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Summary 
The 2014 CCSBT Extended Scientific Committee has expressed the need to obtain estimates of 

unaccounted mortality of southern bluefin tuna resulting from potentially unreported catch by 

non-member fleets. This recommendation was reiterated at the later Extended Commission 

meeting. This paper describes analysis that builds on previous work that described overlap of 

longline effort in the Indian Ocean recorded in IOTC databases with regions where SBT is 

harvested, to provide estimates of catch that could be used in sensitivity analyses. We use the 

random forests machine learning algorithm to fit prediction models for catch of SBT in the 

Indian and Pacific Oceans. The models use characteristics of the effort and the catch per unit 

effort (CPUE) of other tuna and billfish species assumed to be reliably recorded for all fleets. The 

model is fitted to aggregated CPUE data from CCSBT member nations, and used to predict catch 

of SBT by non-member nations for the years 2007-2013, based on their recorded effort and the 

catch rates of IOTC or WCPFC target species. Random forest methods are also used in a 

classification guise to assign selectivity of the non-member SBT catch, to enable inference of the 

age classes of SBT captured by the non-member fleets as necessary for incorporation in stock 

assessment scenarios. The estimates should be considered indicative rather than authoritative, 

but may be appropriate for analysis of the sensitivity of the operating model to plausible non-

member catch. 
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1 Introduction 
The Extended Commission for the Conservation of Southern Bluefin Tuna (CCSBT) requested 

that the Extended Scientific Committee (ESC) conduct sensitivity analyses around all sources of 

unaccounted mortality of southern bluefin tuna (SBT) as part of the 2014 stock assessment. The 

fifth meeting of the Operating Model and Management Procedure Working Group (OMMP5) 

discussed the request from the Extended Commission and noted that the working group was not 

necessarily in possession of the information required to construct the full range of plausible 

scenarios for unaccounted mortalities. The OMMP5 recommended some scenarios to be 

considered in the 2014 stock assessment. 

The 2014 ESC considered the impacts on the stock assessment and projections from 

unaccounted mortality scenarios (Attachment 8, ESC19 2014). The ESC19 noted that if the total 

mortalities are as large as those considered in the 'added-catch' scenario, then the impacts on 

the rebuilding plan may be substantial. The ESC19 also noted that this scenario was potentially 

plausible given the available data, information and anecdotal market reports.  The ESC19 

requested that the Extended Commission and Compliance Committee urgently provide detailed 

information and data to properly assess impacts of unaccounted mortalities. 

The 2015 meeting of the Extended Commission directed the ESC, Compliance Committee and 

members and cooperating non-members undertake analyses to provide estimates of non-

member catch. The Extended Commission also agreed that the 2015 ESC work schedule included 

the collation of information on unreported mortalities and categorising this information in 

accordance with OM "fleets". 

As discussed by the ESC (ESC19 2014), one potential source of unaccounted mortality not 

currently considered in the operating model is unreported catch of SBT by countries that are not 

members of CCSBT. Larcombe (2014) provided an initial attempt at examining the overlap of 

non-Member fleets in areas identified as peak SBT areas within the area of competence of the 

Indian Ocean Tuna Commission (IOTC) during peak SBT seasons. This analysis identified 

increasing fishing effort in these peak areas and times that may indicate catch of SBT as a 

bycatch/byproduct for fishing targeting other tuna and billfish species. 

This paper and Hoyle & Chambers (2015) attempt to estimate levels of potential unreported 

catch of SBT by using information on catch rates of SBT assumed to be reliable in order to 

predict possible catch rates of non-members in the Pacific and Indian Ocean given details of 

effort. Co-operating non-members of CCSBT are expected to report any SBT catch by their 

vessels to CCSBT.   

Catch rates of SBT by longline might be expected to depend on factors such as the location of 

fishing effort, seasonal effects, but also on the size of the exploitable population of SBT (relative 

abundance) and aspects of the effort related to species targeting which are not available to the 

analysis. At the same time, the relative catch rates of various species can be expected to reflect 

targeting behaviour taking into account recorded details of effort. It follows that catch rates of an 

appropriate set of species, assumed to be recorded accurately, might provide information on 

potential catch rates of SBT. However, interactions between the effects of catch rates of various 

tuna and billfish species and effort variables on the catch of SBT are likely to be highly complex. 

Statistical techniques commonly fitted to catch and effort data to standardize catch rates of 

target species, such as GLMs and GAMs have a limited capacity to handle complex interactions 

and correlations between the effects of predictor variables. By contrast, certain machine 
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learning procedures such as those based on classification and regression trees can 

approximately model complex interactions among variables. 

We use the machine learning procedure 'random forests' to model catch rates of SBT in the 

Indian and Pacific Oceans. The fitted models are used to predict catch rates of SBT by non-

member fleets based on effort data submitted to the IOTC and WCPFC. The reliability of 

estimates provided depend crucially on the quality and completeness of the data upon which the 

estimates are based.  
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2 Method 

Basic approach 

The CCSBT database includes only information reported by CCSBT members and cooperating 

non-members. Furthermore, not all longline catch of tuna and billfish by CCSBT members and 

co-operating non-members is included on the CCSBT database. In this case, the approach used 

requires auxiliary data to be sourced in order to estimate possible non-member catch. 

Throughout the remainder of this paper we use the term non-member to mean fleets that are 

not members of the CCSBT. Data describing the effort of non-member fleets were sourced from 

the IOTC and WCPFC datasets. 

We use the random forests machine learning algorithm in R to train a prediction model for SBT 

catch rates on explanatory variables that are available for both CCSBT member fleets and non-

member longline fleets that fish in either the Indian or Pacific Oceans. Random forests models 

are fitted to monthly five-degree square observations for which SBT catch rates are assumed 

known (longline fleets from CCSBT member countries) and used to predict SBT catch rates 

associated with the effort of the non-member fleets. Predicted catch of SBT associated with each 

non-member observation is then calculated as the product of the predicted catch rate and 

number of hooks set.  

In addition, random forests classification models were used to assign a selectivity to each non-

member observation from the Indian Ocean. This was done by assigning the appropriate 

longline 'fishery' (LL1, LL2, LL3 or LL4) to each CCSBT monthly 5-degree square observation as 

designated in the CCSBT data document. The fishery variable was then used as the response 

variable for random forests classification models fitted to the CCSBT member observations and 

used to predict the fishery class of each non-member observation. 

Random forests 

Regression trees are a non-parametric modelling approach that has considerable flexibility for 

handling interactions. The fact that regression trees do not make parametric assumptions about 

the distribution of observed bycatch around their expected levels is also convenient when 

estimating bycatch. A disadvantage of individual regression trees is that they have been found to 

generally perform less well in prediction than many alternative modelling approaches. Methods 

based on `ensembles of regression trees', such as random forests (Breiman 2001), retain the 

flexibility of regression trees, but tend to give predictions with lower mean squared error  

(Hastie et al. 2009). 

Random forests and other approaches based on ensembles of regression trees are commonly 

included in the larger class of machine learning (or data mining) procedures. Machine learning 

approaches have been found to be useful for estimating bycatch because of their flexibility and 

typically good predictive performance (see e.g. Lennert-Cody and Berk 2007; Pons et al. 2009). 

Recently Shono (2014) has described advantages of using support vector machines for 

modelling SBT CPUE. We use random forests as implemented in the R (R Development Core 

Team 2012) package randomForest (Liaw and Wiener 2002) to predict catch of SBT by non-

member fleets between 2007 and 2013. The uncertainty of predictions is assumed to be given by 

the distribution of estimates provided by the individual regression trees that make up the 

random forest model. We also use random forests in a classification guise to assign effort to SBT 

selectivities used in the SBT stock assessment. 
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Estimating non-member catch 

It is well known that the spatial distribution of areas fished by CCSBT fleets targeting SBT has 

declined in recent years (Anon. 2014; Itoh and Takahashi 2014). It is plausible that there are 

areas in the Indian and Pacific Oceans where SBT can be caught that are not currently being 

regularly fished by CCSBT member fleets. Without information on catch rate, predictions of non-

member SBT catch in areas not fished by member fleets will be less reliable than areas that are 

fished. In order to provide some information on possible catch rates in these areas we define a 

variable, HISTORY, equal to the log transform of total historic reported longline catch of SBT in 

each 5-degree square.  So the value of the HISTORY variable for any fishing in 5 degree square i is 

given by: 





















  1 square degree-5in  retained SBT ofnumber  reported Annuallog
2014

1965

iHISTORYi
 

The HISTORY variable allows catch rates observed in fished areas to inform predictions of catch 

rates in unfished areas. Alternative predictor variables could have been derived from historic 

catch and effort data, but intuitively, the HISTORY variable mapped in Figure 1 seems likely to be 

related to catch rates of SBT. 

 

Figure 1 Logarithm of total reported longline catch of SBT (in numbers) 1965-2014. 

Source: CCSBT database, AGGREGATED_CATCH_EFFORT table. 

Estimating non-member selectivity 

In order to assign estimated non-member catch to fisheries it was necessary to assign 

selectivities to the CCSBT member observations. This was done using the designation of 'fishery' 

described on page 16 of the 2015 CCSBT data documentation (Millar 2015). The designation of 

'fishery' is dependent upon Fleet and the CCSBT Statistical Area fished (see Table 1). It can be 

seen that selectivity only needs to be modelled in the Indian Ocean. All catch of SBT in the Pacific 

Ocean can be assumed to have selectivity as defined by the 'LL1' fishery. 

Table 1 Designation of Fishery (selectivity schedule) of catch of SBT by CCSBT member 
longline fleets. 

  Designated Fishery 

Fleet Indian Ocean Pacific Ocean 

JP LL1, except in Area 1 (LL4) and Area 2 (LL3) LL1 

TW LL2 LL1 

KR LL1 LL1 
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3 The Indian Ocean 

Data 

The primary data used for the analysis of Indian Ocean catch were sourced from the IOTC 

website (http://www.iotc.org/data/datasets). These data are freely available. Only longline data 

were considered. There is no evidence in the IOTC data that SBT is captured by purse seine 

vessels operating in the Indian Ocean other than that reported by the Australian surface fishery.  

Data subsetting 

We consider observations starting in 2007 due to known issues with reporting of SBT catch 

before this time. Although the data are available from the IOTC longline dataset for our purposes 

we also sourced catch and effort data from the CCSBT database for validation and editing 

purposes. 

The IOTC longline data includes observations in Quadrants 1 (longitude 0o - 180o E, latitude 0o - 

90o N) and 2 (longitude 0o - 180o E, latitude 0o - 90o S). We limit consideration to observations in 

Quadrant 2. SBT are also likely to be captured in the southern Atlantic Ocean, but this area falls 

under the International Commission for the Conservation of Atlantic Tunas (ICCAT). ICCAT data 

has not been included. In an effort to reduce the extent of spurious predictions, the region used 

for prediction was limited further to the region shown in Figure 2. 

 

Figure 2 Area used to fit the prediction model and predict non-member catch in the Indian 
Ocean. Area considered indicated by hatched 5-degree squares. 

The formatting of the IOTC longline records differed between fleets. In most cases longline effort 

was specified by number of hooks set, however, in some cases effort was specified in terms of 

number of longline sets or number of days fished. For some fleets catches were specified by 

number of individuals, whereas other fleets specified the total weight of individuals caught. In 

some cases both catch numbers and catch weights were reported (see Tables 2 and 3). 

Generally, catch weights are recorded for the non-member fleets in the IOTC dataset rather than 
catch numbers (Table 3). On the other hand, the catch of the Japanese fleet is recorded only by 
number (Table 2). This means catch rates derived from Japanese data in the IOTC database are 
not directly comparable with the catch rates of most of the non-member fleets. For this reason, 
catch and effort data from the Japanese fleet are not directly used in the present study to model 
catch rates of SBT in the Indian Ocean. However, the catch of SBT by the Japanese longline fleet 

http://www.iotc.org/data/datasets
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contributes indirectly to the modelling of catch rates via the dominant contribution of the 
Japanese fleet to the values of the HISTORY variable specific to 5-degree squares where catch of 
SBT has been recorded historically (Figure 1).  

 

Table 2 Format of recorded data of CCSBT member fleets in the IOTC dataset. 

Flag† Catch in Numbers Catch in tonnes Effort Units 

Australia No Yes Hooks 

Taiwan Yes Yes Hooks 

Japan Yes No Hooks 

Korea Yes Yes Hooks 

† Spatially explicit catch and effort data are not available for Indonesia. 

Table 3 Format of recorded data of considered fleets that are not members of the CCSBT in 
the IOTC data. CCSBT co-operating non-members are identified by an asterisk. 

Flag Catch in Numbers Catch in tonnes Effort Units 

China Yes Yes Hooks 

Seychelles No Yes Hooks 

Spain* Yes (only SWO) Yes (only SWO) Hooks 

Mauritius No Yes Hooks 

Portugal* No Yes 67% Hooks, 33% Days 

France-Reunion* No Yes Hooks 

Thailand No Yes 36% Hooks, 64% Days 

 

Data sourced from the CCSBT database were compared with the IOTC data reported against 

Taiwanese and Korean fleets. Observations were discarded when the number of hooks recorded 

in the IOTC database was less than 75 percent or more than 125 percent of the number recorded 

in the CCSBT database (see Fig. 3). Where the effort was consistent, but CPUE of SBT differed 

between the IOTC and CCSBT records, the CCSBT value was assumed. We suspect that 

unreported longline sets, evidenced by the poor correspondence between IOTC and CCSBT 

reported effort (Figure 3), are unlikely to be 'missing at random'. In particular, observed catch 

rates might of SBT might influence the probability of observations being reported to the CCSBT. 

Catch rates derived from these data may give misleading signals about abundance trends.  
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Figure 3 Correspondence of monthly sums of hooks set aggregated at the 5-degree square 
level according to IOTC and CCSBT data. Retained observations plotted as open circles, 
excluded observations plotted as open triangles. 

Fitting models to CCSBT member data 

CPUE models 

The main consideration for model selection when fitting a random forests model is compiling a 

set of data with informative explanatory variables that are available for the training set and the 

prediction set.  

For the Indian Ocean analysis, the base model fitted to the CCSBT member data is defined as: 

HISTORYYEAR
CPUE

YFT

CPUE
ALB

CPUE
BET

CPUE
SWOYEARMONTHLATLONG

CPUE
SBT



~

 

All of the explanatory variables are treated as continuous variables. The CPUEs of SBT, swordfish 

(SWO), bigeye (BET), albacore (ALB) and yellowfin (YFT) are specified in terms of tonnes per 

thousand hooks.  

Catch for the Spanish fleet is recorded for swordfish only in the IOTC data obtained. We assume 

that the Spanish fleet catches the other target species included in the base CPUE model 

incidentally from time-to-time and these are not reported. It is not appropriate to use the base 

model to predict catch of SBT by the Spanish fleet in this case so we fit a simpler model to CCSBT 

member data to enable the prediction of SBT CPUE by the Spanish fleet. The simpler model is 

defined as: 

HISTORYYEARSWOYEARMONTHLATLONGSBT CPUECPUE ~  

The variable importance measure reflects the predictive performance of models with each 

variable compared with models where the values of the variable in question are randomly 
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permuted (Hastie et al. 2009). The estimated importance measures of the variables in the base 

model are shown in Figure 4. 

 

Figure 4 Variable importance plot of the base Indian Ocean random forests CPUE model. 

Fitted random forests models are difficult to interpret comprehensively (Prasad et al. 2006). The 

partial effects plots (Figure 5) provide some indication of the effects of the individual predictor 

variables of the base model on SBT CPUE in the Indian Ocean. 

The partial effect of Year increases markedly since 2011, which is consistent with the various 

monitoring series for SBT CPUE (see e.g. Chambers 2014; Itoh and Takahashi 2014). The effects 

of the target species CPUE variables generally appear to be fairly modest. The variable 

importance plot (Figure 4) suggests that albacore catch rates are informative, but their effect is 

not particularly clear from the partial effects plot (Figure 5). Increased SBT CPUE is expected as 

fishing moves from the western Indian Ocean to the eastern Indian Ocean. The effect of some 

variables might be quite different if SBT catch rates were modelled in terms of numbers of 

individuals instead of weight. 
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Figure 5 Partial effects of variables in the base Indian Ocean CPUE random forests model. 

Selectivity models 

In order to model selectivity it was necessary to assign selectivities to the CCSBT member 

observations. This was done using the designation of 'fishery' described on page 16 of the 2015 

CCSBT data documentation (Millar 2015) and was summarised previously in Table 1. 

The IOTC data on catch of the Japanese fleet is expressed only in terms of numbers of individuals 

(see Table 2) whereas catch of most non-members is available only by weight. In order to use 

Japanese data on catch composition to predict non-member SBT selectivity we define catch of 

IOTC target species as a fraction of total catch in weight, where possible, but otherwise as a 

fraction of total catch in number. For example the fraction of swordfish catch is defined as: 


















only.number in   recorded iscatch  where,

              recorded isin weight catch  where, 

numnumnumnum

num

wtwtwtwt

wt

frac

ALBYFTBETSWO

SWO

ALBYFTBETSWO

SWO

SWO  
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The species catch fraction terms when calculated in terms of weight will not be entirely 

consistent with values calculated in term of numbers. However, a compromise of some kind 

needs to be made in order for the Japanese data to be used to predict the selectivity of the non-

member fleets. 

The base selectivity model is defined as: 

YEARALBYFTBETSWOMONTHLATLONGFishery fracfracfracfrac ~  

It might be recognised that the base selectivity model is over determined (the IOTC target 

species terms have unit sum for all observations). This is not a problem when using random 

forests because correlation between predictors is not problematic. Random forests classification 

models are not prone to overfitting (Hastie et al. 2009). Moreover, each component regression 

tree is fitted with a subset of the predictors, so usually the component regression trees will not 

be overdetermined in any case. 

As was the case when modelling CPUE, prediction of selectivity of SBT captured by the Spanish 

fleet requires a model that does not include terms involving catch of bigeye, albacore and 

yellowfin. However, since catch of swordfish by the Spanish fleet is specified both in terms of 

numbers and weight (see Table 3), swordfish catch rate can be specified in terms of numbers per 

thousand hooks so that observations from Korea, Taiwan and Japan are consistent in the fitted 

model. 

YEARSWOMONTHLATLONGFishery NPUE ~  

Where NPUESWO  is defined as the number of swordfish reported per thousand hooks set. 

Estimates of total non-member catch in the Indian Ocean 

The fitted CPUE models described above were used to predict SBT catch corresponding to the 

monthly 5-degree observations of non-members recorded in the IOTC database using the 

randomForest 'predict' function. Predictions for each observation were obtained from each of 

the 500 bootstrapped regression trees making up the random forest model by setting the 

‘predict.all’ argument to TRUE. Once SBT catch rates were predicted for the non-member 

observations, estimated catch of SBT in tonnes was calculated simply as the product of the 

predicted catch rate and recorded effort.  

Table 4 Predicted annual catch of SBT by non-member countries in the Indian Ocean. 

Year Median Estimate (tonnes) 80% Prediction Interval (tonnes) 

2007 346 (154, 669) 

2008 279 (130, 566) 

2009 330 (174, 613) 

2010 675 (379, 1139) 

2011 583 (242, 1300) 

2012 779 (321, 1600) 

2013 383 (140, 779) 
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Observations from the Portuguese and Thai fleets were not used in years where their effort was 

not expressed in terms of number of hooks set. In years where catch could be estimated for 

these fleets, the predicted catches were not high. Estimates of annual non-member catch of SBT 

calculated as described are given in Table 4 and plotted in Figure 6. The uncertainty bars shown 

in Figure 6 are based on predictions of catch rates for each non-member observation from each 

of the 500 component regression trees 

 

Figure 6 Estimated catch of SBT by non-member countries in the Indian Ocean. Uncertainty 
bars are estimated 80% prediction intervals based on the distribution of estimates from 
bootstrapped regression trees that form the random forests model. 

 

Estimated selectivity 

The fitted selectivity models were used to predict the 'fishery' class corresponding to each 

monthly 5-degree observation reported against non-member fleets in the IOTC database. The 

predicted fisheries were weighted by the mean predicted SBT catch corresponding to that 

observation to predict the proportion of total non-member catch that should be allocated to each 

fishery. Approximately 86 percent of the non-member catch across all years in the Indian Ocean 

was predicted to be consistent with the LL2 fishery and 14 percent with the LL1 fishery. A small 

number of non-member observations were predicted to be LL3, but these did not contribute a 

significant proportion of predicted non-member catch. 

 

 
Figure 7 Estimated proportion of non-member catch assigned to the CCSBT selectivity 
schedules averaged over 2007-2013. 
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4 The Pacific Ocean 

Data 

The data describing the catch and effort of fleets targeting tuna and billfish under the 

jurisdiction of the WCPFC are not publicly available disaggregated by fleet and their provision is 

subject to confidentiality restrictions. For our purposes it was necessary to distinguish between 

member and non-member effort and so WCPFC catch and effort data by flag were requested by 

the CCSBT. Flag specific data corresponding to WCPFC effort south of 20oS that satisfied the 

confidentiality restrictions of the WCPFC were obtained. These data are explained in greater 

detail in Hoyle and Chambers (2015). 

According to the data obtained from the WCPFC, there has been very little effort by non-member 

fleets within the area of interest. The WCPFC does not report catch of SBT, so CCSBT and WCPFC 

datasets needed to be combined if covariates from the WCPFC data are to be used for prediction 

of SBT catch rates. This being the case, the effort from the WCPFC and CCSBT observations need 

to be approximately the same so that the WCPFC and CCSBT catch rates can reasonably assumed 

to have resulted from mostly the same longline sets. In contrast to the IOTC data, all catch is 

reported in both numbers and weight for all fleets and effort in terms of hooks set is also 

available for all fleets notwithstanding the confidentiality restrictions. 

Neither the WCPFC nor the CCSBT datasets indicate any longline fishing by Korea in the Pacific 

Ocean south of 20o S. Therefore the prediction model is fitted solely to catch and effort data from 

Japanese and Taiwanese fleets. We limit consideration to fishing effort in CCSBT Statistical Areas 

4, 5 and 6 and Area 7 east of 140o E. Exploratory modelling suggests that predictions of non-

member catch rates outside of this area is potentially unreliable.  

 

Figure 8 Area used to fit the prediction model and predict non-member catch in the Pacific 
Ocean. The numbers indicate CCSBT Statistical Areas. 

All records of catch and effort data obtained from the WCPFC included catches by weight as well 

as by number of individuals. This meant the longline catch rates of bigeye, yellowfin, albacore, 

swordfish, striped marlin, blue marlin and black marlin could be used as covariates consistently 

for all fleets. However in order to model SBT catch by weight whilst including Japanese 



 

17 

 

observations, it was necessary to convert reported Japanese catch of SBT in numbers to catch in 

weight. This was done using the method described in Hoyle and Chambers (2015). The 

correspondence in effort between the WCPFC and CCSBT datasets was checked and, as with the 

Indian Ocean data, observations that differed by more than 25 percent were excluded (see Fig. 

9). After subsetting, 171 Japanese observations and 13 Taiwanese observations were available 

for analysis. 

 

Figure 9 Correspondence of monthly sums of hooks set aggregated at the 5-degree square 
level according to WCPFC and CCSBT data. Retained observations plotted as open circles, 
excluded observations plotted as open triangles. 

CPUE model 

The model fitted is similar to that used for the Indian Ocean analysis except that a few additional 

catch rate terms are available. The fitted model can be defined as: 

HISTORYOTHBUMBLMSTM

YFTALBBETSWOYEARMONTHLATLONGSBT

CPUECPUECPUECPUE

CPUECPUECPUECPUECPUE



~
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Figure 10 Variable importance plot for the Pacific Ocean CPUE model. 

Partial effects plots from the fitted random forests model are shown in Figure 11. Catch of 

striped marlin produces sharply lower predictions of SBT everything else being equal. The Year 

effect appears to be less pronounced in the Pacific Ocean than in the Indian Ocean. It should be 

kept in mind, however, that Japanese data were not used in fitting the Indian Ocean CPUE model 

described in Section 3. 
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Figure 11 Partial effects plots for the Pacific Ocean CPUE model. 

Validation 

To examine the ability of the approach to estimate catch the predicted and estimated catch were 

compared for the Japanese and Taiwanese fleets in the Pacific Ocean. Figure 12(a) shows the 

predicted annual catches versus the estimated weight of the Japanese catch of SBT reported in 

numbers. Insufficient Taiwanese observations were retained for the analysis to justify a similar 
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analysis of predicted Taiwanese catch. Figure 12(b) shows residuals versus predicted values for 

monthly 5-degree observations recorded against the Japanese and Taiwanese fleets. The 

predicted dataset includes observations where CCSBT effort differs substantially from WCPFC 

effort (i.e. the observations highlighted as excluded in Figure 9) so some large residuals are to be 

expected. However, Figure 9 highlights that WCPFC records of Taiwanese effort are generally 

greater than the CCSBT recorded values. This may be expected given the reporting requirements 

to CCSBT where, as a minimum, members provide catch and effort data for all operations where 

SBT are targeted or caught (CCSBT-ERS/1503/04). Nevertheless, since low catch rates of SBT 

seem to be associated with targeting other species (Figure 11), the pattern of negative residuals 

shown in Figure 12(b) is unexpected. Although it appears that the observed Taiwanese CPUEs 

might all be zero, in fact they are just very small compared with the predicted values. This 

anomaly needs to be better understood. 

 

Figure 12 (a) Comparison of predicted annual catch of SBT of Japanese longline fleet in the 
Pacific Ocean with corresponding estimated from reported catch numbers; and (b) 
observation level residuals versus predicted values (J = Japan, T = Taiwan). 

Non-member effort 

The dataset obtained from the WCPFC contains very few non-member observations within the 

Pacific Ocean area used in this analysis (Figure 8). Overall, there are only six monthly 5-degree 

square observations from non-members between 2007 and 2012. However, in 2007 for 

instance, the reported number of hooks set by non-member fleets in the area of interest is high 

enough to warrant further investigation. It is possible that there was additional non-member 

effort in the Pacific Ocean area of interest between 2007 and 2012. Given the relatively low 

quantity of effort that did satisfy the WCPFC confidentiality restrictions it seems unlikely that 

any effort unable to be provided in this area was substantial. 
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Figure 13 Hooks set by non-member fleets within the Pacific Ocean study area (2007-
2012). No non-member effort was recorded in this area during 2008, 2011 or 2012. 

Estimates of total non-member catch in the Pacific Ocean 

As was the case with the Indian Ocean analysis, the fitted CPUE model is defined in terms of 

variables that are known for non-member fleets. The fitted model is then used to predict CPUE 

for the monthly non-member observations based on the values of explanatory variables sourced 

from the WCPFC. Also as before, catch is estimated for each aggregated observation simply by 

multiplying the catch rate by the reported number of hooks set. Each of the 500 bootstrapped 

regression trees that comprise the random forest model predict a slightly different set of annual 

non-member catches. Uncertainty in the predicted non-member catch is inferred from the 

distribution of predictions given by the individual regression trees. Estimated non-member 

catch of SBT in the Pacific Ocean between 2007 and 2012 are plotted in Figure 14 and 

summarised in Table 5. 
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Figure 14 Estimates of annual non-member catch of SBT in the Pacific Ocean with 80 
percent prediction intervals. Orange bars are estimates based on the medians from 
predictions derived from 500 bootstrapped regression trees of the random forests model. 

Presumably all non-member catch in the Pacific Ocean would be assumed to have selectivity as 

defined by the LL1 fishery. 

Table 5 Predicted non-member catch in the Pacific Ocean 2007-2012. 

Year Median Estimate (tonnes) 80% Prediction Interval (tonnes) 

2007 70 (33, 237) 

2008 0 - 

2009 0 (0, 9) 

2010 36 (1, 69) 

2011 0 - 

2012 0 - 
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5 Concluding remarks 
We have described an approach for estimating catch of SBT by non-member longline fleets using 

data reported to the IOTC and WCPFC in combination with CCSBT data. We have provided some 

estimates of potential non-member catch of SBT between 2007 and 2012 given effort reported 

to the IOTC and WCPFC. The median estimated non-member catch is compared with the total 

global catch reported to the CCSBT in Figure 15. 

 

Figure 15 Barplot showing suggested sum of median estimated non-member catch and 
reported catch of SBT. The reported catch of the EU has been subtracted from the 
estimated non-member catch in the plot. 

The reliability of the estimated non-member catch is uncertain because of the possibility that 

SBT catch rates of non-member fleets differ from CCSBT member fleets in ways that are not 

addressed by the models that we have applied. Whilst model diagnostics can be used to evaluate 

how well the model predict the catch rates of SBT by CCSBT members, it is likely that predictions 

of non-member catch are less accurate. 

There are other, perhaps greater, sources of uncertainty as well. We have modelled the potential 

catch by non-member fleets, but cannot know what proportion of SBT captured is released alive. 

The inability to use the Japanese CPUE in the Indian Ocean is a potential weakness for that 

analysis. We have assumed that the non-member effort sourced from the IOTC and WCPFC 

datasets is comprehensive, but this is unlikely to be the case. For example, the IOTC data are 

prefaced with the statement ‘Catches and effort are not available for all Nominal catches strata. 

When recorded, the catches in these datasets might represent the total catches of the species in 

the year for the fleet and gear concerned or represent simply a sample of those’. In addition, we 

have not considered the possibility of non-member catch of SBT in the Atlantic Ocean (area 

managed by ICCAT). It can be seen from Figure 1 that SBT have been frequently caught 

historically in the south east Atlantic Ocean. 

This work has highlighted inconsistencies between the data held by the IOTC, the WCPFC and 

the CCSBT. The rationale for reporting and not reporting particular longline sets to particular 

RFMOs is not entirely clear and the current situation reduces the confidence that can be placed 

in analyses such as described here. For example, Hoyle and Chambers (2015) point out that 

CCSBT catch and effort data suggest decent average SBT catch rates well to the east of New 

Zealand despite the total reported catch of SBT from this area being very low. A better solution 
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might be a single database that includes all catch and effort available to all tuna RFMOs where 

users can subset the data according to their individual needs.  

Noting the uncertainties, the estimated non-member catch is small compared with the reported 

catch of SBT (Figure 15). Relatively low bycatch of SBT might be expected because its 

distribution tends to be temperate latitudes whereas alternative target species for longline fleets 

are caught farther north. There is little or no evidence of non-member effort on the SBT 

spawning grounds in the IOTC data since 2007. 
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