the estimated number of fish in age class a at length s in the combined samples, and 
f(a|s) = paf(a|s))/f(a) is the (‘posterior’) probability of a given s. This gives (A9)-(A10) 
an attractive interpretation as the estimated moments. The denominator term in (A7) is 
∑s E(Nas

*)/pa. Equation (A5) bears some resemblance to the IALK method, and is 
equivalent to the E-M algorithm.  
 
The likelihood score for µa and σa

2 can be rearranged to the form 
 
µa = ∑s Nas

*s/ ∑s Nas
*,        (A9) 

 
σa

2 = ∑a Nas
*(s – µa)2/ ∑a Nas

*.       (A10) 
 
The right hand side of each of these equations involves the parameters, which have 
been suppressed in our notation. Using these equations, the parameters {pa, µa, σa

2} 
may be estimated by iterative substitution. 
 
Iterative substitutions can be performed rapidly, so that many thousand are quite 
feasible. This method of estimation avoids the need to calculate and invert the Hessian 
matrix, and does not seem to run into the numerical difficulties encountered in using 
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the Newton-Raphson maximization of the log-likelihood. However, it should be noted 
that the variance of the estimates are not simply derivable from these equations, since 
the parameters appear on both sides. One possibility is to use these estimates as 
starting values for maximizing the log-likelihood using a standard statistical package. 
We discuss the information matrix and the variance-covariance matrix of the 
estimates below. These matrices may be computed directly, since formulae are 
available. 
 

6.1.2 No length data 

 
We shall also consider the special case where the length only data are absent or 
ignored. In the possibly unrealistic case that the whole sample is measured for age and 
length, then Ns = ns.  We see that the likelihood (A5) is, up to a constant, that of the 
multinomial. This is correct on the premise (as we assumed for N) that the n were a 
random sample from the whole population.  We shall use the information in a 
multinomial as a standard for assessing the information in contributed by the length 
sample. 
 
If, however, the age sample were selected on length, then we should condition on the 
length sample sizes; this subtracts ∑s ns log{f(s)} from Λ as given in (A5). We then 
maximize the reduced likelihood 
 
Λ = ∑s ∑a nas log{paf (s|a)/f(s)}          (A5a) 
 
using a Lagrange multiplier, which turns out to be zero. Although they appear 
sufficient in number, solving the partial derivative equations does not produce 
estimates – there is still an arbitrary scale for the solution to the estimated p’s. We 
obtain the equation 
 
pa =  κ ∑s nas/∑s{nsf(s|a)/f(s)}.         (A7a) 
 
The numerator is the same as (A7) with Ns = ns, but multiplied by κ, a norming 
constant to ensure that ∑a pa = 1. The likelihood (A5a) is the same as (A5) but with Ns 
replaced by 0. This replacement cannot be used in (A7) because it makes the 
denominator zero. However, the second derivatives (A13)-(A18) below are still valid 
with this substitution, and the information and asymptotic variance matrices above 
still hold. 
 

6.2 Information for the estimates 

The information for the estimates follows from the usual likelihood theory, provided 
that there is no extra variation. A similar theory applies when there is extra variation 
and is based on quasi-likelihood, see Heyde (1997). To start with, we shall assume 
that there is no extra variation. The Fisher information matrix is the expectation of the 
second derivatives of the log-likelihood, with a modification due to the fact that the pa 
are constrained to sum to 1. This may be handled by eliminating a redundant 
parameter. 
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The asymptotic variance matrix for the parameter estimates is the inverse of the 
information matrix (generalized inverse if the projection method is used). 
 
We consider several cases. 
 

6.2.1 Two age classes, length-at-age distributions known 

 
Suppose that there are just two age classes. We represent p1 = p, p2 = 1- p. Assume 
that the length-given-age distributions are known and so do not require to be 
estimated. The result of this assumption is that the precision with which we can 
estimate p will be optimistic. From the length sample laone, the Fisher information for 
p per individual is 
 
i = ∑sw {f(s|a=1) – f(s|a=2)}2 /{pf (s|a=1) + (1– p)f (s|a=2)}  (A11) 
 
The asymptotic relative efficiency (ARE) compared to measuring age is i/{p(1 – p)}. 
To proceed, it is convenient to replace the summation by an integral; in effect, we 
assume that the length classes are very small, or that s is a continuous variate. For 
Normal distributions with equal variances, this is a function of p and the separation of 
the means relative to the standard deviation 
 
∆ = (µ1 – µ2)/σ.         (A12) 
 
Table A1 gives the values of the ARE for ∆ and p. If the number of age classes is 
greater than 2, the ability to discriminate between these two classes is reduced due to 
the overlap with the other classes.  We see that, even under the optimistic conditions 
in Table 1, the length data alone is of little value for estimating the age proportions 
when ∆ is less than about 0.25. 
 
To interpret Table A1 in practical terms, consider the graph of the Age-Length data. 
For ∆ = 0.75, p = 0.5, the ARE is about 1/8. That means that means that when the 
length means for two ages differ by 0.75σ, the discrimination obtained from 8 length 
measurements is roughly equivalent to 1 age measurement. We shall estimate σ later, 
but suppose that it is about 6 cm. Then this discriminatory power would apply to 
means separated by about 4.5 cm. For ages over 15, this separation could span several 
years. 
 

6.2.2 K age classes, length-at-age parameters to be estimated 

 
Now we consider the case of K ≥ 2 age classes. To simplify the typing, define Nas

* as 
in (8) and denote 
 
cab(s) =  f(a|s){δab – f(b|s)}, 
 
m1a(s) = ∂logf(s|a)/∂µa, 
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m2a(s) = ∂logf(s|a)/∂σa, 
 
m11a(s) = ∂2logf(s|a)/∂µa

2, 
 
m12a(s) = ∂2logf(s|a)/∂µa∂σa, 
 
m22a(s) = ∂2logf(s|a)/∂σa

2. 
 
After multiplication by ns, cab(s) is the (a,b) element of the multinomial covariance 
matrix, but this fact does not seem to provide much insight. Then 
 
∂2Λ /∂pa∂pb = – ∑s {(Ns – ns)f (a|s)f(b|s) + nasδab}/(pa pb),   (A13) 
 
∂2Λ /∂pa∂µb = ∑s {(Ns – ns) cab(s)/pa} m1b(s)     (A14) 
 
∂2Λ /∂pa∂σb = ∑s {(Ns – ns) cab(s)/pa} m2b(s)     (A15) 
 
∂2Λ/∂µa∂µb = ∑s {(Ns – ns) cab(s) m1a(s) m1b(s) – Nas

* δab m11a(s)},  (A16) 
 
∂2Λ/∂µa∂σb = ∑s  {(Ns – ns) cab(s) m1a(s) m2b(s) – Nas

* δab m12a(s)}  (A17) 
 
∂2Λ/∂σa∂σb = ∑s {(Ns – ns) cab(s) m2a(s) m2b(s) – Nas

* δab m22a(s)}.  (A18) 
 
If f(s|a) can be taken as the Normal density centred on the midpoint of the interval, the 
m’s have the familiar simple form: 
 
m1a(s) = (s – µa)/σa 

2 
 
m2a(s) = {(s – µa)2 – σa

2}/σa
3 

 
m11a(s) = – 1/σa 2 
 
m12a(s) = – 2m1a(s) /σa 
 
m22a(s) = – 3m1a

2(s) + σa
-2. 

 
 This approximation is good enough for some purposes and is valid when the interval 
is small, as when s is treated as a continuous variate or the grouping intervals have 
width 1 cm. The resulting formulae are used in the Tables below for evaluating the 
standard errors of the estimates and the equivalent sample size when using the 
likelihood approach. However, when the interval is not small, f(s|a) is the integral of 
the Normal density over the interval and the form of the m’s is more complicated. The 
computation of the information matrix Ipp

* below seems to be particularly sensitive to 
this approximation. 
 
Note that, unlike the ALK approach, there is no need to group the lengths into 
intervals, so that we could treat them as continuous variates. This has a substantial 
advantage in that the grouping into 5 cm intervals reduces the information about the 
parameters for the younger ages. 
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To eliminate the redundancy in the parameters, we now temporarily substitute pK = 1 
– ∑a=1

K-1pa. Define the partitioned matrix Q = (IK-1 – 1K-1), where IK-1 is the identity 
matrix of order K – 1, and 1K-1 is the vector of K – 1 ones. 
 
The information matrix, partitioned according to the groups of parameters p and θ = 
(µT,σT)T, is minus the expectation of the matrix of these second order partial 
derivatives, modified by pre-multiplying by and/or post-multiplying by the matrix QT 
to get 
 

I = ( 
II
II

p

ppp

θθθ

θ ),         (A19) 

 
where 
 
Ipp = – Q E(∂2Λ/∂p∂pT) QT,       (A20) 
 
Ipθ  = – Q E(∂2Λ/∂p∂θT)        (A21) 
 
Iθp  = Ipθ

T, and           (A22) 

Iθθ  = – E(∂2Λ/∂θ∂θT).         (A23) 

 
The asymptotic variance-covariance matrix of the reduced parameters is the inverse of 
I. To get back to the original parameters, pre-multiply by QT and/or post-multiply by 
Q the corresponding partitions of I -1. 
 
If θ is treated as known without error (or, more generally, if the densities f(s|a) are 
known), then the information matrix is confined to Ipp.  
 
The reduced information about p due to estimating θ is 
 
Ipp* = Ipp – Ipθ Iθθ-1Iθp,          (A24) 
 
the second term indicating how much information about p has been lost through 
having to estimate θ. If the densities are regarded as known, the second term is to be 
omitted.  
 
The covariance matrix for the estimates of p is QT(Ipp)-1Q or QT(Ipp*)-1Q, accordingly 
as {f (s|a)} are (i) known or (ii) estimated. So the leading diagonal elements of this 
matrix give the asymptotic variances.  
 
The ratio of the multinomial variance pa(1 – pa) to the variance of the estimate of pa 
gives the what we call the equivalent sample size (from a multinomial), i.e. if the 
whole random sample were aged. This equivalent sample size varies according to how 
much information the length data provide about pa, and we compare the two values to 
describe the loss of information from the length sample due to having to estimate θ. 
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6.2.3 ALK 

The {ns} are fixed, and so {nas : a=1…K} are multinomial with proportions f(a|s). 
Using standard formulae for the covariances of products, the covariance for the 
estimated estimated proportions is 
 
cov(pa,pb) = ∑s [{f(s)/N  + f(s)2}cab(s)/ns + f(a|s)f(b|s)f(y)/N ]  – papb/N.    (A25) 
 
Since all the densities have to be estimated from the empirical frequencies, these 
covariances are liable to be very poorly estimated if the {Ns} are not large. For 
comparison with the MLE, one could substitute the estimated Normal densities. This 
would give some idea how much information is lost by using the ALK (distribution-
free) estimate. 
 
For large N, the terms in 1/N are negligible. Suppose that ns = nf(s). Then the variance 
of pa reduces to [pa(1 – pa) – var{f(a|s)}] / n. Thus ALK is more efficient (having a 
smaller variance) than the estimator ∑s nas/n from the multinomial distribution. That 
is, under proportional sampling for aging, there is an advantage in using ALK 
provided N is large. 

6.3 Likelihood Under Subsampling 

The length sample s = (s1,…,sN)T assumed random from a large population. Ages, 
mostly unmeasured, are a = (a1,…,aN)T. A subsample S is chosen for aging based on 
lengths; the subvectors are denoted by sS and aS, the remainder by s\S and a\S. In this 
Appendix, we distinguish the age a as a random variate from the age class k. 
 
For brevity, (A|B) is the density of A given B. Parameters p = (p1,…,pK)T; pk = 
proportion of age class k in the population from which s was drawn. There may be 
further parameters to be estimated in (s|a). We assume there are no random effects; 
the distributional properties include: 
 
(AA1) (s) = ∏i (si) marginally independent, (si) = ∑k (si|k)pk. 
 
(AA2) (a|s) = ∏i (ai|si) 
 
(AA3) S|s may be random or not. (S|s) depends on s. It does not depend upon any of 
the parameters.  
 
(AA4) (a|s,S) = (a|s) IS, where IS is the indicator function. 
 
We wish to calculate the joint density (s,S,aS) = (s)(S|s)(aS|s,S). 
 
First, (s) is given by (AA1). From (AA2) and (AA4), 
 
 (aS| sS,S) = ∏i in S (ai|si) IS  ∫ ∏i in \S (ai|si) da\S.    (A26) 
 
The integral (or summation in the discrete case) is 1, and by Bayes’ formula, 
 
(aS|s,S) = ∏i in S {(si|ai) (ai) / (si)}IS.      (A27) 
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Hence, the combined density is 
 
(s,S,aS) = (S|s) IS ∏i in \S (si) ∏i in S {(si|ai) (ai)}.    (A28) 
 
The conclusion is that, apart from a constant term, the log-likelihood is not 
altered by the subsampling. The distribution (s|a) is assumed either (i) known 
or (ii) depend on parameters to be estimated from the likelihood. If (s|a) is 
estimated from independent data rather than a subsample, the log-likelihood 
has essentially the same form. 
 
              P         0.1            0.2            0.3            0.4            0.5 

            Δ  

         0.20      0.0036      0.0064      0.0084      0.0095      0.0099 

         0.25      0.0057      0.0100      0.0130      0.0148      0.0154 

         0.30      0.0083      0.0144      0.0187      0.0212      0.0220 

         0.35      0.0113      0.0196      0.0253      0.0286      0.0297 

         0.40      0.0149      0.0256      0.0329      0.0371      0.0385 

         0.50      0.0237      0.0400      0.0508      0.0569      0.0589 

         0.75      0.0559      0.0892      0.1095      0.1207      0.1243 

         1.00      0.1039      0.1548      0.1838      0.1992      0.2041 

         1.50      0.2421      0.3174      0.3556      0.3748      0.3807 

         2.00      0.4113      0.4901      0.5270      0.5450      0.5504 

         2.50      0.5775      0.6448      0.6748      0.6890      0.6933 

         3.00      0.7178      0.7680      0.7897      0.7997      0.8028 
  

Table A1. ARE for estimating the proportions in two age classes 
and known Normal densities. For Δ  < 0.2, the approximation p(1 – 

p) Δ 2 may be used. 
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7 TABLES 

 
Table 1. Comparative estimates of proportions-at-age in 1983 for Greenland turbot data 

 
Age Mean length 

ap̂  (IALK) ap̂  (parametric 
known growth) 

4 38.07 0.0353 0.036 
5 43.94 0.1903 0.182 
6 49.78 0.2281 0.244 
7 55.12 0.1291 0.105 
8 61.24 0.1125 0.139 
9 65.64 0.0380 0.029 
10 67.02 0.0525 0.026 
11 68.36 0.21421 0.055 
12 71.50  0.000 
13 75.00  0.000 
14 76.46  0.000 
15 78.64  0.000 
16 81.02  0.113 
17 83.89  0.007 
18 83.69  0.059 
19 88.15  0.005 
20 88.09  0.001 
 

                                                 
1 Ages 11+ were grouped in Kimura & Chikuni (op.cit.) 
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Table 2. Precision results for uniform-intensity sampling: n otoliths and N length samples. 
"p[age]" is proportion at age. "1" and "2" refer to the parametric known-growth and unknown-
growth methods respectively. "CV" is the coefficient of variation. "neq" is the size of a 
randomly-selected sample (random with respect to age and length) that would deliver equal 
precision to a particular estimator. The ARE columns show the efficiency of the ALK relative to 
each parametric method. 

 
GAB purse seine 
n=100, N=200 
age p[age] CV1 CV2 neq1 neq2 CV 

(ALK) 
neq 
(ALK)

ARE1 ARE2 

1 0.0135 61 61 199 199 90 90 0.45 0.45 
2 0.1515 17 18 186 179 24 96 0.52 0.54 
3 0.6227 6 6 168 154 8 96 0.57 0.62 
4 0.1863 17 18 153 140 22 93 0.60 0.66 
5 0.0260 51 54 143 130 69 78 0.55 0.60 
 
n=100, N=500 
age p[age] CV1 CV2 neq1 neq2 CV 

(ALK) 
neq 
(ALK)

ARE1 ARE2 

1 0.0135 38 38 497 496 46 350 0.71 0.71 
2 0.1515 11 12 445 368 14 267 0.60 0.73 
3 0.6227 4 5 369 235 6 198 0.54 0.84 
4 0.1863 12 15 302 190 16 162 0.54 0.86 
5 0.0260 37 48 267 162 53 135 0.51 0.83 
 
n=200, N=500 
age p[age] CV1 CV2 neq1 neq2 CV 

(ALK) 
neq 
(ALK)

ARE1 ARE2 

1 0.0135 38 38 498 497 51 283 0.57 0.57 
2 0.1515 11 11 459 428 14 274 0.60 0.64 
3 0.6227 4 4 404 347 5 254 0.63 0.73 
4 0.1863 11 12 357 306 14 236 0.66 0.77 
5 0.0260 34 37 329 278 42 211 0.64 0.76 
 
n=100, N=1000 
age p[age] CV1 CV2 neq1 neq2 CV 

(ALK) 
neq 
(ALK)

ARE1 ARE2 

1 0.0135 27 27 993 992 31 756 0.76 0.76 
2 0.1515 8 9 875 628 12 398 0.45 0.63 
3 0.6227 3 5 699 294 5 247 0.35 0.84 
4 0.1863 9 14 545 217 15 189 0.35 0.87 
5 0.0260 28 46 469 180 49 156 0.33 0.87 
 
n=200, N=1000 
age p[age] CV1 CV2 neq1 neq2 CV 

(ALK) 
neq 
(ALK)

ARE1 ARE2 

1 0.0135 27 27 994 993 31 737 0.74 0.74 
2 0.1515 8 9 889 735 10 541 0.61 0.74 
3 0.6227 3 4 737 470 4 401 0.54 0.85 
4 0.1863 8 11 605 379 12 330 0.55 0.87 
5 0.0260 26 34 534 325 36 284 0.53 0.87 
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n=500, N=1000 
age p[age] CV1 CV2 neq1 neq2 CV 

(ALK) 
neq 
(ALK)

ARE1 ARE2 

1 0.0135 27 27 996 996 39 489 0.49 0.49 
2 0.1515 8 8 931 894 11 496 0.53 0.56 
3 0.6227 3 3 841 771 3 496 0.59 0.64 
4 0.1863 8 8 765 701 9 492 0.64 0.70 
5 0.0260 23 24 717 651 28 474 0.66 0.73 
 
n=100, N=2000 
age p[age] CV1 CV2 neq1 neq2 CV 

(ALK) 
neq 
(ALK)

ARE1 ARE2 

1 0.0135 19 19 1986 1982 22 1473 0.74 0.74 
2 0.1515 6 7 1737 1091 11 501 0.29 0.46 
3 0.6227 2 4 1359 348 5 275 0.20 0.79 
4 0.1863 7 14 1028 236 15 203 0.20 0.86 
5 0.0260 21 44 871 191 47 167 0.19 0.88 
 
n=200, N=2000 
age p[age] CV1 CV2 neq1 neq2 CV 

(ALK) 
neq 
(ALK)

ARE1 ARE2 

1 0.0135 19 19 1987 1983 21 1586 0.80 0.80 
2 0.1515 6 7 1751 1255 8 803 0.46 0.64 
3 0.6227 2 3 1399 588 3 496 0.35 0.84 
4 0.1863 6 10 1090 435 11 381 0.35 0.88 
5 0.0260 20 32 938 359 34 320 0.34 0.89 
 
n=500, N=2000 
age p[age] CV1 CV2 neq1 neq2 CV 

(ALK) 
neq 
(ALK)

ARE1 ARE2 

1 0.0135 19 19 1989 1987 23 1439 0.72 0.72 
2 0.1515 6 6 1793 1547 7 1142 0.64 0.74 
3 0.6227 2 2 1511 1077 3 904 0.60 0.84 
4 0.1863 6 7 1266 893 8 774 0.61 0.87 
5 0.0260 18 22 1130 778 23 690 0.61 0.89 
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Japanese long-line 
 n=100, N=200 
age p[age] CV1 CV2 neq1 neq2 CV 

(ALK) 
neq 
(ALK)

ARE1 ARE2 

2 0.0457 33 34 189 183 48 93 0.49 0.50 
3 0.1375 19 19 177 166 26 93 0.53 0.56 
4 0.1010 25 26 141 130 32 89 0.63 0.69 
5 0.1521 21 21 132 124 25 91 0.69 0.73 
6 0.1707 20 20 124 118 23 91 0.74 0.77 
7 0.1225 25 25 116 113 28 90 0.77 0.80 
8 0.0780 32 33 112 110 37 87 0.78 0.79 
9 0.0651 36 36 113 111 41 84 0.74 0.76 
10 0.0350 50 51 109 107 59 80 0.74 0.75 
11 0.0160 77 77 105 104 90 75 0.72 0.73 
12 0.0104 96 96 104 103 116 71 0.68 0.69 
13 0.0119 89 89 105 104 112 66 0.63 0.64 
14 0.0078 111 111 103 103 146 60 0.58 0.58 
15 0.0047 144 144 102 102 200 53 0.52 0.52 
16 0.0029 184 184 102 101 273 46 0.45 0.46 
17 0.0387 42 44 138 130 60 69 0.50 0.53 
 
n=100, N=500 
age p[age] CV1 CV2 neq1 neq2 CV 

(ALK) 
neq 
(ALK)

ARE1 ARE2 

2 0.0457 21 23 457 392 27 279 0.61 0.71 
3 0.1375 13 15 399 278 17 228 0.57 0.82 
4 0.1010 19 23 250 161 25 141 0.56 0.87 
5 0.1521 17 19 205 147 20 133 0.65 0.91 
6 0.1707 17 19 169 134 20 124 0.73 0.93 
7 0.1225 22 24 143 123 25 115 0.80 0.93 
8 0.0780 30 32 129 117 33 109 0.85 0.94 
9 0.0651 33 35 132 119 36 110 0.83 0.93 
10 0.0350 48 50 121 112 52 103 0.85 0.92 
11 0.0160 74 76 111 107 80 97 0.87 0.91 
12 0.0104 94 95 108 105 101 94 0.87 0.90 
13 0.0119 87 88 110 107 94 93 0.85 0.87 
14 0.0078 109 110 107 105 120 89 0.83 0.85 
15 0.0047 142 143 104 103 159 84 0.80 0.81 
16 0.0029 183 183 103 102 209 79 0.76 0.77 
17 0.0387 34 40 210 159 44 130 0.62 0.82 
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n=200, N=500 
age p[age] CV1 CV2 neq1 neq2 CV 

(ALK) 
neq 
(ALK)

ARE1 ARE2 

2 0.0457 21 22 468 443 28 273 0.58 0.62 
3 0.1375 12 13 429 383 16 261 0.61 0.68 
4 0.1010 17 18 320 278 20 223 0.70 0.80 
5 0.1521 14 15 292 262 16 219 0.75 0.84 
6 0.1707 14 14 266 246 15 214 0.80 0.87 
7 0.1225 17 18 245 231 19 206 0.84 0.89 
8 0.0780 23 23 232 224 24 201 0.86 0.90 
9 0.0651 25 25 236 226 27 200 0.85 0.88 
10 0.0350 35 36 224 217 38 192 0.86 0.88 
11 0.0160 54 54 213 209 58 184 0.87 0.88 
12 0.0104 67 68 209 207 73 179 0.85 0.86 
13 0.0119 63 63 212 210 69 175 0.82 0.83 
14 0.0078 78 78 209 207 88 166 0.80 0.80 
15 0.0047 101 102 206 205 117 156 0.76 0.76 
16 0.0029 130 130 204 203 154 145 0.71 0.71 
17 0.0387 29 30 306 276 35 201 0.66 0.73 
 
n=100, N=1000 
age p[age] CV1 CV2 neq1 neq2 CV 

(ALK) 
neq 
(ALK)

ARE1 ARE2 

2 0.0457 15 17 902 689 22 445 0.49 0.65 
3 0.1375 9 13 762 365 14 311 0.41 0.85 
4 0.1010 15 22 418 176 24 158 0.38 0.90 
5 0.1521 14 19 304 157 20 146 0.48 0.93 
6 0.1707 15 19 221 140 19 133 0.60 0.95 
7 0.1225 21 24 169 127 24 121 0.72 0.95 
8 0.0780 29 31 144 120 32 115 0.80 0.96 
9 0.0651 31 34 146 122 35 116 0.80 0.95 
10 0.0350 46 49 130 114 50 109 0.84 0.95 
11 0.0160 73 76 116 108 77 103 0.88 0.95 
12 0.0104 92 95 112 106 97 100 0.89 0.95 
13 0.0119 85 88 115 108 91 101 0.88 0.94 
14 0.0078 108 110 109 106 114 98 0.89 0.92 
15 0.0047 142 143 105 104 150 94 0.89 0.91 
16 0.0029 182 183 104 103 195 91 0.87 0.88 
17 0.0387 30 38 284 171 40 155 0.54 0.90 
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n=200, N=1000 
age p[age] CV1 CV2 neq1 neq2 CV 

(ALK) 
neq 
(ALK)

ARE1 ARE2 

2 0.0457 15 16 914 784 19 574 0.63 0.73 
3 0.1375 9 11 797 557 12 466 0.58 0.84 
4 0.1010 13 17 500 323 18 288 0.58 0.89 
5 0.1521 12 14 409 294 14 271 0.66 0.92 
6 0.1707 12 13 337 268 14 252 0.75 0.94 
7 0.1225 16 17 286 246 18 233 0.81 0.95 
8 0.0780 21 22 259 234 23 223 0.86 0.96 
9 0.0651 23 25 264 237 25 225 0.85 0.95 
10 0.0350 34 35 242 224 36 213 0.88 0.95 
11 0.0160 53 54 222 213 55 202 0.91 0.95 
12 0.0104 66 67 216 210 69 198 0.91 0.94 
13 0.0119 61 62 221 213 65 198 0.90 0.93 
14 0.0078 77 78 214 210 81 192 0.90 0.91 
15 0.0047 101 101 209 207 107 185 0.89 0.89 
16 0.0029 129 130 206 205 139 178 0.86 0.87 
17 0.0387 24 28 420 317 30 279 0.67 0.88 
 
n=500, N=1000 
age p[age] CV1 CV2 neq1 neq2 CV 

(ALK) 
neq 
(ALK)

ARE1 ARE2 

2 0.0457 15 15 947 916 21 492 0.52 0.54 
3 0.1375 8 9 884 829 11 493 0.56 0.59 
4 0.1010 11 12 705 650 14 488 0.69 0.75 
5 0.1521 9 9 661 621 11 490 0.74 0.79 
6 0.1707 9 9 619 591 10 490 0.79 0.83 
7 0.1225 11 11 582 563 12 489 0.84 0.87 
8 0.0780 15 15 561 548 16 485 0.87 0.89 
9 0.0651 16 16 567 553 17 482 0.85 0.87 
10 0.0350 23 23 544 535 24 476 0.87 0.89 
11 0.0160 34 34 524 519 36 469 0.90 0.90 
12 0.0104 43 43 518 515 45 462 0.89 0.90 
13 0.0119 40 40 524 520 43 454 0.87 0.87 
14 0.0078 50 50 517 515 54 441 0.85 0.86 
15 0.0047 64 64 512 510 71 424 0.83 0.83 
16 0.0029 82 82 508 507 92 406 0.80 0.80 
17 0.0387 19 20 689 649 23 459 0.67 0.71 
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n=100, N=2000 
age p[age] CV1 CV2 neq1 neq2 CV 

(ALK) 
neq 
(ALK)

ARE1 ARE2 

2 0.0457 11 13 1793 1221 19 595 0.33 0.49 
3 0.1375 7 12 1482 439 13 368 0.25 0.84 
4 0.1010 11 22 741 184 23 166 0.22 0.90 
5 0.1521 11 19 480 161 19 152 0.32 0.94 
6 0.1707 13 18 301 143 19 137 0.45 0.96 
7 0.1225 19 24 202 129 24 124 0.61 0.96 
8 0.0780 27 31 159 121 32 117 0.74 0.97 
9 0.0651 30 34 160 123 35 119 0.75 0.97 
10 0.0350 45 49 139 115 50 112 0.80 0.97 
11 0.0160 71 75 121 108 76 105 0.87 0.97 
12 0.0104 91 95 116 106 96 103 0.89 0.97 
13 0.0119 83 88 120 108 89 104 0.87 0.96 
14 0.0078 107 110 112 106 112 102 0.91 0.96 
15 0.0047 141 143 106 104 146 99 0.93 0.95 
16 0.0029 182 183 104 103 189 97 0.93 0.94 
17 0.0387 26 37 380 178 38 168 0.44 0.95 
 
n=200, N=2000 
age p[age] CV1 CV2 neq1 neq2 CV 

(ALK) 
neq 
(ALK)

ARE1 ARE2 

2 0.0457 11 12 1805 1377 15 909 0.50 0.66 
3 0.1375 6 9 1523 730 10 631 0.41 0.86 
4 0.1010 10 16 837 353 17 319 0.38 0.91 
5 0.1521 10 13 609 313 14 294 0.48 0.94 
6 0.1707 10 13 441 281 13 268 0.61 0.95 
7 0.1225 15 17 338 254 17 244 0.72 0.96 
8 0.0780 20 22 287 239 23 232 0.81 0.97 
9 0.0651 22 24 292 244 25 236 0.81 0.97 
10 0.0350 33 35 260 228 35 221 0.85 0.97 
11 0.0160 51 53 233 215 54 209 0.90 0.97 
12 0.0104 65 67 224 212 68 205 0.92 0.97 
13 0.0119 60 62 230 216 63 208 0.90 0.96 
14 0.0078 76 78 218 211 79 203 0.93 0.96 
15 0.0047 100 101 211 208 104 197 0.93 0.95 
16 0.0029 129 129 208 205 134 192 0.93 0.94 
17 0.0387 21 27 568 342 28 321 0.57 0.94 
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n=500, N=2000 
age p[age] CV1 CV2 neq1 neq2 CV 

(ALK) 
neq 
(ALK)

ARE1 ARE2 

2 0.0457 11 11 1838 1635 13 1199 0.65 0.73 
3 0.1375 6 7 1627 1248 8 1021 0.63 0.82 
4 0.1010 9 11 1074 775 11 692 0.64 0.89 
5 0.1521 8 9 913 712 9 655 0.72 0.92 
6 0.1707 8 9 779 655 9 615 0.79 0.94 
7 0.1225 10 11 680 604 11 576 0.85 0.95 
8 0.0780 14 14 625 578 15 556 0.89 0.96 
9 0.0651 15 16 637 586 16 561 0.88 0.96 
10 0.0350 22 22 590 556 23 535 0.91 0.96 
11 0.0160 33 34 548 530 35 513 0.94 0.97 
12 0.0104 42 43 535 523 43 504 0.94 0.96 
13 0.0119 39 40 545 531 40 507 0.93 0.96 
14 0.0078 49 49 531 523 51 496 0.94 0.95 
15 0.0047 64 64 520 516 66 484 0.93 0.94 
16 0.0029 82 82 514 511 85 472 0.92 0.92 
17 0.0387 16 18 948 765 19 687 0.72 0.90 
 
Indonesian long-line 
n=100, N=200 
age p[age] CV1 CV2 neq1 neq2 CV 

(ALK) 
neq 
(ALK)

ARE1 ARE2 

8 0.0017 229 233 112 108 735 11 0.10 0.10 
9 0.0055 128 130 110 107 264 26 0.24 0.24 
10 0.0096 98 99 107 105 147 48 0.45 0.46 
11 0.0114 92 92 104 102 115 65 0.63 0.64 
12 0.0167 76 76 103 102 88 77 0.75 0.75 
13 0.0354 51 52 103 102 57 83 0.81 0.82 
14 0.0344 53 53 102 101 57 87 0.85 0.86 
15 0.0314 55 55 101 100 59 89 0.88 0.88 
16 0.0362 51 52 100 100 54 90 0.89 0.90 
17 0.0503 43 43 100 100 46 90 0.90 0.90 
18 0.0754 35 35 100 100 37 91 0.90 0.90 
19 0.0754 35 35 100 100 37 91 0.90 0.91 
20 0.0832 33 33 100 100 35 90 0.90 0.90 
21 0.0702 36 36 100 100 38 90 0.90 0.90 
22 0.0817 33 34 100 100 35 90 0.90 0.90 
23 0.0759 35 35 100 100 37 90 0.89 0.90 
24 0.0517 43 43 100 100 45 89 0.89 0.89 
25 0.2539 17 17 103 102 18 90 0.87 0.88 
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n=100, N=500 
age p[age] CV1 CV2 neq1 neq2 CV 

(ALK) 
neq 
(ALK)

ARE1 ARE2 

8 0.0017 206 227 138 114 416 34 0.25 0.30 
9 0.0055 119 126 127 113 171 62 0.48 0.55 
10 0.0096 94 98 117 108 112 83 0.70 0.76 
11 0.0114 89 91 109 104 98 91 0.83 0.87 
12 0.0167 74 76 107 103 79 95 0.89 0.92 
13 0.0354 50 51 109 103 53 98 0.90 0.95 
14 0.0344 52 53 105 102 54 98 0.93 0.96 
15 0.0314 55 55 102 101 56 98 0.95 0.97 
16 0.0362 51 51 102 100 52 98 0.96 0.97 
17 0.0503 43 43 101 100 44 98 0.97 0.97 
18 0.0754 35 35 101 100 35 98 0.97 0.98 
19 0.0754 35 35 100 100 35 98 0.97 0.98 
20 0.0832 33 33 100 100 34 98 0.97 0.98 
21 0.0702 36 36 101 100 37 98 0.97 0.98 
22 0.0817 33 33 101 100 34 98 0.97 0.98 
23 0.0759 35 35 101 100 35 98 0.97 0.98 
24 0.0517 43 43 101 100 43 98 0.97 0.98 
25 0.2539 16 17 110 103 17 100 0.91 0.97 
 
n=200, N=500 
age p[age] CV1 CV2 neq1 neq2 CV 

(ALK) 
neq 
(ALK)

ARE1 ARE2 

8 0.0017 158 164 234 219 329 54 0.23 0.25 
9 0.0055 89 91 228 218 131 105 0.46 0.48 
10 0.0096 69 70 218 212 83 150 0.69 0.71 
11 0.0114 64 65 210 206 71 172 0.82 0.83 
12 0.0167 53 54 207 204 57 184 0.89 0.90 
13 0.0354 36 36 209 205 38 190 0.91 0.93 
14 0.0344 37 37 205 202 38 192 0.94 0.95 
15 0.0314 39 39 202 201 40 193 0.95 0.96 
16 0.0362 36 36 201 201 37 193 0.96 0.96 
17 0.0503 31 31 201 200 31 194 0.96 0.97 
18 0.0754 25 25 201 200 25 194 0.96 0.97 
19 0.0754 25 25 200 200 25 194 0.97 0.97 
20 0.0832 23 23 200 200 24 193 0.97 0.97 
21 0.0702 26 26 200 200 26 193 0.96 0.97 
22 0.0817 24 24 201 200 24 193 0.96 0.96 
23 0.0759 25 25 201 200 25 193 0.96 0.96 
24 0.0517 30 30 201 200 31 193 0.96 0.96 
25 0.2539 12 12 209 205 12 196 0.93 0.96 
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n=100, N=1000 
age p[age] CV1 CV2 neq1 neq2 CV 

(ALK) 
neq 
(ALK)

ARE1 ARE2 

8 0.0017 186 225 169 116 325 56 0.33 0.48 
9 0.0055 113 125 141 115 148 83 0.59 0.72 
10 0.0096 91 97 126 110 104 95 0.76 0.87 
11 0.0114 87 91 114 105 94 98 0.86 0.93 
12 0.0167 73 75 111 103 77 100 0.90 0.96 
13 0.0354 49 51 114 104 52 101 0.89 0.97 
14 0.0344 51 52 108 102 53 100 0.93 0.98 
15 0.0314 54 55 104 101 56 99 0.95 0.99 
16 0.0362 51 51 103 101 52 99 0.97 0.99 
17 0.0503 43 43 102 100 44 99 0.97 0.99 
18 0.0754 35 35 102 100 35 99 0.98 0.99 
19 0.0754 35 35 101 100 35 99 0.98 0.99 
20 0.0832 33 33 101 100 33 99 0.98 0.99 
21 0.0702 36 36 101 100 37 99 0.98 0.99 
22 0.0817 33 34 101 100 34 99 0.98 0.99 
23 0.0759 35 35 102 100 35 99 0.97 1.00 
24 0.0517 42 43 102 100 43 99 0.98 1.00 
25 0.2539 16 17 116 103 17 102 0.88 1.00 
 
n=200, N=1000 
age p[age] CV1 CV2 neq1 neq2 CV 

(ALK) 
neq 
(ALK)

ARE1 ARE2 

8 0.0017 146 161 276 227 238 104 0.38 0.46 
9 0.0055 84 89 255 226 107 158 0.62 0.70 
10 0.0096 66 69 234 217 74 186 0.79 0.86 
11 0.0114 63 65 218 208 67 194 0.89 0.93 
12 0.0167 52 53 214 206 55 197 0.92 0.96 
13 0.0354 35 36 218 206 37 201 0.92 0.97 
14 0.0344 37 37 210 203 38 199 0.95 0.98 
15 0.0314 39 39 205 202 39 198 0.97 0.98 
16 0.0362 36 36 203 201 37 198 0.98 0.99 
17 0.0503 31 31 202 201 31 198 0.98 0.99 
18 0.0754 25 25 202 200 25 198 0.98 0.99 
19 0.0754 25 25 201 200 25 198 0.98 0.99 
20 0.0832 23 23 201 200 24 198 0.99 0.99 
21 0.0702 26 26 201 200 26 198 0.98 0.99 
22 0.0817 24 24 202 200 24 198 0.98 0.99 
23 0.0759 25 25 203 200 25 198 0.98 0.99 
24 0.0517 30 30 202 200 30 198 0.98 0.99 
25 0.2539 12 12 220 206 12 203 0.93 0.99 
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n=500, N=1000 
age p[age] CV1 CV2 neq1 neq2 CV 

(ALK) 
neq 
(ALK)

ARE1 ARE2 

8 0.0017 102 104 560 539 176 190 0.34 0.35 
9 0.0055 57 58 552 536 75 319 0.58 0.59 
10 0.0096 44 44 533 523 50 411 0.77 0.78 
11 0.0114 41 41 518 512 44 452 0.87 0.88 
12 0.0167 34 34 513 508 35 472 0.92 0.93 
13 0.0354 23 23 516 510 24 481 0.93 0.94 
14 0.0344 24 24 508 505 24 486 0.96 0.96 
15 0.0314 25 25 504 502 25 488 0.97 0.97 
16 0.0362 23 23 502 501 23 489 0.97 0.98 
17 0.0503 19 19 502 501 20 490 0.98 0.98 
18 0.0754 16 16 501 501 16 490 0.98 0.98 
19 0.0754 16 16 501 500 16 490 0.98 0.98 
20 0.0832 15 15 501 500 15 490 0.98 0.98 
21 0.0702 16 16 501 500 16 490 0.98 0.98 
22 0.0817 15 15 502 501 15 489 0.98 0.98 
23 0.0759 16 16 502 501 16 489 0.97 0.98 
24 0.0517 19 19 501 500 19 489 0.98 0.98 
25 0.2539 8 8 516 509 8 490 0.95 0.96 
 
n=100, N=2000 
age p[age] CV1 CV2 neq1 neq2 CV 

(ALK) 
neq 
(ALK)

ARE1 ARE2 

8 0.0017 165 224 216 117 277 77 0.35 0.65 
9 0.0055 108 125 155 117 137 97 0.63 0.83 
10 0.0096 88 96 135 111 101 102 0.76 0.92 
11 0.0114 86 91 118 105 93 101 0.86 0.96 
12 0.0167 72 75 114 104 76 101 0.89 0.98 
13 0.0354 48 51 119 104 52 103 0.86 0.99 
14 0.0344 50 52 111 102 53 101 0.91 0.99 
15 0.0314 54 55 106 101 55 100 0.95 0.99 
16 0.0362 51 51 104 101 52 100 0.96 0.99 
17 0.0503 43 43 104 100 43 100 0.96 1.00 
18 0.0754 35 35 103 100 35 100 0.97 1.00 
19 0.0754 35 35 102 100 35 100 0.98 1.00 
20 0.0832 33 33 101 100 33 100 0.99 1.00 
21 0.0702 36 37 101 99 36 100 0.99 1.01 
22 0.0817 33 34 102 99 34 100 0.98 1.01 
23 0.0759 34 35 103 99 35 100 0.98 1.02 
24 0.0517 42 43 102 98 43 100 0.98 1.02 
25 0.2539 15 17 124 102 17 103 0.83 1.02 
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n=200, N=2000 
age p[age] CV1 CV2 neq1 neq2 CV 

(ALK) 
neq 
(ALK)

ARE1 ARE2 

8 0.0017 132 159 339 232 198 149 0.44 0.64 
9 0.0055 80 89 282 231 97 191 0.68 0.83 
10 0.0096 64 69 251 220 71 203 0.81 0.92 
11 0.0114 62 64 228 210 66 202 0.89 0.96 
12 0.0167 52 53 221 207 54 202 0.91 0.98 
13 0.0354 35 36 228 207 37 204 0.90 0.99 
14 0.0344 36 37 216 204 37 202 0.94 0.99 
15 0.0314 38 39 208 202 39 200 0.96 0.99 
16 0.0362 36 36 206 201 37 200 0.97 0.99 
17 0.0503 30 31 204 201 31 200 0.98 0.99 
18 0.0754 25 25 203 200 25 200 0.98 1.00 
19 0.0754 25 25 202 200 25 199 0.99 1.00 
20 0.0832 23 23 201 200 24 199 0.99 1.00 
21 0.0702 26 26 202 200 26 200 0.99 1.00 
22 0.0817 24 24 203 200 24 200 0.99 1.00 
23 0.0759 24 25 204 200 25 200 0.98 1.00 
24 0.0517 30 30 203 199 30 200 0.98 1.00 
25 0.2539 11 12 233 206 12 206 0.89 1.00 
 
n=500, N=2000 
age p[age] CV1 CV2 neq1 neq2 CV 

(ALK) 
neq 
(ALK)

ARE1 ARE2 

8 0.0017 95 102 652 563 131 343 0.53 0.61 
9 0.0055 54 57 615 560 63 452 0.73 0.81 
10 0.0096 42 44 572 538 46 491 0.86 0.91 
11 0.0114 40 41 539 519 42 497 0.92 0.96 
12 0.0167 33 34 530 513 34 501 0.95 0.98 
13 0.0354 23 23 537 515 23 506 0.94 0.98 
14 0.0344 23 24 520 508 24 502 0.97 0.99 
15 0.0314 25 25 510 504 25 499 0.98 0.99 
16 0.0362 23 23 506 502 23 499 0.98 0.99 
17 0.0503 19 19 504 501 19 498 0.99 0.99 
18 0.0754 16 16 503 501 16 498 0.99 0.99 
19 0.0754 16 16 502 500 16 498 0.99 0.99 
20 0.0832 15 15 502 501 15 498 0.99 0.99 
21 0.0702 16 16 502 501 16 498 0.99 0.99 
22 0.0817 15 15 504 501 15 499 0.99 0.99 
23 0.0759 16 16 505 501 16 499 0.99 1.00 
24 0.0517 19 19 504 501 19 498 0.99 1.00 
25 0.2539 7 8 540 514 8 510 0.94 0.99 
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Table 3. Summary of CVs in Table 2 for the parametric unknown-growth estimator and the 
Japanese fishery 

 
Age 3 
n\N 200 500 1000 2000 
100 19 15 13 12 
200 . 13 11 9 
500 . . 9 7 
 
Age 6 
n\N 200 500 1000 2000 
100 20 19 19 18 
200 . 14 13 13 
500 . . 9 9 
 
 
Age 9  
    n\N 200 500 1000 2000

100 36 35 34 34
200 . 25 25 24
500 . . 16 16
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Table 4. Precision results for unbalanced subsampling (relatively more big fish): Japanese long-
lines. Column headings are as for Table 2. 

 
n=100, N=200 
age p[age] CV1 CV2 neq1 neq2 CV 

(ALK) 
neq 
(ALK)

ARE1 ARE2 

2 0.0457 44 49 108 87 66 48 0.44 0.55 
3 0.1375 25 33 97 56 40 39 0.40 0.68 
4 0.1010 38 49 62 37 62 23 0.37 0.62 
5 0.1521 24 27 94 78 39 38 0.40 0.48 
6 0.1707 18 19 144 134 26 73 0.51 0.55 
7 0.1225 21 21 169 164 25 116 0.69 0.71 
8 0.0780 26 26 174 172 30 129 0.74 0.75 
9 0.0651 28 29 178 175 34 127 0.71 0.72 
10 0.0350 40 40 174 173 47 125 0.71 0.72 
11 0.0160 60 60 171 170 71 121 0.71 0.71 
12 0.0104 75 75 169 169 91 114 0.67 0.68 
13 0.0119 70 70 171 170 88 106 0.62 0.62 
14 0.0078 87 87 169 169 115 97 0.57 0.57 
15 0.0047 112 112 168 168 157 86 0.51 0.51 
16 0.0029 143 143 168 167 213 76 0.45 0.45 
17 0.0387 35 35 204 198 51 95 0.47 0.48 
 
n=100, N=500 
age p[age] CV1 CV2 neq1 neq2 CV 

(ALK) 
neq 
(ALK)

ARE1 ARE2 

2 0.0457 24 29 376 247 47 95 0.25 0.38 
3 0.1375 14 28 315 78 32 60 0.19 0.76 
4 0.1010 23 45 167 43 56 28 0.17 0.66 
5 0.1521 18 25 166 86 34 47 0.28 0.55 
6 0.1707 16 18 193 148 23 96 0.50 0.65 
7 0.1225 19 20 204 181 21 157 0.77 0.87 
8 0.0780 24 25 199 186 26 172 0.86 0.93 
9 0.0651 26 27 205 191 29 176 0.86 0.92 
10 0.0350 38 39 192 183 41 167 0.87 0.92 
11 0.0160 59 59 180 175 62 159 0.89 0.91 
12 0.0104 74 74 176 173 78 155 0.88 0.89 
13 0.0119 68 69 179 175 74 153 0.85 0.87 
14 0.0078 85 86 175 173 93 146 0.84 0.85 
15 0.0047 111 111 172 171 124 138 0.80 0.81 
16 0.0029 142 143 170 169 163 130 0.76 0.77 
17 0.0387 29 32 292 245 36 196 0.67 0.80 
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n=200, N=500 
age p[age] CV1 CV2 neq1 neq2 CV 

(ALK) 
neq 
(ALK)

ARE1 ARE2 

2 0.0457 26 30 306 232 39 137 0.45 0.59 
3 0.1375 15 22 267 126 25 98 0.37 0.78 
4 0.1010 24 34 161 78 41 53 0.33 0.68 
5 0.1521 16 19 214 161 25 87 0.41 0.54 
6 0.1707 13 13 308 276 17 170 0.55 0.61 
7 0.1225 14 15 354 338 16 273 0.77 0.81 
8 0.0780 18 18 361 352 20 305 0.84 0.86 
9 0.0651 20 20 368 360 22 306 0.83 0.85 
10 0.0350 28 28 357 351 30 302 0.85 0.86 
11 0.0160 42 42 345 343 46 297 0.86 0.87 
12 0.0104 53 53 342 340 57 290 0.85 0.85 
13 0.0119 49 49 345 343 54 281 0.81 0.82 
14 0.0078 61 61 342 340 69 270 0.79 0.79 
15 0.0047 79 79 339 338 91 255 0.75 0.75 
16 0.0029 101 101 337 336 120 238 0.71 0.71 
17 0.0387 24 24 443 421 30 277 0.63 0.66 
 
n=100, N=1000 
age p[age] CV1 CV2 neq1 neq2 CV 

(ALK) 
neq 
(ALK)

ARE1 ARE2 

2 0.0457 16 21 822 489 42 116 0.14 0.24 
3 0.1375 10 27 675 89 31 66 0.10 0.75 
4 0.1010 16 44 333 46 55 30 0.09 0.65 
5 0.1521 14 25 268 88 34 50 0.18 0.56 
6 0.1707 14 18 250 153 22 102 0.41 0.66 
7 0.1225 17 20 236 188 21 167 0.71 0.89 
8 0.0780 23 25 220 193 25 184 0.83 0.95 
9 0.0651 25 27 226 198 28 189 0.84 0.95 
10 0.0350 37 38 206 187 39 179 0.87 0.95 
11 0.0160 57 59 187 177 60 169 0.90 0.95 
12 0.0104 72 74 182 175 76 165 0.91 0.95 
13 0.0119 67 68 185 178 71 166 0.90 0.94 
14 0.0078 84 85 178 174 89 161 0.90 0.92 
15 0.0047 110 111 174 172 117 155 0.89 0.91 
16 0.0029 142 142 171 170 152 150 0.87 0.88 
17 0.0387 25 30 388 272 32 244 0.63 0.90 
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n=200, N=1000 
age p[age] CV1 CV2 neq1 neq2 CV 

(ALK) 
neq 
(ALK)

ARE1 ARE2 

2 0.0457 17 21 752 495 32 202 0.27 0.41 
3 0.1375 10 20 629 157 23 124 0.20 0.79 
4 0.1010 16 32 334 87 39 58 0.17 0.67 
5 0.1521 13 18 332 172 24 97 0.29 0.56 
6 0.1707 11 13 385 295 16 195 0.51 0.66 
7 0.1225 13 14 408 362 15 318 0.78 0.88 
8 0.0780 17 18 399 372 18 352 0.88 0.94 
9 0.0651 19 19 409 382 20 360 0.88 0.94 
10 0.0350 27 27 384 365 28 346 0.90 0.95 
11 0.0160 41 42 359 350 43 331 0.92 0.95 
12 0.0104 52 52 352 346 54 325 0.92 0.94 
13 0.0119 48 49 358 350 51 325 0.91 0.93 
14 0.0078 60 61 350 346 64 315 0.90 0.91 
15 0.0047 79 79 344 341 83 305 0.89 0.89 
16 0.0029 101 101 340 338 108 294 0.86 0.87 
17 0.0387 21 23 583 490 24 419 0.72 0.86 
 
n=500, N=1000 
age p[age] CV1 CV2 neq1 neq2 CV 

(ALK) 
neq 
(ALK)

ARE1 ARE2 

2 0.0457 20 22 541 436 27 296 0.55 0.68 
3 0.1375 11 15 484 282 17 224 0.46 0.79 
4 0.1010 17 22 312 186 26 131 0.42 0.71 
5 0.1521 11 12 468 389 16 211 0.45 0.54 
6 0.1707 8 9 718 669 11 398 0.55 0.60 
7 0.1225 9 9 844 821 11 631 0.75 0.77 
8 0.0780 12 12 872 860 13 715 0.82 0.83 
9 0.0651 13 13 888 876 14 715 0.81 0.82 
10 0.0350 18 18 871 864 19 732 0.84 0.85 
11 0.0160 27 27 853 849 29 746 0.87 0.88 
12 0.0104 34 34 847 845 36 741 0.87 0.88 
13 0.0119 31 31 854 850 34 720 0.84 0.85 
14 0.0078 39 39 847 845 42 708 0.83 0.84 
15 0.0047 50 50 842 840 55 688 0.82 0.82 
16 0.0029 64 64 838 837 72 662 0.79 0.79 
17 0.0387 16 16 1020 991 20 598 0.59 0.60 
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n=100, N=2000 
age p[age] CV1 CV2 neq1 neq2 CV 

(ALK) 
neq 
(ALK)

ARE1 ARE2 

2 0.0457 11 15 1712 936 40 128 0.07 0.14 
3 0.1375 7 26 1392 95 30 70 0.05 0.73 
4 0.1010 12 44 654 46 54 30 0.05 0.66 
5 0.1521 11 25 452 87 33 51 0.11 0.58 
6 0.1707 12 18 341 154 22 104 0.31 0.67 
7 0.1225 16 19 278 192 20 172 0.62 0.90 
8 0.0780 22 25 243 196 25 189 0.78 0.96 
9 0.0651 24 27 248 202 27 196 0.79 0.97 
10 0.0350 35 38 220 190 39 184 0.84 0.97 
11 0.0160 56 59 195 179 59 174 0.89 0.97 
12 0.0104 71 74 188 176 75 170 0.91 0.97 
13 0.0119 66 68 193 179 69 173 0.89 0.96 
14 0.0078 84 85 182 175 87 168 0.92 0.96 
15 0.0047 110 111 175 172 114 164 0.94 0.95 
16 0.0029 141 142 172 170 147 160 0.93 0.94 
17 0.0387 22 29 517 288 30 272 0.53 0.94 
 
n=200, N=2000 
age p[age] CV1 CV2 neq1 neq2 CV 

(ALK) 
neq 
(ALK)

ARE1 ARE2 

2 0.0457 11 15 1643 977 30 240 0.15 0.25 
3 0.1375 7 19 1349 177 22 135 0.10 0.76 
4 0.1010 12 31 666 91 38 60 0.09 0.66 
5 0.1521 10 18 537 176 24 100 0.19 0.57 
6 0.1707 10 13 500 305 15 205 0.41 0.67 
7 0.1225 12 14 473 376 15 337 0.71 0.90 
8 0.0780 16 18 440 385 18 371 0.84 0.96 
9 0.0651 18 19 453 396 19 383 0.85 0.97 
10 0.0350 26 27 412 374 28 363 0.88 0.97 
11 0.0160 41 42 375 354 42 345 0.92 0.97 
12 0.0104 51 52 363 349 53 339 0.93 0.97 
13 0.0119 47 48 371 355 49 342 0.92 0.96 
14 0.0078 60 60 357 349 62 334 0.94 0.96 
15 0.0047 78 79 347 343 81 326 0.94 0.95 
16 0.0029 100 101 343 340 104 318 0.93 0.94 
17 0.0387 18 21 777 543 22 506 0.65 0.93 
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n=500, N=2000 
age p[age] CV1 CV2 neq1 neq2 CV 

(ALK) 
neq 
(ALK)

ARE1 ARE2 

2 0.0457 12 15 1434 982 21 483 0.34 0.49 
3 0.1375 7 13 1211 371 14 302 0.25 0.81 
4 0.1010 12 21 665 211 25 146 0.22 0.69 
5 0.1521 9 11 717 424 15 240 0.33 0.57 
6 0.1707 7 8 894 725 10 479 0.54 0.66 
7 0.1225 9 9 974 888 10 780 0.80 0.88 
8 0.0780 11 11 966 917 12 866 0.90 0.94 
9 0.0651 12 12 989 939 13 887 0.90 0.94 
10 0.0350 17 17 937 904 18 862 0.92 0.95 
11 0.0160 26 27 887 870 27 836 0.94 0.96 
12 0.0104 33 33 872 860 34 826 0.95 0.96 
13 0.0119 31 31 884 871 32 827 0.94 0.95 
14 0.0078 38 38 868 860 40 813 0.94 0.94 
15 0.0047 50 50 855 850 52 795 0.93 0.94 
16 0.0029 64 64 848 844 66 778 0.92 0.92 
17 0.0387 14 15 1332 1174 16 1002 0.75 0.85 
 
 

43 


	ABSTRACT
	INTRODUCTION
	A LIKELIHOOD FRAMEWORK FOR LENGTH AND AGE-AT-LENGTH DATA
	Estimating proportions-at-age
	Age-length key
	Iterated age-length key
	Parametric estimator: known growth
	Parametric estimator: unknown growth

	Example: application to Greenland turbot data

	APPLICATION TO SAMPLING DESIGN FOR SBT
	Results by method
	Results by fishery
	
	GAB
	Indonesian long-liners
	Japanese long-liners
	Comparison between fisheries

	Effect of varying the subsampling pattern


	CONCLUSIONS AND DISCUSSION
	Discussion points
	Within-season growth
	How should precision vary with age?
	Effective sample size for the length frequency data
	Errors in age and length measurements
	Further methodological work

	Summary

	REFERENCES
	APPENDIX: THEORETICAL DETAILS
	Age-Length Key
	Iterated Age-Length Key
	Random sampling
	Parametric Methods and Mixture Distributions
	Estimation
	No length data

	Information for the estimates
	Two age classes, length-at-age distributions known
	K age classes, length-at-age parameters to be estimated
	I??  = – E\(?2?/????T\).\(A23\)
	The asymptotic variance-covariance matrix of the reduced parameters is the inverse of I. To get back to the original parameters, pre-multiply by QT and/or post-multiply by Q the corresponding partitions of I -1.


	ALK

	Likelihood Under Subsampling

	TABLES
	
	
	
	
	Age
	Mean length









