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Non technical summary
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Objectives

. To determine the type and quantity of waste produced by sea-cage operations across a range of

management and environmental regimes.

. To develop and validate a model or modify an existing model (e.g. DEPOMOD) of the waste

dynamics of sea-cage operations incorporating information on stocking density, feed type and a
number of environmental and management parameters to quantify the extent and intensity of
localised impacts.

. Obtain information on the composition of the fouling community on and adjacent to tuna cages

with reference to potential polyculture species with an assessment of their potential biological and
economic viability.

. To develop a sampling program for benthic assemblages exposed to waste from tuna farming

operations with reference to the efficacy of fallowing as a waste remediation process. This will
form the basis for consideration of alternative waste mitigation strategies and for recommending
improvements to environmental monitoring regimes.

. To test the potential of integrated farming in mitigation studies. This involves the use of benthic

filter feeders (e.g. blue mussels) benthic surface feeders (holothurids and crabs) and bioturbators
(e.g. stingrays, fish or native oysters).

. To evaluate potential applications of technological approaches (e.g. diaper systems) to waste

mitigation.

Outcomes achieved to date

The project results and outputs have contributed to the following outcomes:

Information to quantitatively assess the impact from SBT farming that will provide greater
certainty in planning and thereby help to secure tenure and access to sites for aquaculture
industries in marine environments.

An ability to model changes in waste under different management strategies that will allow
predictions about the ecological consequences (and through this the risks to stock) of the
application of new technologies or mitigation solutions.

A better understanding of environmental issues associated with SBT farming, necessary to refine
monitoring programs, licensing and regulatory frameworks. Government bodies use this
information to facilitate the development of a strategic approach to adaptive management,
essential to warrant public support to coastal aquaculture developments.




This project investigated the dynamics of waste production within southern bluefin tuna
(SBT) pens in waters off Port Lincoln in lower Spencer Gulf, South Australia, and the
impacts associated with the release of these wastes in the environment. Whereas coastal
aquaculture operations are known to be input sources of nutrients into the marine
environment (e.g. uneaten feed, faeccal matter, metabolic products), little was known about
the composition or quantity of wastes released by SBT farms or the appropriate measures for
managing or minimising environmental impacts. This information was necessary to promote
environmental conditions that are optimum for both production and the health of the aquatic
environment, ensuring access to sites and security of tenure for finfish farmers within a
framework that is proven to be environmentally sustainable.

To determine the type and quantity of waste produced by sea-cages, we measured nutrient
contents and leaching rates from feeds and faeces, sedimentation rates and benthic fluxes in
the farms. Wastes are released mostly in dissolved form as a result of the extremely high
metabolic rates of SBT and associated high discharges of urine and gill excretory products.
Dissolved nutrients are also lost to the water column by leaching from solid wastes, and
losses are 3-4 times higher when SBT are fed baitfish compared to pellets. Although
sedimentation rates are up to 10 times the natural background, solid wastes are quickly
metabolized and released back into the water column, resulting in low accumulation in the
sediments. The high feed conversion ratios (FCR) associated with a diet of baitfish result in
nitrogen loads to the environment in excess of 260 kg N tonne™ growth, more than double
values for other aquaculture species fed manufactured pellets. Considering Australian current
production of 4,380 tonnes per year, total annual loads to the environment can reach 1,137
tonnes N, including 983 tonnes N released as dissolved products. Actions to reduce these
loads could include improving feeding strategies and associated technologies, and producing
diets with an optimal protein/energy ratio so that energy requirements are met by non-protein
sources.

To develop a model of waste-dynamics, we assessed the fate of nitrogen in the system based
on environmental and farm management data, and estimates of fish metabolism. Only a small
fraction (7-12%) of nitrogen in feed is retained for growth. Metabolic losses correspond to
59-64% of inputs, leaching to the water column to 10% and remineralization in the sediments
to 7-11%. Overall, between 84 and 92% of nitrogen in feed is lost as dissolved wastes.
Particulate wastes account for only a small fraction (8-12%) of environmental losses,
occurring mostly through sediment accumulation (maximum 6 %) or export out of the system
with current flows (maximum 12 %). The importance of dissolved wastes combined with the
low settling velocity of SBT faeces and the high scavenging activity in the area lead to
minimal impacts to the benthos at current stocking densities and holding periods. Effects are
transitory rather than chronic and changes are reversible as a result of fast turnover periods.
Although nutrients are rapidly recycled within the system, the benthic impact of pens is
noticeable through a shift to finer sediments where infauna abundance is greater and
diversity, number of taxa and evenness is lower.

The nature of the wastes indicates that these are not confined to the footprint of the pens and
might spread over a large area. When compared to other coastal sites within Spencer Gulf,
the offshore SBT farming zone has finer sediments, with occasional high levels of organic
carbon and total nitrogen, and distinct macrobenthic assemblages, as well as higher water
column phosphate concentrations. These variables suggest that the entire area might be
subject to some disturbance, particularly during the farming season. Potential regional effects
are now being considered through a follow up project of the Aquafin CRC.
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To obtain information on the composition of the fouling community on and adjacent to sea-
cages, an experiment was conducted to test the efficacy of the proprietary antifoulant Wattyl
NetClear® on the nets. The dominating fouling organisms were the green algae Entermorpha
sp. at shallow depths and sponges at deeper depths, with low settlement of blue mussels and
paper oysters. The largest cover of fouling was observed in April-May. The use of effective
and environmentally friendly anti-fouling alternatives could help minimize deposition to the
benthos and therefore increase rates of recovery during fallowing. The use of Wattyl
NetClear® coating in this study proved unsuccessful in significantly reducing biofouling on
SBT nets as a strategy to minimize deposition.

To develop a sampling program to assess the efficacy of fallowing, we monitored infauna in
8 fallowed and 8 control sites over a full year. Fallowing is the only strategy currently
employed to allow benthic recovery, with pen sites left to fallow for a period of two years.
Lumbrinerids and spionids were identified as the best macrobenthic taxa for assessing the
level of disturbance at fallowed sites. The examination of infauna assemblages suggests that
the recovery of the benthos is slow and farmed sites remain moderately disturbed after 12
months. Some variation in rates of recovery between sites is expected as the area covers
distinct sediment types.

To test the potential of integrated farming and evaluate potential applications of technological
approaches, we completed a desktop study to evaluate (1) the species of economic interest
occurring naturally in and around commercial farms and (2) engineering solutions to waste
mitigation. Polyculture appears as a promising waste mitigation alternative for SBT farming,
with the added benefit of increasing profitability. An integrated system combining SBT,
abalone/sea urchins and red macroalgae would be beneficial on both economical and
environmental terms. Abalone/sea urchins would intercept particulate wastes while
macroalgae would reduce the loads of dissolved wastes. Other native benthic scavengers such
as spider crabs and sea cucumbers could also be used to reduce benthic impacts. Organisms
considered for polyculture should be tested for their potential to act as reservoirs of SBT
parasites. On a regional level, production of mussels and/or oysters could be enhanced by
correct positioning in relation to the movement of particulate wastes from SBT farms. At this
stage, engineering solutions for waste mitigation in such open water systems would be
prohibitive as a consequence of high cost and the need to test and validate available
technologies in open ocean environments.

Although the major aspects of waste production have been covered by this work, we still
have no clear idea of the spatial and temporal gradients of impact. This information is
necessary to refine fallowing and site rotation regimes. More information is necessary to
establish how effects on sediment composition, structure and fauna vary with distance from
stocked pens according to sediment types and water circulation. To better understand how
nutrient loads vary during the course of the season, there is a need to estimate how SBT feed
intake, growth and body composition vary with size of fish and water temperature. This level
of detail would allow calculation of loads on more suitable time scales (e.g. months) to
pinpoint periods where inputs from SBT farms are more likely to have an effect on the
natural functioning of the ecosystem.
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1.1. Background

1.1.1. Fish aquaculture and the environment

The aquaculture sector currently produces over 36% of the world's fish supply, up from 7%
in 1970 (FAO, 2003). Australian domestic demand for seafood is expected to reach 80,000
tonnes above current consumption by 2020 and the expectation is to meet the gap by
increasing aquaculture production (FRDC, 2003). As a consequence, the past decade has seen
considerable expansion of the industry in the country, with the value of production more than
doubling from $331 million in 1992/1993 to $743 million in 2002/2003 (FRDC, 2004).
Industry sustainability is directly linked to a healthy environment and its rapid growth has
increased awareness of environmental effects. Finfish pens in particular are open systems that
act as point sources of wastes in coastal areas (Figure 1.1). Nutrients supplied to the fish with
feed are digested and metabolic wastes released directly into the water column as dissolved
products. The material that is not digested is excreted as faeces. Soluble nutrients in faeces
and uneaten feed will leach into water during transit to the seafloor (Phillips et al., 1993;
Chen et al., 2003). Solid wastes reaching the sediments accumulate in the vicinity of the pens
leading to an increase in microbial biomass (Karakassis et al., 2000), oxygen consumption by
heterotrophic organisms and overall sediment metabolism (Holmer & Kristensen, 1992).
These processes promote remineralization of organic matter at the sediment-water interface
leading to an efflux of inorganic nutrients from the sediments (Christensen et al., 2000; Strain
& Hargrave, 2005).
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Figure 1.1. Conceptual model of waste flows in a marine fish farm.



The excretion of metabolic products, leaching of solid wastes and regeneration of nutrients in
the sediments as a result of fish farming will act to increase the load of nitrogen and
phosphorus available for primary productivity in the water column. Coastal marine systems
are generally nutrient-limited and a surplus of nitrogen and phosphorus may affect ecosystem
balance by promoting algal growth and potentially blooms (Paerl, 1997; Russell et al., 2005).
This is an undesirable effect not only from an environmental point of view, but also for the
farm operator as algal blooms can affect the health of the stock (Cembella et al., 2002;
Treasurer et al., 2003). The increase in feed availability in the water column may also disturb
other levels of the trophic chain, e.g. changing the composition and increasing densities of
scavenger populations such as fish and birds. Although pelagic effects might be various and
far reaching, with implications for ecosystem health that are currently not fully understood,
these will depend on industry practices and environmental conditions and can potentially be
avoided with adaptive management.

The large amount and continuous deposition of solid wastes underneath the pens act to
change the physical structure and nutrient availability in the sediments and can affect the
community structure of both benthic fauna and flora. Benthic assemblages characteristic of
the area are replaced by opportunistic species that have an adaptive advantage and can use the
change in conditions to establish an ecological niche (Brown et al., 1987; Weston, 1990;
Karakassis et al., 2000). In areas of heavy deposition the demand for oxygen at the sediment-
water interface may exceed supply from water circulation and sediments become anoxic. One
of the consequences can be the formation of an azoic zone devoid of benthic infauna.
Anaerobic conditions also favour the formation of toxic compounds such as ammonia and
hydrogen sulphide, and other reduced compounds such as methane, which in extreme cases
degas from the sediments and impact fish growing in the pens (Gowen & Bradbury, 1987).
Other adverse effects on farmed stocks directly related to self-pollution include development
of conditions favourable to the spread of parasitic and microbial infections (Braaten et al.,
1983). The scale of benthic impacts will largely depend on the size of the operation and the
assimilative characteristics of the surrounding environment.

Several reports on the environmental effects of finfish farming have appeared in the scientific
literature as a consequence of long-term experiences with salmon and trout farms, primarily
in the Northern Hemisphere. Variables affecting the amount of wastes released include
management (e.g. feed wastage, stocking density, feeding regime), feed quality (e.g. stability
and solubility in water, digestibility, nutrient contents) and fish metabolism (e.g. growth,
excretion) (Islam, 2005). Feed management and engineering advances have significantly
reduced waste over the last three decades (Enell, 1995). The amount of nitrogen in feed
actually retained in fish growth is expected to be lower than 40% for most farmed fish
species, whereas for phosphorus values are even lower, between 10 and 30% (Islam, 2005;
Strain & Hargrave, 2005; Fernandes et al., submitted-b). The fraction not used for fish
growth is lost to the environment as dissolved metabolic products or as faecal matter. More
than 80% of nitrogen environmental losses are believed to occur in dissolved form (Islam,
2005). In contrast, much less phosphorus is released in dissolved form. Although values
reported in the literature vary over a wide range (38-66%), most of the phosphorus released is
expected to accumulate in the sediments (Phillips et al., 1985; Holby & Hall, 1991; Islam,
2005). The limit adopted by the UK for the nitrogen load from aquaculture production into
coastal areas is 123 kg N tonne™ growth (Islam, 2005). In Scandinavia, typical loads are less
than 55 kg N tonne” growth and 5 kg P tonne” growth (Enell, 1995; Fernandes et al.,
submitted-b). Although it is advisable to have a limit for nutrient release per tonne of
production, any ecological effects will be ultimately driven by the total load released into the



environment according to the total production tonnage for a given farming area. These total
loads need then to be considered in the context of local conditions so that they do not exceed
the environmental carrying capacity of the area. Environmental characteristics, such as water
circulation and benthic assimilative capacity, will ultimately determine the fate of wastes and
its effect on the environment and farm operations.

In order to manage the impact of wastes released to the environment, the finfish aquaculture
industry usually employs a number of preventative or remediation strategies. To combat the
build up of organic matter beneath salmon pens and to limit the health risks to stock,
operators are required to move pens on a regular basis with the resulting “fallow” period
allowing recovery of the site before pens are reinstalled (Frid & Mercer, 1989; Bron et al.,
1993). While fallowing is the most common approach to waste management in sea-cage
aquaculture, rates of recovery vary substantially between locations from as little as 10 weeks
up to 18 months or more (Ritz et al., 1989; Stewart, 1998; Carroll et al., 2003; Nash, 2003;
Macleod et al., 2004b; Pereira et al., 2004; Lauer, 2005). Reasons for these differences are
related to the variety of benthic systems involved and their assimilative capacity, species
being farmed, stocking density, water movement and temperature. Other waste remediation
strategies used by industry may never fully replace the need for fallowing, but may reduce the
recovery time or extend the period that a pen may be left in operation. Most of the methods
are technological (filtration systems), but various forms of biofilters and integrated farming
methods (polyculture) have been attempted. Technological solutions for waste removal are
likely to enhance the pace of recovery during fallowing but the cost of such operations may
be prohibitive. Polyculture generally combines finfish with filter feeders of particulate matter
(e.g. mussels) and macroalgae as nutrient sinks but further attention should be given to the
use of cultured subsurface and surface deposit feeders that act to stir up sediment under cages
and maintain oxygen levels (Brzeski & Newkirk, 1997). Integrated farming can be successful
in utilising waste and has the added advantage of increasing both the commercial value and
stability of the industry through diversification of its product base (such as edible macroalgae,
mussels or pharmaceutical products extracted from tunicates). However, little information is
available on the productivity of such operations at a commercial scale. The targeting of
alternative mitigation strategies in finfish aquaculture is problematic because operators have
little or no control over water movements, sediment nutrient loads and external ecological
variables, hindering progress in this area. Fallowing appears to be the only mitigation process
currently employed in Australia and the only research on impacts and recovery rates has been
undertaken in Tasmania for salmon farming (Macleod et al., 2004a; Macleod et al., 2004b;
Edgar et al., 2005).

1.1.2. The southern bluefin tuna aquaculture industry

The reduction of southern bluefin tuna (SBT) (Thunnus maccoyii) wild quotas from 14,500
tonnes in 1987/1988 to its current level of 5,265 tonnes prompted the move of the industry
away from canning to value-adding through farming (Jeffriess, 2003). SBT were first farmed
in Australia in 1991 with sea-cage technology adapted from aquaculture systems developed
for other species (in particular salmonids). Only 17 tonnes were farmed in this initial year,
but since 1999 more than 95% of the total wild quota has been farmed (Jeffriess, 2003; Love
& Langenkamp, 2003). The sector is currently the leading aquaculture industry in South
Australia, accounting for over 85 % of the gross value of production between 2000 and 2003
(EconSearch Pty Ltd, 2002; Knight et al., 2004). In economic terms, SBT farming is also the
largest aquaculture industry in the country, contributing to more than 20% of the gross value



of production, followed by pearls and Atlantic salmon (Love & Langenkamp, 2003; FRDC,
2004; Newton et al., 2006). Approximately 99% of exports are sold to the Japanese sashimi
market, with the rest of the production sold to the domestic or US markets (EconSearch Pty
Ltd, 2002). Current threats to the industry include a decline in price and potential reductions
in the total allowable catch as a response to concerns about the size of the wild stock. The
increased supplies of farmed tuna from Mediterranean countries, an appreciation of the
Australian dollar against the Japanese yen, and a significant decline in SBT farm output have
forced a drop in the export value of SBT from a peak of 267 million in 2002/2003 to 140
million in 2004/2005 (EconSearch Pty Ltd, 2006).

Although there has been interest in developing SBT farms in other states, SBT aquaculture
currently only occurs in waters off Port Lincoln, lower Spencer Gulf, South Australia. This
reflects the suitability of the area for SBT grow-out and availability of juvenile wild stock in
waters of the adjacent Great Australian Bight during their annual migration off the coast of
western and southern Australia. Initially SBT farms were located in the protected waters of
Boston Bay between the city of Port Lincoln and Boston Island. In April 1996, unusually
severe weather affected the area leading to the loss of 75 % of all stock. Mortalities during
that time were attributed to resuspension of fine sediments into the water column (Clarke,
1996). By 1997 most farms had re-located to the more exposed waters seaward of Boston
Island (Figure 1.2), where current speeds are stronger and flushing times faster (Bierman,
2005). There are currently 21 operators and 32 lease sites in this offshore farming zone
(PIRSA, 2006). Leases range from 10 to 215 ha, occupying a total area of 1,794 ha, with
maximum stocking biomass of 6 tonnes per hectare (PIRSA Aquaculture, 2003; PIRSA,
2006). Farmers are issued with a lease area three times as large as the licence area they are
allowed to farm inside the lease in any particular year. This management strategy allows for
moving cages inside the lease every year, therefore allowing each farmed area to fallow for a
period of at least 2 years after harvest.

Juveline SBT weighing between 15 and 25 kg are caught between December and March in
waters off the South Australian coast and towed back to Port Lincoln for transfer into sea-
cages. Licenses issued prior to 2006 had to ensure that maximum stocking densities did not
exceed 4 kg m™. However, stocking densities are no longer included in licence conditions
(Stephen Madigan, personal communication). SBT are fattened over the next 3 to 7 months in
40-50 m diameter “Polar Cirkel” and “Bridgestone” type pens (Clarke et al., 1999), and
harvested between July and September. Feeding relies on baitfish feed sourced mostly locally
(Australian sardines, Sardinops neopilchardus), but also from overseas, e.g. American
(Sardinops sagax) and Californian sardines (Sardinops caeruleus) (Ellis & Rough, 2005).
Feed conversion ratios are generally in the range 10-17 (wet weight feed/wet weight gain)
(Fernandes et al., submitted-b). Harvest fish weigh between 25 and 40 kg, with the total
annual production averaging 9,640 tonnes between 2000 and 2003 (Jeffriess, 2004). Until
now, this production is achieved without the use of anti-fouling agents or drugs.

Limited data has been available on the waste produced by SBT farms and their environmental
effects (for a review, see below). Comparatively more information has been published on
salmon aquaculture in Tasmania, an industry that started in 1984, 7 years earlier than SBT
farming in South Australia (Crawford et al., 2002; Crawford, 2003; Macleod et al., 2004a;
Macleod et al., 2004b). The environmental issues associated with SBT aquaculture are likely
to have unique characteristics compared to salmon and other finfish because of differences in
food type, management practices, nutritional efficiency of the stock and the assimilative
capacity of the local environment. In particular, the rates of nutrient retention and partition of



wastes between the dissolved and particulate phases have not previously been quantified, and
we have little understanding of the regional effects of farming on the oligotrophic waters of
lower Spencer Gulf, subject to strong flushing regimes and high levels of scavenger/predator
activity. Localized impacts have not been detected in several monitoring campaigns
undertaken since 1996.

/_/20%

— . C,C\j\*’o_
o ‘ '

DENINGTON

Figure 1.2. Map showing the location of the SBT offshore farming zone in lower Spencer
Gulf.

Pelagic impacts

An initial study was carried out in the early 1990s, when SBT pens were still contained
within Boston Bay (Bond, 1993)