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Abstract

Stochastic recruitment variance in the SBT operating model plays a crucial role in the uncertainty
in stock projections, as well as being strongly influential on the estimates of historical recruitment and
in particular steepness. It is also not directly estimable in the SBT operating model and an assumed
value of 0.6 is currently used. This paper explores the use of a modified version of the population and
estimation model used in the CCSBT Management Procedure to obtain an estimate of the recruitment
variance outside of the SBT operating model.

1 Background

The variability in recruitment, often denoted by its lognormal standard deviation σr is a fundamental
variable in almost all modern integrated stock assessments. Its primary role is as a way of defining the a
priori variability in annual (or otherwise) deviations from the expected recruitment, but also in stochastic
projections as a means of simulating future unknown recruitment deviations. In the CCSBT context the
variable σr is central to both the historical conditioning of the OM and in the projections used to test the
various MPs.

Another key factor that makes the value of σr important is that it is almost never estimated, with an
assumed value being by far the most common approach, and with σr = 0.6 being the usual - if perhaps
apocryphal in origin - assumption. To be able to estimate σr as an actual model parameter, one needs to
treat the recruitment deviations as random effects. While there are a number of estimation methods and
packages available that can do this, including in the ADMB framework [1] often used in fisheries models,
it is done very rarely.

As detailed in [2] the recruitment deviation penalty, the magnitude of which is controlled directly by σr,
also has a significant effect on the different levels of steepness resampled in the SBT OM. Indeed, since
the preliminary inclusion of the close-kin data in [2] the recruitment penalty is the only real source of
information on steepness, with the actual data having no overall preference at all. Whether or not this
level of prior forcing is true information, by assuming a value for σr we are having an implicit effect on the
steepness distribution so we should attempt to explore how good our assumed value of σr = 0.6 actually
is.

Given the complexity of the SBT OM, and the non-separable nature of the recruitment deviations within
the model, it was not possible to treat them as random effects and estimate σr within the current OM
structure. One could, in theory, use a profile likelihood approach and look at the likelihood over a range
of values of σr but this ignores the fact that σr changes the effective degrees of freedom (EDF) within the
OM itself. Increasing σr will almost surely result in a better fit to the data, but this also entails an increase
in the EDF and will likely result in less precise recruitment deviation estimates. By looking at only the first
bit (better fits) but not accounting for the second and third points (which count against increasing σr) we
will, almost surely, over-estimate σr.

In this paper we demonstrate and approach to estimate of σr that is obtained outside of the SBT OM
structure. The idea is to use a modified form of the population and estimation model in the SBT MP.
With some minor modifications, essentially turning the MP model into a full Bayesian hierarchical model,
it can be configured to provide an estimate of the process variation in the biomass of juveniles aged 2
to 4. It should be stated that we do not propose an alternative MP in this paper; we are merely using a
modification of the adopted MP structure for a very different purpose. We can then infer from this process
variation what the likely variation in age 0 recruitment, σr, would be.
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2 Material & Methods

This section is split into two sub-sections, the first of which specifies with the data sets used in the
estimation procedure, and the second details the changes required to the formulation of the MP model to
estimate σr.

2.1 Data sets

Three data sets are used in the proposed approach:

1. Standardised Japanese long-line CPUE used in the MP (1994-2012)

2. Scientific aerial survey [3] (1993-2000,2005-2013)

3. SAPUE biomass index [4] (2003-2013)

One clear difference with the MP model is that we include the SAPUE data, not just the CPUE and aerial
survey data. The reason for this is that, when estimating variances, essentially the more data the better.
The aerial survey is missing data from 2001 to 2004 and is the primary information source in the MP on
recruitment trends. The recently revised SAPUE index begins in 2003 so, while not totally covering the
gap in the aerial survey, does provide us with extra data on recruitment trends and thereby will hopefully
assist in obtaining more precise and robust estimates of variance.

2.2 Modified MP population & estimation model

First, it makes sense to revisit the specifics of the MP population model: recruitment (Ry) and adult (By)
biomass are related as follows:

By+1 = Ry + gyBy, (2.1)

where gy is the adult biomass net growth effect (encompassing natural mortality, surplus production and
exploitation effects). For the recruitment process the following model is assumed:

Ry = exp
(
µR + εRy

)
, (2.2)

with εRy ∼ N
(
−σ2R/2, σ2R

)
. For the gy a conceptually similar model is assumed and

gy = exp
(
µg + εgy

)
, (2.3)

with εgy ∼ N
(
−σ2g/2, σ2g

)
. For the aerial survey data IAS

y a log-scale multivariate normal relationship to
the recruiting biomass is assumed but with a one-year delay: ln IAS ∼ MVN

(
qRS(R),ΣAS

)
, where

S(◦) is just the right time-shift operator and ΣAS is the aerial survey covariance matrix. The reason for
this delay is because we assume that the aerial survey covers ages 2 to 4 and that the CPUE covers ages
4 to 12/18. To make sure that we are more likely to detect the movement of a signal in the aerial survey
appearing in the CPUE data this delay is assumed asRy represents the recruitment biomass contribution
to the adult biomass (assumed covered by the CPUE). The situation is simpler for the CPUE likelihood
and these data are assumed log-normally distributed about the adult biomass: IBy ∼ LN

(
qBBy, σ

2
B

)
.

The model is unidentifiable without additional information on the catchability ratio qR/qB and the details
of how this is dealt with can be found in [5].

The approach to including the SAPUE index, ISy , in the MP model structure was first explored in [5]. As

with the aerial survey we assume that ISy ∼ LN
(
qSRy+1, σ

2
y,S

)
, given they are observing largely the

same population in a similar geographical area. In this model formulation ln qS is assigned a normal prior
mean µqs and variance σ2

qS
which results in the following normal conditional posterior:

p (ln qs) ∼ N

((
µqs

σ2
qS

+
∑ ISy

Ry+1σ2y,S

)
×
(
σ−2
qS

+
∑

σ−2
y,S

)−1
,
(
σ−2
qS

+
∑

σ−2
y,S

)−1
)
. (2.4)
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When discussing the potential inclusion of the SAPUE data in the SBT OM [6] one issue that was raised
as a problem was the potential correlation between the aerial survey and SAPUE indices, in terms of both
observation and process error. A simple approach was used in this work to try and deal with this issue.
For the aerial survey if σAS

y are the square roots of the diagonal elements of the aerial survey observation
covariance matrix then those diagonal elements are replaced with the following:

{ΣAS}yy = σAS
y

(
σAS
y + ρσSy,S

)
, (2.5)

where ρ is the correlation between the survey and SAPUE indices. This adjustment does not alter the
positive definite nature of the covariance matrix, it merely inflates the year-specific variance given the
correlation coefficient. For the SAPUE index a similar adjustment is made to the year-specific observation
variance. In principle, the correlation coefficient could also be estimated but such model structures were
not explored in this paper, so an indicative value of ρ = 0.25 was assumed.

In terms of estimated parameters (and priors) we have:

• µR and µg with uniform priors

• εRy and εgy with normal priors

• Binit the initial relative adult biomass (disperse lognormal)

• ln qS with a (disperse) normal prior

• σR and σg with log-uniform priors (i.e. p(σ•) ∝ σ−1
• )

The fundamental changes to the model as it is implemented in the CCSBT MP are:

• The full aerial survey covariance matrix is used in the likelihood, as are the year-specific standard
deviations in the SAPUE index

• Correlation between the two recruitment indices is (simply) accounted for

• The additional penalty forcing the year-averaged means of the recruitment and biomass growth
random effects to be zero is removed

• The biomass of the initial state is now estimated

• The catchability (relative to the aerial survey and CPUE) of the SAPUE series, qS , is estimated

• The recruitment and biomass growth random effect variances are now estimated, making this a
Bayesian hierarchical model

In the MP the model acts as a biologically plausible smoother, with a number of constraints in place to
make it stable but flexible enough to fit the CPUE and aerial survey data [5]. For this work, the emphasis
is on estimating the variance parameters of the recruitment and biomass growth random effects as well
- especially for recruitment. To do this robustly we have turned the MP model back into its original form
of a relative abundance stock assessment, removing the additional penalties, estimating random effect
variances as well as uncertainty in the initial states.

To efficiently obtain a representative sample from the joint posterior of the parameters and hyperparame-
ters a Metropolis-within-Gibbs MCMC routine was written in C++. A burn-in level of 1,000 iterations was
used, with 1,000 being retained with a thinning factor of 100 employed to reduce auto-correlation in the
Markov chains. Non-convergence of the chains was explored using regular diagnostic methods [7]

3 Results

3.1 Parameter summaries & data fits

Table 3.1 summarises the estimates of the time-independent parameters (µR, µg, Binit, and qS) and
hyper-parameters (σR and σg). Figure 3.1 details the summary of the key population dynamic variables
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Parameter Summary
µR -1.5 (-1.8; -1.2)
µg -0.35 (-0.5; -0.15)
Binit 0.91 (0.66; 1.34)
qS 5.6 (4.8; 6.4)

Hyper-parameter
σR 0.5 (0.35; 0.73)
σg 0.3 (0.09; 0.55)

Table 3.1: Summaries of time-independent parameters in terms of posterior median and lower and upper
limits of the 95% credible interval.

Ry, By and gy. As in previous years [5] the data are informative on the parameters in the MP but clearly
also for the additional parameters estimated in this form of the model.

Figure 3.2 details the estimation performance summary of the model, in terms of fits to the data and
posterior predictive performance - basically how well does the probability model predict the data post-
estimation. The data are fitted well in general - similar to previous years [5] - with one difference: the
survey index is higher than the SAPUE index in 2013 so the model predicts a recruitment biomass level in
between the two (see Figure 3.2). In previous years, the agreement between the SAPUE and aerial survey
indices in common years has been closer. This effect can also be detected in the posterior predictive
performance summaries.

For posterior predictive analyses the Bayesian p-value is the probability with which the predicted dis-
crepancy statistic (”closeness” of the simulated data to the deterministic prediction) is greater than the
observed one (”closeness” of the actual data to the deterministic prediction). Ideally, one would like
Bayesian p-values as close to 0.5 as possible, with values outside the range of 0.05-0.95 suggesting
something systemically wrong with the model. For the CPUE the p-value is very close to 0.5 with a reg-
ular cloud of discrepancy statistics around the diagonal, so no issues there. For the aerial survey and
SAPUE indices, while the cloud of points is nice and regular, the p-values are both around 0.35 suggest-
ing the observed data are more variable than the predicted data. In previous years this has not been the
case [5] and is driven by the divergence in trend in the aerial survey and SAPUE indices in 2013. The
model splits the difference basically between the two series and is, therefore, adjudged unable to predict
the variation in both series as well as before which is why we see smaller p-values.

3.2 Inferred estimates of σr

From the augmented version of the MP model used in this paper, the estimates of stochastic variation in
recruitment biomass (as observed in the aerial survey and SAPUE indices so assumed to be ages 2 to
4) were around a level of 0.5 with a posterior CV of around 0.15. The final step in obtaining some kind of
estimate of the variation in age 0 mean recruitment is to use this estimate of variance σ2R to back-calculate
what likely levels of σ2r might be.

It first helps to think about what the process variance due to recruitment variability at age 0 might look
like in the age-classes covered by the survey. In the most simple case, given that we assume that the
survey and SAPUE indices cover ages 2 to 4 the noise in the indices will be constituted of the noise
relating to 3 distinct cohorts (i.e. a moving average of previous recruitment deviations). Assuming that
εry ∼ N(0, σr) represents a simplistic view of the deviations in age 0 recruitment then the variation in age
2 to 4 abundance due to these variations will be

εRy =

y−2∑
i=y−4

ωiε
r
i , (3.1)
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Figure 3.1: Median (blue circles) and 95% credible interval for the recruitment biomass (left), adult
biomass (middle) and biomass net growth (right).

and ignoring variation in relative abundance-at-age and weight-at-age (i.e. ω ≡ 1) εRy will be an auto-
correlated process with correlation coefficient 2/3 and standard deviation σr/

√
3. The more cohorts you

average over in the abundance index, the less variability due to recruitment but also the more correlated
the variation becomes across time. Any autocorrelation in the age 0 recruitment deviates would further
inflate the overall correlation expected in the recruitment biomass observed in the survey. This would
need to be dealt with in the back-calculation of σr as not doing do would bias the results.

In reality, our variations are not additive but multiplicative in terms of how they affect the relative abundance
of each cohort, and even at population equilibrium the relative changes in cohort abundance and weight-
at-age mean we cannot ignore the weighting terms either. However, the simple system above does
demonstrate that there is a clear relationship between age 0 variation and the random variation in the
recruitment indices we have that are assumed to be covering ages 2 to 4.

There are no simple closed-form solutions for the real world system we are considering for SBT in terms
of σr in terms of σR but we can numerically back-calculate the likely distribution of σr from our estimated
distribution for σR nonetheless. This inferred distribution for σr is given in Figure 3.3 and the median
and 95% credible interval is 0.64 (0.51-0.83). So this estimate is actually close to the value of σr = 0.6
assumed in the SBT OM but it is likely to be an over-estimate for this reason: it ignores process error
in the form of temporal changes in the age distribution expected to be observed in the aerial survey and
SAPUE indices (due to migration, mortality changes etc.). The levels of autocorrelation in the recruitment
biomass random effects did not appear to be above the level expected for very low or effectively zero
autocorrelation in the age 0 recruitment deviations, so we do not expect there to be any biases that need
adjusting for in this regard.

4 Discussion

In this paper we have demonstrated how we can convert the population and estimation model that under-
pins the CCSBT MP into a form that can be used to sequentially obtain an estimate of the recruitment
variance, σ2r , which is an influential but assumed variable in the SBT operating model. Some of the stabil-
ising penalties included in the MP model are removed and the initial adult biomass state is now estimated
not fixed, thereby permitting the estimation of the recruitment biomass and biomass net growth random
effect variances. It is the recruitment biomass variance that can be linked back to the age zero recruitment
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Figure 3.2: Top row summarises fits to aerial survey (left), SAPUE (middle) and CPUE (right) indices (ob-
served, circles; predicted median (full) and 95% credible interval (dotted lines)). Bottom row summarises
the posterior predictive performance of the model (including the p-values).

variance of interest.

The SAPUE data are also included in the estimation scheme as they possess data which cover the period
missing in the aerial survey index, and the potential correlation between the two indices is dealt with in
a simple but somewhat ad hoc manner. The MP model (using a penalised likelihood approach) is now
converted to a fully Bayesian hierarchical state-space model estimating recruitment and adult biomass
and adult biomass net growth from 1994 to 2014 using the aerial survey, SAPUE and standardised CPUE
abundance indices.

The data are informative for all the parameters in the augmented model - including the variances of
principal interest - and the model explains the data well, albeit with the decrease in consistency between
the aerial survey and SAPUE indices in 2013 causing a minor decrease in predictive performance relative
to previous years [5]. Estimates of recruitment biomass variance, σR, had a mean of 0.5 with a posterior
CV of around 0.15. Assuming that the process variance in the cohorts observed in the aerial survey and
SAPUE indices is dominated by cohort strength variability, inferred estimates of σr had a median (and
95% credible interval) of 0.64 (0.51-0.83).

While this inferred estimate of σr is actually quite close to that assumed in the OM (σr = 0.6), it is most
likely better interpreted as an upper bound at this time. In this model structure we are not able to account
for the contribution of additional process variance linked to the age structure observed in the GAB by
both the recruitment indices. So while we might expect recruitment variability to dominate the process
variance in an index assumed to be comprised of 2 to 4 year old fish, we cannot discount this potential
contribution to the estimates of σR and, by implication, σr. What we can say is that we do not appear to
be overly-restricting the OM recruitment deviations a priori, nor do we seem to be under-estimating the
level of future recruitment variability assumed in the OM projections used for MP evaluation.
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