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Abstract: Three types of CPUE analyses were carried out by multiple 
imputations method using the Japanese longline fisheries data for southern 
bluefin tuna (5x5 degree square/monthly basis). The estimation of the 
missing CPUE in the core-area where many fishery data are available using 
the propensity score method were performed and compared with EFP data. 
Although the fitting is not so good, EFP data do not become the adequate 
supervised one. We performed the reliability check of the interpolated CPUE 
by “n-fold cross-validation” using the same data as those used in the CPUE 
standardization by GLM. The accuracy seems not to be so good because of 
some extreme outliers. Preliminary statistical analyses with a view to 
predict CPUE in non-fished were done by the propensity score method. As a 
result, it was found that the year trend of abundance index by multiple 
imputation method is rather different from those in CS and VS-type by GLM. 
 
要旨：日本のミナミマグロはえ縄漁業の 5 度区画・月別に集約したデータを使
用して多数回補完法による 3種類の CPUE解析が行われた。多くの漁業データ
が利用可能なコア・エリアにおける欠損 CPUEの推定が傾向スコア法を用いて
行われ、(推定された CPUEが)EFPデータと比較された。そのフィッティング
はそれほど良くないが、EFP データは必ずしも適切な教師付きデータになって
いない。一般化線形モデルによる CPUE標準化と同じデータを用いて、“n-fold 
クロス・バリデーション” による補間された CPUEの信頼性の検証が行われた。
その精度は幾つかの極端な外れ値のために、さほど良くはなっていない。漁獲

のないエリアの CPUE予測を目的とした、傾向スコア法による予備的な統計解
析が行われた。その結果、多数回補完法による資源量指数の年トレンドが CS及
び VSタイプの一般化線形モデルによるそれらとかなり異なることが判明した。 
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1.  Introduction 
 
 The difference of interpretation about SBT CPUE in the non-fished 
area between constant square (CS) and variable square (VS) have greatly 
affected not only the relative year trends of abundance index but also the 
result of stock assessment in which these CPUE indices are utilized as an 
input data. Therefore, five abundance indices including two types of the 
weighted mean of CS and VS (W0.5 and W0.8) are defined as the input for 
the management procedure. 
 
 Several statistical methods for CPUE interpolation in the non-fished 
area have been suggested so far in CCSBT. Australian scientists tried to 
calculate the so-called “geo-statistical CPUE” using the method of repeated 
measure, which is a kind of mixed model (Toscas and Thomas, 1998). We 
predicted the CPUE in 5x5 degree blocks in which there is no observed data 
by the approaches for data-mining such as tree regression models and neural 
networks (Shono et al., 2001: Shono, 2002). However, the discussion in the 
meeting and the reliability check by cross-validation about these methods for 
CPUE interpolation are not sufficiently done. 
 
 In this paper, we carried out the three types of CPUE analyses using 
several multiple imputation methods. We mainly utilized the called 
propensity score method and performed the reliability check of interpolated 
CPUE obtained from these new statistical methods through cross-validation 
or comparison with the testing data for verification. These are as follows: 
1) CPUE prediction in the “core-area” (including “ST-window” series) by 

propensity score method and cross-check with the corresponding EPF 
data. 

2) Reliability check of interpolated CPUE by n-fold cross-validation using 
the same data as used in the GLM analyses. CPUE estimation of the 
missing parts was done by the multiple imputation method using the 
combination of MCMC and EM-algorithm suggested by Little and Rubin 
(2002). 

3) Multiple CPUE standardizations by GLM (i.e. extraction of the year 
trends of CPUE) using the completely interpolated CPUE data by the 
propensity score method. 
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Propensity score method (Rosenbaun and Rubin, 1983: 1985) is a 
statistical way for imputation: The procedure is as follow:  
1) Express the probability that the data is observed using a statistical model 

such as logit-model.  
2) Divide the whole data into several sub-data based on the magnitude of 

“propensity score”  
3) Interpolate the missing data using so-called “Aproximate Baysian 

bootstrap” in each sub-data.  
Because the interpolated values obtained from this method have 

some uncertainty, multiple imputations are generally performed. In this 
paper, we carried out the CPUE imputations for five times. 
 
2. CPUE imputation in the core-area 
 

At first, we applied the calculation of multiple imputations using 
propensity score method to SBT CPUE for age4+ (age 4 and older) of 
non-fished area in the following “core area” where fishery data can be 
securely available even when the pattern of SBT fishery changes. 
 
Year: 1993-2003 
Month: 4, 5, 6, 7, 8, 9 
Statistical area: 8 and 9 
Remark): We used the blocks in above areas categorized in every 5 degrees. 
 
 These cells include the “ST-windows” and some of them are 
corresponding to spatiotemporal window in which EFP experiments have 
been carried out in the last 1990s. Therefore, we verified the interpolated 
CPUE values using the corresponding EFP data. 
 

Figure 1 shows the mean values of predicted CPUE for five times 
imputations and corresponding (i.e. in the same spatiotemporal window) 
EFP data. CPUE values by multiple imputations are distributed around two 
or three regardless of the EFP data and the precision is not so good. However, 
CPUE obtained from the EFP experiment do not fit the corresponding (i.e. in 
the same spatiotemporal window) logbook data (Figure 2). Therefore, it is 
found that CPUE by EFP is not necessary appropriate as supervised data. 
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3. Reliability checks by n-fold cross-validation 
 

Next, we checked the reliability of multiple imputations by so-called 
“n-fold cross-validation” using the Japanese longline fishery data for SBT 
from 1969 to 2003 (5x5 degree square/monthly basis) in all fished area, 
which is exactly the same as those used in the calculation of abundance 
indices for the 2004 SAG/SC assessment by generalized linear models (Tsuji 
et al., 2004). Monthly CPUE (in number of catch for age 4+ (age 4 and older) 
per 1000 hooks were utilized within 5x5 squares. 
 
 In this paper, we adopted the 5-fold cross-validation. The procedure 
of the calculation is as follows: 
1) Divide the observed CPUE (7,697 records) into five sub datasets randomly 

and assigned a number of these sub-sets in turn.  
2) Choose a sub-set and regarded CPUE as the missing values in the dataset. 
3) Do multiple imputations of the missing CPUE and check the precision 

using Pearson’s correlation coefficient and the following Index (equation 
(1)) like chi-squared statistics (or relative mean squared error). 

  Remark: We used the combination of MCMC and EM-algorithm (Little and 
Rubin, 2002) instead of propensity score method in the calculation. 

4) Replicate step 2) and 3) to all sub datasets (i.e. replication for five times). 
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where  

iX : simple mean of predicted CPUE, : supervised data corresponding toiY iX  

 
Figure 3 shows the overall relationship between simple mean of 

interpolated CPUE and corresponding supervised data (i.e. observed CPUE). 
Table 1 shows the Pearson’s correlation coefficient and the value of Index 
defined by equation (1) in each random sub-dataset. Frequency (histogram) 
and cumulative distribution of this Index were illustrated in Figure 4. 
 

Judging from these values and figures, the reliability of the predicted 
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CPUE obtained from the multiple imputations seems not to be so good. 
However these values of Pearson’s R and the Index in Table 1 come under the 
strong influence of the small number of extreme “outliers”. Therefore, the 
precision of these estimates can be improved by removing some outliers. 
 

We also calculated the CPUE year trends by the following formula (2) 
replacing the (shadow) missing data with the interpolated CPUE in each sub 
dataset (Figure 5). In the figure, “original” and “predicted” shows the CPUE 
trends obtained from the all observed CPUE and all estimated one, 
respectively. 
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 When the ratio of the testing data (i.e. missing values) is low such as 
“CPUE(Ⅰ)―CPUE(Ⅴ): (where the ratio of missing is 20 percent)” in Figure 
5, these CPUE trends are similar to the “original” one. On the other hand, 
the trend of “predicted” used only the predicted values are quite different 
from (and flatter than) that of “original” (Figure 5). Therefore, it seems to be 
necessary to do more discussion and study in detail regarding the proportion 
of “training-data” and “testing-data” (i.e. data for validation) as well as the 
method of “cross-validation” in such kind of multiple imputations. 
 
4. Integrated results of our CPUE analyses 
 

At last, we tried to predict the CPUE of non-fished area (i.e. 5x5 
blocks in which there is no observed data: 22,123 records) using the 
propensity score method based on the same supervised CPUE data (7,697 
records) as used in the previous Section 3 (n-fold cross-validation) of this 
paper. We used the 5x5 blocks there exists some fishing effort in the past as 
the non-fished area, which is the same as used for the calculation of the 
abundance index in constant square (CS) type. 
 
 We carried out the multiple imputations for five times in this paper. 
Simple GLM analyses defined by the following equation (2) were 
independently performed on the basis of the above interpolated CPUE data. 
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After that, we integrate the results of our calculations for five times (based 
on the five dataset in which the missing CPUE data were fully interpolated).  
 
 Figure 6 shows the year trends of standardized CPUE using the 
completed five datasets interpolated by the multiple imputation methods. 
These trends are very similar although each predicted values of our 
experiments for five times are rather different. However, an integrated year 
trend of abundance index, which is a simple mean of five standardized CPUE 
by GLM and where average of CPUE values is set to 1.0, is flatter than those 
in constant square (CS) and variable square (VS) type (Figure 7). The 
difference of these CPUE trends is rather large. 
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Appendix.  Table and Figures. 
 
Table 1. Correlation coefficient and above Index corresponding each sub-set. 
Sub-Set Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ 
Pearson’s 0.287600 0.313245 0.320535 0.252071 0.280838 
Index 3.837353 3.916269 3.668749 3.679176 3.754673 
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Figure 1. Average CPUE (based on propensity score) vs. CPUE (by EFP). 
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EFP data versus corresponding logbook CPUE
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Figure 2. CPUE (by EFP) versus the corresponding CPUE (by logbook data). 

Scatter diagram (using 5-fold cross-validation)
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Figure 3. Average of predicted CPUE versus corresponding supervised data. 
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Histgram (frequency and cumulative ratio of Index)
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Figure 4. Frequency and cumulative ratio of the histgram of the Index value. 

Absolute CPUE trends of SBT
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Figure 5. Year trends of absolute CPUE interpolated in each sub-set (Ⅰ－Ⅴ). 
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Absolute CPUE trends of SBT
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Figure 6. Year trends of absolute CPUE by GLM using interpolated dataset. 

Relative CPUE trends of SBT
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Figure 7. Year trends of relative CPUE by GLM (Compared with CS and VS). 
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