Further investigation of the difference in two datasets，raised by the Second CPUE modeling workshop，used for CPUE analyses of SBT

第2回 CPUE モデリングワークショップで提起された，ミナミマグロの CPUE解析に使用するための 2 つのデータセットの違いに関する更なる検討

Hiroshi Shono and Tomoyuki Itoh
（庄野宏•伊藤智幸）

National Research Institute of Far Seas Fisheries，Fisheries Research Agency （独立行政法人水産総合研究センター・遠洋水産研究所）

要約：我々は，2007年の第2回 CPUE ワークショップでの解析に使用したシ ョットバイショットデータから作成した 2 つのデータセット A ， B の違いにつ いて検討した。CPUE トレンドは1990年代初め，特に1993年，1994年で違 いが大きかった。ノミナルと標準化した CPUE を詳細に検討した結果，違いは 4 海区と 9 海区における CPUE が両データセットで違うことに起因すると思わ れた。ショットバイショットデータと 5 度 x 5 度月集計データとで作成したデー タにおいてノミナル CPUE にほとんど違いがなかったことから，集計データに よるさらなる解析は，ESC のメンバーの誰もが行い得る。標準化した CPUE の年トレンドは，GLM の説明変数とモデルの仮定にある程度依存する。簡単なバ リデーションの結果，データセット B の方が，Aよりも統計学的に頑健だった。

Abstract

We mainly checked the difference of two datasets（Dataset－A and Dataset－B）made by shot－by－shot data used for CPUE analyses in the $2^{\text {nd }}$ CPUE Workshop held in 2007．We obtained the different year trends of CPUE in the early 1990s，especially 1993－1994．As a result of investigation about nominal and standardized CPUE in detail，the difference seems to be mainly attributed the gap of CPUE values of area 4 and 9 in two datasets． Because there is little difference of nominal CPUE between the datasets made by shot－by－shot data and 5×5 month data，these and further investigation using the aggregated data（by $5 \times 5 /$ month）is also available for any of the ESC members．Year trend of standardized CPUE is dependent on the explanatory factors included into the GLM and its model assumption to some degree or another．Our result of a simple validation shows that the dataset－ B is statistically more robust and stable than dataset－A．

Introduction

We mainly checked the difference of two datasets (Dataset-A and B) used for CPUE analyses of southern bluefin tuna from the viewpoints of nominal CPUE, standardized CPUE and statistical modeling for CPUE analyses etc. There datasets used in the $2^{\text {nd }}$ CPUE workshop of CCSBT were defined as: Dataset-A: Year(1992-2005), Area(4-9), Month(4-9) (past agreed definition) Dataset-B: Year(1992-2005), Area(4,7,8,9), Month(Japanese fishing season) Remark) Area and month defined in the dataset-B was annually changed (See Table 4 of p.11, CCSBT-ESC/0709/SBT-Fisheries/Japan)
The two datasets is different from "LL1", which is the past agreed and using in the annual calculation of CPUE indices regarding some points in Table A0.

Spatio-temporal coverage and Nominal CPUE

Spatio-temporal coverages of the datasets were compared in the number of hooks (Table A1). There were several area/month unique to either of the datasets. In addition to Area 5 and Area 6, Area 4 in April, July and August from 1991 to 1997, Area 7 in July from 1993 to 1996, and Area 9 in April, August and September from 1991 to 2005, were unique to the dataset-A. Area 8 in October, November and December from 1993 to 2005 were unique to the dataset-B.

Nominal CPUEs by Area are shown in Fig. A1. Large differences in the nominal CPUE between the dataset-A and B (CPUE_A< CPUE_B) were observed in Area 4 from 1993 to 1994 and in Area 9 from 1993 to 1994. Opposite difference (CPUE_A> CPUE_B) was observed in Area 8 from 1998 to 2000 .

The nominal CPUE by Area, year and month for the dataset-A were very low in April, July and August of Area 4, and in April, August and September of Area9 (Fig. A2). These Area/month were outside of the fishing season for SBT and had effect to the nominal CPUE of all Areas in the dataset-A much lower than that of the dataset-B. Because the nominal CPUE in Area 7 in July was as high as that in the SBT fishing season, there were little difference in the nominal CPUE by both the datasets.

The nominal CPUE by Area, year and month for the dataset-B were slightly lower during October to December than in September in Area 8 (Fig, A3). The Area/month had effect to the nominal CPUE of all Areas in the
dataset-B slightly lower.
Therefore, it can be point out the basic differences between the two datasets. The dataset-A included a number of longline operations NOT for SBT, as a consequence provides lower nominal CPUE of SBT than in the dataset-B. The dataset-B included later half period of the Area 8 which is the one of the major fishing ground, and the dataset-B consisted mainly of longline operations for SBT.

By the way, similar results can be obtained using the 5×5, month data. Results by the 5x5, month data are attached in the Appendix.

Several CPUE standardizations

In Figure B0, the following ANOVA model (i.e. explanatory variables) in Equation (1) was used in both datasets (A and B). Two CPUE trends seem to be different in Figure B0 (See Figure 12 of p.30, Report of the second CPUE modeling workshop).
$\log ($ CPUE +0.1$)=$ intercept+year+area+month+VesselID+HPB+observer+year *observer+error, error $\sim \mathrm{N}\left(0, \sigma{ }^{2}\right)$

However, in Figure B0, selected "Core-Vessels" were only used and the LSMENAS (least square means) of the year*observer without observer (i.e. in the case that scientific observers are not on board) were extracted as the estimated CPUE year trend. (Remark) This is an apparent mistake statistically and LSMEANS of the year effect should be extracted.)

Thus, since the starting point of discussion was wrong, we modified this point and used all vessels because which include more information. We also extracted the LSMEANS of year effect as the standardized year trend of CPUE for SBT using same Equation (1) in Figure B1.

CPUE year trends in Figure B1 are rather different from those in Figure B0 and the CPUE trends in two datasets in Figure B1 seem to be still different.

Next, we computed the standardized CPUE year trends using Eqn.(2), in which the main effect of observer and observer-related interactions (year*observer) are deleted from Equation (1). Formula (2) becomes a simple model using only main effects.
$\log ($ CPUE +0.1) $=$ intercept+year+area+month+Vessel-ID+HPB+error
In Figure B2, the year trends of standardized CPUE in both datasets are still different especially 1993-1994. Therefore, we check the CPUE trends
deleting the data for 1992-1995 in Formula (2) (See Figure B3). As a result, we obtained the similar trends from 1996 to 2005. Figure B4 shows the year trends of nominal CPUE in two datasets, where the gap of CPUE for 1993-1994 is seen as well as in Figure B2 and the year trends of nominal and standardized CPUE in the dataset-A (shown in Figure B2 and B4) is similar and those in the dataset- B is quite different.

At last, we applied more complicated model by Equation (3) with some interactions including the random effect because it seems not to be performed the corrections by CPUE standardization through the simple model using only main effects.
$\log ($ CPUE +0.1$)=$ intercept+year+area + month+Vessel-ID+HPB+observer+ (year*observer)+(year*area)+(year*area*month)+error, error $\sim \mathrm{N}\left(0, \sigma^{2}\right) \quad$ (3) where year*area*month is a random effect and other factors are fixed effect.

Estimated CPUE year trends obtained from the Equation (3) in two both datasets are shown in Figure B5 and those two trends seem to be different. The reason why the range of the confidence interval is wider than that in other figures is considered that the random effect is included into the model.

Reliability check of two datasets by the validation

We checked the reliability of both datasets (Dataset-A and B), which datasets has better performance from the statistical viewpoint, based on the simple validation. The procedure of the calculation applied for each datasets (A and B) is as follow:

1. Divided the all records (in both datasets) into two sub-datasets randomly, 80 percent of training data and 20 percent of the data for verification.
(Remark) We regarded the latter sub-dataset as missing data in this step)
2. After estimating unknown parameter by Equation (ANOVA model) only using the training data set, we computed the goodness of fit using the sub dataset for verification, which shows the difference between observed CPUEs and the corresponding predicted (i.e. obtained from the Equation (1)) ones, based on the mean absolute error (MAE) and Pearson's correlation coefficient.
Table B1 shows the values of mean absolute error and Pearson's correlation coefficient between observed and the corresponding estimated CPUE in the part of data for verification in two datasets. In addition, the plots of observed and the corresponding predicted CPUE are shows in Figure

B6. Judging from these values, the dataset-B is more robust/stable than dataset-A statistically.

Discussion

Temporary conclusions obtained from nominal and standardized CPUE are as follows:

- Differences between the two datasets in terms of the spatio-temporal coverage and nominal CPUE were observed in Area4 (April, July and August), Area 9 (April, August and September) and Area 8 (October-December).
- Both the datasets would have different merits and demerits in terms of reflecting the state of the stock abundance to CPUE. Using data only operations targeting for SBT seems to be a concern. Including a number of operations where and when few SBT were caught such as northern half of Area 4 also seems to be a concern. It should be investigated more comprehensively and in detail what kind of spatio-temporal range to be chosen is appropriate.
- Results from the shot-by-shot data were similar to that from the $5 x 5$, month data. Further investigation based on 5×5, month data is possible and seems appropriate at least to some extents.
- The gap of year trends between the dataset A and B in the early 1990s especially for 1993-1994 seems to be still large in the standardized CPUE.
- Extracted year trends of standardized CPUE is dependent upon the model (i.e. explanatory factors included into the ANOVA model) utilized.
- The difference of the year trend between nominal and standardized CPUE seems to be rather similar in the dataset-A (area4-9 and month4-9) and quite different in the dataset-B (Japanese fishing season and zone).
- As a result of model validation, the dataset-B is more robust and stable than dataset-A statistically.

Acknowledgement

We acknowledge Prof. John Pope, Dr. Jim Ianelli, Mr. Naozumi Miyabe and Mr. Shigeyuki Kawahara for their useful comments.

References

Anonymous. 2007. Report of the Second CPUE Modelling Workshop. 21-25

May 2007. Shimizu, Japan. 43pp.
O. Sakai, T. Itoh and Y. Narisawa. 2007. Review of Japanese SBT fisheries in 2006. CCSBT-ESC/0709/ SBT-Fisheries/Japan. 46pp.

-Tables and Figures-

Table A0 Difference of the characteristic between datasets (A \& B) and LL1

	Two datasets (A and B)	LL1 (used in the CCSBT)
Data resolution	Shot-by-shot	Aggregated by 5x5/month
Age configuration	All included	4plus (4+)
Joint venture vessels*	Not included	Included

*Data from the vessels of Joint venture between Japan and Australia or NZ.

Table A1 Spatio-temporal coverage of the dataset A and B made by shot-by-shot data
Number of hooks in thousands

Excess A	$\begin{aligned} & \hline \text { Excess A } \\ & \text { (Apr-Sep) } \\ & \hline \end{aligned}$
33\%	33\%
27\%	27\%
67\%	67\%
82\%	82\%
63\%	63\%
55\%	55\%
28\%	28\%
15\%	15\%
7\%	7\%
12\%	12\%
30\%	30\%
20\%	20\%
15\%	15\%
19\%	19\%
0\%	0\%
100\%	100\%
100\%	100\%
100\%	100\%
100\%	100\%
100\%	100\%
100\%	100\%
100\%	100\%
100\%	100\%
100\%	100\%
100\%	100\%
100\%	100\%
100\%	100\%
100\%	100\%
100\%	100\%
100\%	100\%
100\%	100\%
100\%	100\%
100\%	100\%
100\%	100\%
100\%	100\%
100\%	100\%
100\%	100\%
100\%	100\%
100\%	100\%
100\%	100\%
100\%	100\%
100\%	100\%
100\%	100\%
2\%	2\%
2\%	2\%
5\%	5\%
65\%	65\%
26\%	26\%
30\%	30\%
0\%	0\%
0\%	0\%
3\%	3\%
1\%	1\%
2\%	2\%
0\%	0\%
2\%	2\%
0\%	0\%
0\%	0\%
2\%	2\%
-10\%	1\%
77\%	77\%
11\%	20\%
-56\%	19\%
-215\%	1\%
-226\%	0\%
-17\%	67\%
26\%	68\%
-263\%	0\%
-196\%	1\%
-76\%	2\%
-203\%	0\%
-154\%	53\%
-109\%	54\%
7\%	7\%
16\%	16\%
30\%	30\%
46\%	46\%
43\%	43\%
10\%	10\%
16\%	16\%
13\%	13\%
6\%	6\%
12\%	12\%
6\%	6\%
0\%	0\%
0\%	0\%
0\%	0\%
0\%	0\%

Fig. A1 Nominal CPUE by Area with the dataset A and B made by shot-by-shot data

Area5
Area 8

Area 6
Area9

∇	1999	\diamond	2000	\times	2001	+	2002	Δ	2003	\circ	2004	\square	2005
$*$	1992	\boxplus	1993	区	1994	\bullet	1995	\otimes	1996	$*$	1997	\otimes	1998

Fig. A2 Nominal CPUE by year, month and Area in the dataset A made by shot-by-shot data
Sizes of plots are proportional to the ratio of the effort in an area, year and month to the total efforts of the area.

Fig. A3 Nominal CPUE by year, month and Area in the dataset B made by shot-byshot data
Sizes of plots are proportional to the ratio of the effort in an area, year and month to the total efforts of the area. Refer to the legend in Fig. 2A.

Dataset-B: Year (1992-2005), Area (4, 7, 8, 9),
Period=Fishing season(Japanese fishing management zone was open):

Figure 12. Comparison of model runs with core-vessels and different definitions of areas and times (Datasets A and B).

Figure B0 Estimated CPUE year trend using the LSMEANS of Year*Observer without observer and Core-vessels in the two datasets (A\&B).

Figure B1 Estimated CPUE trend using LSMEANS of "Year" and all vessels.

Table B1 Values of mean absolute error and Pearson's correlation coefficient.

Dataset	MAE (Smaller is better)	Correlation (Larger is better)
Dataset-A	1.861	0.241
Dataset-B	1.618	0.349

Figure B2 CPUE year trends in both datasets obtained from the Eqn.(2).

Figure B3 CPUE from 1996 in Eqn.(2). Figure B4 Year trend of nominal cpue

Figure B5 CPUE year trends in both datasets obtained from the Eqn.(3).

Appendix Results made by 5×5 month data

Table A1 Spatio-temporal coverage of the dataset A and B by the 5×5 month data

Number of hooks in thousands

Excess A	Excess A (Apr-Sep)
24\%	24\%
24\%	24\%
60\%	60\%
76\%	76\%
47\%	47\%
39\%	39\%
6\%	6\%
7\%	7\%
0\%	\%
0\%	0\%
8\%	8\%
9\%	9\%
10\%	10\%
13\%	13\%
3\%	3\%
2\%	2\%
2\%	2\%
8\%	8\%
29\%	29\%
13\%	13\%
27\%	27\%
0\%	0\%
0\%	0\%
3\%	3\%
1\%	1\%
2\%	2\%
0\%	0\%
2\%	2\%
0\%	0\%
0\%	0\%
2\%	2\%
-25\%	1\%
33\%	33\%
11\%	22\%
-66\%	19\%
-210\%	1\%
-227\%	\%
-18\%	67\%
31\%	70\%
-256\%	1\%
-197\%	1\%
-71\%	3\%
-203\%	0\%
-161\%	51\%
-109\%	54\%
6\%	6\%
15\%	15\%
12\%	12\%
42\%	42\%
22\%	22\%
9\%	9\%
15\%	15\%
7\%	7\%
2\%	2\%
2\%	2\%
1\%	1\%
0\%	0\%
0\%	0\%
0\%	0\%
0\%	0\%

Fig. A1 Nominal CPUE by Area with the dataset A and B by the 5×5 month data

Area5
Area8

Area 6
Area9

∇	1999	\diamond	2000	\times	2001	+	2002	Δ	2003	\circ	2004	\square	2005
$*$	1992	\boxplus	1993	区	1994	\bullet	1995	\otimes	1996	$*$	1997	\otimes	1998

Fig. A2 Nominal CPUE by Area, year and month with the dataset A by the 5×5 month data

Sizes of plots are proportional to the ratio of the effort in an area, year and month to the total efforts of the area.

Fig. A3 Nominal CPUE by Area, year and month with the dataset B by the 5×5 month data
Sizes of plots are proportional to the ratio of the effort in an area, year and month to the total efforts of the area. See the legend in Fig. A3.

Dataset-A (Upper) Dataset-B (Lower)

Figure B6 Plot of observed and corresponding predicted CPUE in two dataset

