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Abstract

This report details the development of candidate management pro-
cedures (henceforth, CMPs) for application to the Southern bluefin
tuna (Thunnus maccoyii) stock and fishery. A selection of model-free
and model-based approaches are defined and explored. For the model-
based approaches an in-depth proof-of-concept analysis is performed to
assess the information in the historical data, in relation to the models
considered, and the potential utility of the information derived from
these models in a management procedure context is discussed.

1 Introduction

The purpose of this document is to give a detailed explanation of the CMPs
tested in document CCSBT-OMMP/1006/5, the ideas behind their func-
tional forms and for the model-based CMPs an in-depth look at the infor-
mation content in the historical data and the potential utility of the infor-
mation derived using these models in the CMPs themselves. The document
is structured as follows:

• An exploration of two model-based approaches: (i) a biomass-dynamic
approach utilising the catch biomass, CPUE and the aerial survey
data, and (ii) a relative abundance approach using random effects to
explain the juvenile and adult biomass dynamics linked to the aerial
survey and CPUE data, respectively.

• Possible model-free MPs that utitlise the aerial survey data only

• For all the CMPs the parameters that will be tuned, given the various
criteria outlined in the SFMWG meeting report.

2 Model-based CMPs using the CPUE and the

aerial survey data

A selection of model-based MPs were explored based on two distinct ap-
proaches: biomass dynamic utilising catch biomass, CPUE and the aerial
survey data; and relative abundance using only the CPUE and aerial survey
in an integrated relative abundance model.
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2.1 Biomass dynamic approach

The originally selected MP was based around a Fox biomass-dynamic model
while employing the catch composition information to make adjustments
to the Fox-predicted TAC given recruitment trends. Our intension was to
replace the Fox model with the Pella-Tomlinson model (for reasons out-
lined later) and to use the aerial survey information rather than the catch
composition information to adjust the TAC based on recruitment trends.

The Pella-Tomlinson model [1] is a generalisation of the standard Schaefer
model for the aggregated biomass, By, of an exploited population:

By+1 = By + rBy

(
1 −

[
By

K

]m−1
)

− Cy, (1)

where r and K are the intrinsic growth rate and carrying capacity, respec-
tively, and m is a shape parameter controlling the shape of the surplus
production curve. The harvest rate expected to produce maximum sustain-
able yield is hmsy = r

(
1 − m−1

)
with an associated equilibrium yield and

biomass of Cmsy = rK
(
1 − m−1

)
/ m−1

√
m and Bmsy = K/ m−1

√
m, respec-

tively. When fitting such a model to relative abundance data such as CPUE
there is usually very strong negative correlation between K and the catch-
ability coefficient q. To reduce this correlation we non-dimensionalise the
biomass via K, so By = byK, and obtain

by+1 = by + rby

(
1 − bm−1

y

)
− Cy

K
, (2)

so that the constant of proportionality relating relative biomass to model-
predicted relative abundance: Îy = Qby is effectively qK and this can sig-
nificantly reduce the levels of correlation between Q and K. The reason for
doing this is given the “blind” estimation of the key parameters in the MP
testing (we either have fixed starting values or a crude algorithm to gener-
ate them) then the gradient-based optimiser might perform better with a
less-correlated structure to the objective function’s surface.

Only the parameters r and K are estimated within the MP - the kind of
data informative enough for reliable estimates of both r and K are rare but
data with enough information to estimate all three parameters are much
rarer still. The value of m = 1.05 was assumed because this is the value
which is as close as possible to the Fox model used in the previous MP work:
the ratio of Bmsy to K is 0.38 whereas in the Fox model it is 0.37 and the
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shape and magnitude of the surplus production curves are very similar. A
log-normal objective function relating model-predicted to observed CPUE
was assumed with the catchability coefficient Q estimated as a nuisance
parameter.

2.1.1 Constructing a prior for r

One potential issue with this approach is the estimability of both r and K at
the same time. The data exhibit certain “one-way trip” characteristics: the
CPUE shows a general decreasing trend with little or no observed recovery
with decreased catches over time suggesting that, with the purely historical
data, estimating r and K sensibly might be difficult. It is entirely possible
and perhaps expected that under the action of an MP where stock recovery
begins to occur the information required to estimate both the parameters
could develop in the data, but until this happens it might be sensible to
constrain the parameters in some fashion. It is hard to imagine how we
might sensibly form a prior for K given it is a dimensional parameter, but
with r we can perhaps do something.

The Euler-Lotka equation [2] combines the key life-history traits of a given
animal (reproductivity, maturity, growth, and natural mortality) and the
parameter r into one expression:

∞∑

a=0

e−ramawaπ
s
aα = 1. (3)

In (3) a is the age of the animal, ma the proportion mature-at-age, wa the
weight-at-age, πs

a the survival probability to age a from birth:

πs
a =

a−1∏

i=0

exp (−Mi) , (4)

where Ma is the natural mortality-at-age a. Finally, α are the recruits-
per-unit-SSB at zero population size - essentially the same parameter from
the Beverton-Holt or Ricker models - and is related to the steepness, h, by
α = 4h/(ρ(1−h) in the Beverton-Holt model, where ρ is the SSB-per-recruit:

ρ =
∞∑

a=0

mawaπ
s
a. (5)
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In practice ∞ is replaced by the maximum age-class and a plus group is
assumed. Both h and Ma are quasi-estimated in the grid runs, conditioned
on the catch biomass and CPUE data, so there is a little bit of data recy-
cling going on by using the grid outputs to estimate a prior distribution for
r. However, given the historical data do not permit the reliable estimation
of r and K and may not until sufficient stock recovery occurs a Bayesian
approach to stabilise the MP’s parameter estimates, via an informative prior
for r, was deemed sensible and such an approach has been advocated be-
fore for tunas and elasmobranchs [3]. The Euler-Lotka equation in (3) was
solved for each of the 2000 grid cells and the resultant sample for r was
bootstrapped with replacement (to robustify the estimates given the “band-
ing” with steepness and M -levels) to obtain a log-scale mean and standard
deviation for a log-normal prior for r with mean 0.156 and CV 0.159. In the
MP testing maximum posterior density estimates are used but for the proof
of concept analyses Bayesian and MCMC methods are used to explore the
precision of the estimates of the key parameters and the uncertainty in the
process variables derived from them and used in the MPs. For the catchabil-
ity parameter the natural logarithm of this parameter is actually estimated:
an assumed normal prior is conjugate to the likelihood function making the
conditional posterior of ln(Q) normal and, hence, easy to re-sample in the
Metropolis-within-Gibbs sampling regime. As mentioned a log-normal prior
is assumed for r and K is assigned a uniform prior on R

+.

Figure 1 is a summary of the (marginal) posteriors of the estimated pa-
rameters Q, r and K. The estimate of r is somewhat updated from its prior
(p [r > rprior] = 0.831) with a slightly higher CV of 0.18. It should be noted
that as one relaxes the constraints of the prior for r the estimates become in-
creasingly unstable and are increasingly strongly negatively correlated with
K and a very long tail forms in the joint posterior of both parameters.
There is some information on r in the data but still not enough to permit a
fully free estimation. The estimate of K is very precise with a CV of 0.022.
The resultant biomass dynamics and fits to the CPUE data can be seen in
Figure 2. The biomass trend largely mirrors that seen in the OM (albeit
with a more optimistic depletion ratio of about 0.14) with biomass currently
estimated to be well below Bmsy. The fits to the CPUE data are noticeably
worse than those observed in the OM given the limited nature of the model
and its inability to explain in particular the recent CPUE variation using r,
K, the model and catches alone.
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2.1.2 MPs with aerial survey as an external index

Given the estimates of r and K from the Pella-Tomlinson model fitted to the
CPUE and catch biomass data we first considered two CMPs that use r, K
and m to construct an essentially hmsy core strategy (as with the previously
selected MP) with an extra adjustment made based on trends in the aerial
survey data. The first set of CMPs are called PellaT1 and PellaT2 where
the initial TAC in year y when a potential change is scheduled is given by

TACy = ϕmsy,i (By, δ, ǫ, Cmsy, Bmsy) × ϕAS (α, ǫ, µAS , ρAS) , (6)

for i = 1, 2 relating to the two CMPs where

ϕmsy,1 (◦) =






δCmsy

[
By

Bmsy

]ǫ

for By ≥ Bmsy

δCmsy

By

Bmsy

for By < Bmsy

(7)

and

ϕmsy,2 (◦) =






TACy−1 [1 + ǫδ (By − Bmsy)] for By ≥ Bmsy

TACy−1 [1 + δ (By − Bmsy)] for By < Bmsy

0 for Bmsy − By > δ−1

(8)

where δ is the key tuning parameter and ǫ ∈ [0, 1] permits the potential for
smaller proportional increases in TAC than decreases. The function ϕAS(◦)
is defined as

ϕAS (◦) =






1 + ǫα (µAS − ρAS) for (µAS − ρAS) ≥ 0

1 + α (µAS − ρAS) for (µAS − ρAS) < 0

0 for ρAS − µAS > α−1

(9)

where µAS is a 4 year log-scale moving average of the aerial survey (calcu-
lated between y−β−4 and y−β) with β a lagging parameter, and ρAS is a
log-scale reference/target level of the aerial survey. The main idea of the two
CMPs is to have one (PellaT1) that adapts the current catch around MSY
relative to the current stock status and dynamics, and the other (Pellat2)
which adapts the previous TAC given the same stock status and dynamic
information.
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2.1.3 An integrated model and MP using the CPUE and aerial

survey data

A second approach looked to integrate the CPUE and aerial survey data
together in one estimation scheme. The population model is an augmented
version of the Pella-Tomlinson model defined in (2)

by+1 =
[
by + rby

(
1 − bm−1

y

)
− Cy/K

]
eǫRB

y −σ2

RB/2 (10)

The two main questions with this kind of approach are:

1. How much does annual variation in recruitment contribute to annual
variation in the exploitable biomass - what is the right value of σRB

given some assumed age 0 recruitment SD σr?

2. The aerial survey covers ages 2, 3 and 4 by assumption - what is the
correct delay when relating these aggregate recruitment proxy data to
variation in the exploitable biomass?

The first question can be solved via simulation. Using the life-history
parameters (M and weight-at-age etc.) simulate the stochastic dynamics of
SBT for a given level of σr and a simple fixed deterministic recruitment level
until quasi-equilibrium is achieved. Then for the relevant age classes thought
to constitute the exploitable biomass calculate the associated uncertainty
in this biomass due to recruitment variation alone. For a given value of
σr = 0.6 (assumed in the OM) the resultant uncertainty in the exploitable
biomass (ages 4-12/18) ranges from 0.18-0.16: the more cohorts that make
up the exploitable stock, the lower the impact the individual variance in
these cohorts has on the variance in the exploitable stock.

The second question is really more to do with defining how the signal
in the aerial survey relates to information on ǫRB

y - we are never directly
modelling actual age 0 recruitment events only how their appearance in the
aerial survey might then relate to a signal in the exploitable stock. In this
regard perhaps the easiest solution is to relate the biomass year effects in
year y to the aerial survey data in year y − 1. There is a 1 age-class overlap
assumed between the age-classes in the aerial survey and CPUE data anyway
and it forms the maximum and minimum age-classes, respectively, assumed
present in the two indices.

In terms of likelihood models for the aerial survey data the following is as-
sumed: Let the log-scale aerial survey series, standardised to have mean zero,
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be denoted by ĨAS
y . The aerial survey recruitment effects ǫR

y are then as-

sumed to follow a normal distribution: ĨAS
y−1 ∼ N

(
ǫR
y , σ2

AS

)
and are penalised

to have zero mean across the estimated range and variance σ2
R (assumed total

variation in the aerial survey) in any given year. The biomass recruitment
effects are then derived as follows: ǫRB

y = φǫR
y , where φ = σRB/σR is a

rescaling parameter to ensure that the recruitment-driven variation in the
exploitable biomass is controlled to levels we are expecting (namely σRB).
The biomass recruitment effects before the aerial survey data are available
are all assumed to be equal to 1 (i.e. in effect equal to σ2

RB/2). Values of
σAS = 0.15 and σR = 0.38 (a CV of 0.4) were assumed given the current
levels of precision in the aerial survey standardisation and the assumed CVs
of between 0.3 and 0.5 for the aerial survey as generated by the OM.

Figure 4 shows the estimates of the aerial survey year effects, ǫR
y , the

associated biomass year effects, ǫRB
y , and the stock biomass. In terms of

estimates of r and K the prior for r is now barely updated at all: the
posterior mean and CV are 0.165 and 0.16 and (p [r > rprior] = 0.567) and
the estimates of K are a little smaller than before. The interesting kink in
the biomass dynamics is caused by the assumption that before the aerial
survey all biomass year effects were equal to 1 and that after that they are
driven by the trend in the aerial survey but have mean 1 across that year
range. Given the substantial decrease in the recruitment signal in the aerial
survey post-1996 the model interprets the years 1994-1997 as being better
than average recruitments and those that followed significantly lower than
average. In terms of fits to the data seen in Figure 5 the aerial survey
data are fitted fairly well as are the CPUE apart from the years where the
aforementioned kink in the biomass data occurs.

In terms of an MP using the augmented set of estimated parameters and
variables the following was considered:

TACy = ϕmsy,i (By, δ, ǫ, Cmsy, Bmsy) ×




y∏

i=y−τ+1

exp
(
ǫR
i − ǫR

i−1

)




γ

τ

(11)

where δ is as defined before and i = 1, 2 denotes which of the MSY target
forms to use, τ is the time-frame over which the geometric mean is calcu-
lated, and these CMPs are called PellaT1yreff and PellaT2yreff. The
second part of the MP is the (geometric) moving average of the estimated
relative recruitment ratio from year to year. The parameter γ ≥ 0 is an
influence weighting: for γ = 0 the term has no effect and for increasing γ
this part of the MP gains influence.
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2.2 Relative abundance approach

The second model-based approach is a relative abundance one where the
dynamics of the adult biomass are decomposed into random recruitment
and growth effects. This approach uses a variant on a model advocated
in [4] which looked to estimate trends in recruitment and adult biomass as
well as adult biomass net growth using random-effect methods. The core
population model is itself very simple: recruitment (Ry) and adult (By)
biomass are related as follows:

By+1 = Ry + gyBy, (12)

where gy is the adult biomass net growth parameter (encompassing natural
mortality, growth and exploitation effects). For the recruitment process the
following model is assumed:

Ry = exp
(
µR + ǫR

y

)
, (13)

with ǫR
y ∼ N

(
−σ2

R/2, σ2
R

)
. For the gy a conceptually similar model is as-

sumed and
gy = exp

(
µg + ǫg

y

)
, (14)

with ǫg
y ∼ N

(
−σ2

g/2, σ2
g

)
. For the aerial survey data IAS

y a lognormal re-
lationship to the recruiting biomass is assumed but with a one-year delay:
IR
y ∼ LN

(
qRRy+1, σ

2
AS

)
. The reason for this delay is because we assume

that the aerial survey covers ages 2 to 4 and that the CPUE covers ages 4
to 12/18. To make sure that we are more likely to detect the movement of a
signal in the aerial survey appearing in the CPUE data this delay is assumed
as Ry represents the recruitment biomass contribution to the adult biomass
(assumed covered by the CPUE). The situation is simpler for the CPUE
likelihood and these data are assumed log-normally distributed about the
adult biomass: IB

y ∼ LN
(
qBBy, σ

2
B

)
.

The model as it stands is non-identifiable which was explored at length
in [4]. Without at least some information as to the ratio of the recruit and
adult catchability parameters qR/qB then it will be impossible to identify
how much recruitment affects biomass trends and how much the net growth
of the biomass affects the biomass trends. To solve this problem we look
to the output from the OM runs. From the grid runs we can extract the
log catchability parameters for both the aerial surveys and the CPUE data.
Given the grid samples over parameters that will clearly alter this ratio (nat-
ural mortality, steepness, age range covered by the CPUE) we bootstrapped
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the mean difference in the log-catchabilities to obtain a best estimate of this
ratio. The bootstrapped mean ratio was very precise (around a 3% CV) with
an expected value of qAS/qCPUE = 50280.15. However, we need to account
for the fact that the CPUE in the OM is in numbers but here we are trying
to relate biomass to biomass. To take account of this in our catchability
ratio consider the following ratio:

ψq =

au∑
i=al

πs
i wa

au∑
i=al

πs
i

(15)

where πs
i is the survival probability from age 0 to age i and al and au are

the minimum and maximum ages observed in the CPUE, respectively. This
ratio is readily calculable from the grid files outputted from the OM. For
each sampled grid cell this ratio was calculated and then a bootstrapped
mean and CV were calculated, to robustify the estimates given the banding
by M grid option. As with the q ratio estimates the numbers were very
precise: a mean and CV of 0.0619 and 0.024, respectively. Assuming qB = 1
this lead to a value of qR = qAS/qCPUE × ψq = 3111.136.

The actual parameters to be estimated are µR, µg, ǫR
y and ǫg

y. To avoid
identification issues with the recruitment in the first year and net growth
year effects in the last year, respectively, they were penalised to have mean
zero across years (with −100 × |E[ǫ•y]| extracted from the log-likelihood).
As with the production models although maximum posterior density esti-
mates were used in the MP testing full MCMC routines were developed to
explore the parametric and process variable uncertainty in the underlying
models in this phase - the chief reason being we can obtain more detailed
information about the variation in the derived trends such as stock growth,
recruitment and biomass not retrievable from the ADMB runs. While using
the term random effect to be clear this model is more of a Bayesian hierar-
chical model with a Dirac hyperprior on the variance hyperparameters σ2

R,g.
This contrasts with the strict view of a random effects model which utilises
expectation/maxmimisation to estimate all the key parameters: expectation
where the joint penalised likelihood of the µ• and ǫ•y is integrated over the
ǫ•y and maximisation where this marginal likelihood is then maximised for
the µ•.

Figure 6 shows the marginal posterior summary for the parameters µR and
µg and the parameters have posterior mean (and SD) of -1.89 (0.069) and
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-0.403 (0.048), respectively, with fairly strong negative correlation between
them (-0.59) as one would expect if recruitment makes a significant contri-
bution to the exploitable biomass. The estimated trends in recruit biomass,
adult biomass and biomass growth can be seen in Figure 7. For the relative
recruitment biomass estimates we observe a sharp decline around 1998 (as
seen in 1997 in the aerial survey) hitting the lowest level in 2000. From 2001
to 2004 the estimates are driven by the prior and penalty terms given the
absence of data in the aerial survey with the levels of recruitment in 2005
to 2008 staying around the low level. In the years where there are data to
estimate the recruitment trend the CVs ranged from 0.128 to 0.146. For
the relative adult biomass estimates first to point out that we assume that
B1994 = IB

1994/qB and that it is known without error (there are no data to es-
timate it and we assume a relative abundance model anyway). As one would
expect the trend follows that in this particular CPUE series (including the
gradual decline from 2002-2007 and the sudden upturn in 2008). The CVs
in the estimates (excluding 1994) range from 0.116 to 0.158 with a sustained
increase in uncertainty in the middle of the range given the uncertain re-
cruitment dynamics. For the biomass growth estimates they oscillate below
1 until 2002 when they show a marked decline as they alone can explain the
biomass decline seen in 2002-2007 as recruitment has already dropped to
the lower level by 1998. Clearly the sudden increase in 2008 in the biomass
cannot be explained by recruitment and so the biomass growth parameter
in 2007 increases to a value just above 1 in this year. The estimate in 2008
is driven by both the prior and the penalties and should not be viewed with
close scrutiny. One final general observation would be that the biomass
growth parameters are never above 1 with a probability greater than 0.3
and this occurs only once in 2001 given the high CPUE observed in 2002.
This suggests that the exploitable biomass is essentially being sustained by
the recruitment with total mortality dominating growth for this portion of
the stock.

In terms of fits to the data Figure 8 shows a summary of the estimators
performance in this regard. For the aerial survey data they are generally
fitted quite well but the extremes in these data (the apparently higher vari-
ance earlier on) are not fitted so well, presumably given the assumed value
of σR. For the CPUE data they are also fitted quite well but the model
cannot fit the more extreme changes observed in the CPUE - the data never
sit outside the 95% credible interval but the median fitted CPUE is much
smoother than the observed data. This again is due to the natural con-
straints placed upon both the recruitment and biomass growth effects via
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σR and σg, respectively.

2.2.1 Relative abundance MPs

As was the case for the production model based CMPs essentially two forms,
brem1 and brem2, are explored using the information from the relative abun-
dance model: one where a reference catch level (similar to the idea of adapt-
ing Cmsy) is adjusted given the conditions, and another where the previous
year’s catch is adjusted given the conditions.

TACy = ϕbrem,i (By−2, δ, ǫ, B
∗) ×




y−2∏

i=y−τ−1

Ri

Ri−1





γ

τ

×




y−2∏

i=y−τ−1

gi

gi−1





γ

τ

(16)
As before i = 1, 2 relates to the two CMPs where

ϕbrem,1 (◦) =






δ

[
By−2

B∗

]ǫ

for By−2 ≥ B∗

δ
By−2

B∗
for By−2 < B∗

(17)

and

ϕbrem,2 (◦) =






TACy−1 [1 + ǫδ (By−2 − B∗)] for By−2 ≥ B∗

TACy−1 [1 + δ (By−2 − B∗)] for By−2 < B∗

0 for B∗ − By−2 >
1

δ

(18)

where δ is the key tuning parameter and as before ǫ ∈ [0, 1] permits the
potential for smaller proportional increases in TAC than decreases, and
γ > 0 is an influence weighting, driving the relative impact of the trends
in recruitment and biomass growth on the TAC. The parameter B∗ is a
target/reference relative biomass level, in fact given qB = 1 it is a target
CPUE level making it very easy to define given the OM-predicted relation-
ship between historical CPUE and SSB.

3 Model-free CMPs using the aerial survey data

To explore the potential utility of an MP that uses only the aerial survey
data the following simple index-based MP, ASMP, was envisaged:
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TACy =






δ [exp (µAS − ρAS)]ǫ for µAS ≥ ρAS

δ exp (µAS − ρAS) for µAS < ρAS

(19)

where

µAS =
1

β

y−1∑

i=y−β

ln
(
IAS
i

)
. (20)

The parameter δ is the key tuning parameter, as in the relative abun-
dance MPs, with ǫ ∈ [0, 1] interpretted as it was previously, ρAS is the
target/reference level of the log-scale aerial survey, and β here is the length
of moving average of the log-scale aerial survey used as the key index.

4 Tuning and fixed MP parameters

Given the single tuning criteria: p [SSBy∗ > 0.2 × B0] = 0.6, 0.7, 0.9, it is
unlikely to be feasible to sensibly tune more than one parameter per CMP.
Given this the following base-case MP parameters were assumed:

• PellaT1 and PellaT2: δ is the key tuning parameter with ǫ = 1,
β = 1, α = 0.05, and ρAS = 6.91 (geometric mean in the aerial survey
pre-1997)

• PellaT1yreff and PellaT2yreff: δ is the key tuning parameter with
ǫ = 1, γ = 1, and τ = 5.

• brem1 and brem2: δ is the key tuning parameter with ǫ = 1, γ = 1,
τ = 5, and B∗ = 1.2 (CPUE levels seen at SSB levels of the 1980s)

• ASMP: δ is the key tuning parameter with ǫ = 1, β = 4, and ρAS = 6.91.

For all CMPs if the maximum change in TAC exceeded the pre-defined
level (either 3000 or 5000t) or was smaller than the minimum level (100t)
then the MP-predicted TAC was adjusted accordingly.
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Figure 1: Trace plots (left) and histograms (right) of the marginal posteriors
for the catchability (top), intrinsic rate of increase r (middle) and carry-
ing capacity K (bottom) for the Pella-Tomlinson model fitted to the latest
historical (up to 2008) catch biomass and CPUE data.
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Figure 2: Historic biomass estimates (left, median dots and whiskers the
95% credible interval) with the dotted line the median estimate of Bmsy, and
(right) the fits to the historic CPUE data (dots, data; full and dotted lines
the median and 95% credible interval).
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Figure 3: Trace plots (left) and histograms (right) of the marginal posteriors
for the catchability (top), intrinsic rate of increase r (middle) and carry-
ing capacity K (bottom) for the Pella-Tomlinson model fitted to the latest
historical (upto 2008) catch biomass, aerial survey and CPUE data.
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Figure 4: Relative recruitment biomass (left), biomass year-effect (middle),
and total biomass (right) median and 95% credible interval for the Pella-
Tomlinson model with the aerial survey data and recruitment effects esti-
mated. For the relative recruitment and biomass figures the dotted line is
1 (expected mean) and for the biomass the dotted line is expected value of
Bmsy.
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Figure 5: Fits to the log-scale mean standardised aerial survey data (left)
and the base-case CPUE data (right).
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Figure 6: Trace plots (left) and histograms (right) for the marginal posteriors
of µR (top) and µg (bottom).



CCSBT-OMMP/1006/4 19

Recruit biomass

Year

R
y

1994 1996 1998 2000 2002 2004 2006 2008

0.
00

0.
25

0.
50

Adult biomass

Year

B
y

1994 1996 1998 2000 2002 2004 2006 2008

0.
0

0.
5

1.
0

Adult biomass growth

Year

g y

1994 1996 1998 2000 2002 2004 2006 2008

0.
00

1.
00

1.
25

Figure 7: Summary (median, circle; whiskers, 95% credible interval) of the
relative recruitment biomass (left), relative adult biomass (middle) and net
biomass growth (right) using the aerial survey and the CPUE data.
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Figure 8: Fits of the relative abundance biomass dynamic model to the aerial
survey data (left) and the commercial CPUE data (right). The points are
the data with the full and dashed lines representing the median and 95%
credible intervals, respectively.


